SUMS OF A. IRVING

ÉTIENNE FOUVRY, EMMANUEL KOWALSKI, AND PHILIPPE MICHEL

Let p be a prime, $h \in \mathbf{F}_p^{\times}$ a fixed invertible element modulo p. Let χ be a fixed non-trivial multiplicative character modulo p.

We consider the function $W : \mathbf{F}_p \longrightarrow \mathbf{C}$ defined by

$$W(x) = \frac{1}{\sqrt{p}} \sum_{n \in \mathbf{F}_p} \chi(n) \overline{\chi(n+h)} e_p(nx).$$

In the notation of A. Irving's paper, we have $W(x) = p^{-1/2}W_{\chi,h}(x)$. The goal is to study sums of products of values of W of the type

$$S(y) = \sum_{x \in \mathbf{F}_p} \prod_{i=1}^{n_1} W(x+t_i) \prod_{j=1}^{n_2} \overline{W(x+s_j)} e_p(xy)$$

where the t_i 's and s_j 's are in \mathbf{F}_p and $y \in \mathbf{F}_p$. The sum $K_{\chi,h}(h_1, \ldots, h_k, y)$ in Irving's paper is of this type, up to a factor $p^{-2^k/2}$, with $n_1 = n_2 = 2^{k-1}$ for some integer $k \ge 1$ and the (t_i) (resp. (s_j) 's) are the sums

$$\sum_{i \in I} h_i$$

where I ranges over $I \subset \{1, ..., k\}$ with |I| even (resp. odd). We will prove:

Theorem 1. Assume p > 5. We have

 $|S(y)| \ll \sqrt{p}$

where the implied constant depends only on n_1 and n_2 if any of the following conditions hold: (1) If $y + \frac{(n_2 - n_1)h}{2} \neq 0$;

(2) If
$$y + (n_2 - n_1)h/2 = 0$$
 and there is some $x \in \mathbf{F}_p$ such that the total multiplicity
 $|\{i \mid t_i = x\}| + |\{j \mid s_j = x\}|$

is odd.

The proof is based on the methods of algebraic geometry described in [1], based on the Riemann Hypothesis over finite fields of Deligne and additional ideas and computations of Katz [2]. We begin by a remark that allows us to remove the complex conjugates, and which is needed to apply cleanly the results of [1]. We define

$$W'(x) = W(x)e_p(\bar{2}hx).$$

Date: March 27, 2015, 10:02.

Ph. M. was partially supported by the SNF (grant 200021-137488) and the ERC (Advanced Research Grant 228304). É. F. thanks ETH Zürich, EPF Lausanne and the Institut Universitaire de France for financial support. Ph.M. and E.K. were partially supported by a DFG-SNF lead agency program grant (grant 200021L_153647).

Lemma 2. We have

where

$$S(y) = e_p(\alpha h)T\left(y + \frac{(n_2 - n_1)h}{2}\right)$$
$$\alpha = \frac{1}{2}\left(\sum_i t_i - \sum_j s_j\right)$$

1

and

$$T(y) = \sum_{x \in \mathbf{F}_p} \prod_{l=1}^{n_1 + n_2} W'(x + u_l) e_p(xy)$$

where $u_l = t_l$ for $1 \leq l \leq n_1$ and $u_l = s_{l-n_1}$ for $n_1 + 1 \leq l \leq n_1 + n_2$.

Proof. This is a straightforward computation where the point is that W'(x) is real for all $x \in \mathbf{F}_p$; this follows in turn from the relation

$$e_p(-hx)\overline{W(x)} = \frac{1}{\sqrt{p}} \sum_{n \in \mathbf{F}_p} \overline{\chi(n)}\chi(n+h)e_p(-(n+h)x)$$
$$= \frac{1}{\sqrt{p}} \sum_{m \in \mathbf{F}_p} \overline{\chi(-m-h)}\chi(-m)e_p(mx) = W(x).$$

Hence the result follows from the following result concerning sums like T:

Proposition 3. Let (u_1, \ldots, u_n) be distinct elements of \mathbf{F}_p , let $\nu_i \ge 1$. Let

$$T(y) = \sum_{x \in \mathbf{F}_p} \prod_{i=1}^n W'(x+u_i)^{\nu_i} e_p(xy)$$

for $y \in \mathbf{F}_p$. Then we have $T \ll p^{1/2}$, where the implied constant depends only on n and the ν_i , provided either that $y \neq 0$, or that y = 0 and some ν_i is odd.

Proof. We will first apply [1, Th. 2.7] and then [1, Prop. 1.1] to the following data:

- the sheaf \mathcal{G} is $\mathcal{L}_{\psi(-yX)}$, with ψ the additive character corresponding to e_p ,
- the family of sheaves is $(\mathcal{F}_i)_{1 \leq i \leq n}$ with

$$\mathcal{F}_i = [+u_i]^* \mathcal{F},$$

where $\mathcal{F} = \mathrm{FT}_{\psi}(\mathcal{H}) \otimes \mathcal{L}_{\psi(hX/2)}$, with \mathcal{H} the sheaf-theoretic Fourier transform of the Kummer sheaf

$$\mathcal{L}_{\chi(X)\bar{\chi}(X+h)}.$$

• the open set U is the complement of $\{-u_i\}$ in the affine line.

By definition of the Fourier transform, the trace function of \mathcal{F} is the function W' (one must check that the tensor product defining \mathcal{H} is a middle-extension, but this is straightforward), and that of \mathcal{F}_i is $W'(x+u_i)$, so the sum T is exactly of the type controlled by [1, Prop. 1.1] in that case.

We now check that the family (\mathcal{F}_i) is strictly U-generous, in the sense of [1, Def. 2.1], which is the hypothesis in [1, Th. 2.7]. This is true because:

- (1) The \mathcal{F}_i are geometrically irreducible middle-extensions of weight 0, because so is \mathcal{F} , in turn because it is a tensor product of an Artin-Schreier sheaf (of weight 0 and of rank 1) with the Fourier transform of the middle-extension sheaf \mathcal{H} of weight 0 which is geometrically irreducible and of Fourier type (not being an Artin-Schreier sheaf); as noted above, the middle-extension property is checked directly.
- (2) The geometric monodromy group of \mathcal{F} is equal to SL_2 for p > 5 (see below for the justification), so that the same holds for \mathcal{F}_i , and this group satisfies the second condition of loc. cit.,
- (3) Any pairs of SL_2 with their standard representations is Goursat-adapted (see [2, Example 1.8.1, p. 25]), so the third condition holds;
- (4) For $i \neq j$, we have no geometric isomorphism

$$\mathcal{F}_i \simeq \mathcal{F}_j \otimes \mathcal{L}, \text{ or } \mathrm{D}(\mathcal{F}_i) \simeq \mathcal{F}_j \otimes \mathcal{L},$$

of sheaves on U, for any rank 1 sheaf \mathcal{L} lisse on U (see also below), where $D(\mathcal{F}_i)$ is the dual of \mathcal{F}_i .

Leaving for a bit later the last checks indicated, we can finish the proof of the proposition first. From [1, Prop. 1.1], it is enough to show that the abstract "diagonal" classification of [1, Th. 2.7] implies that

$$H_c^2(U \times \bar{\mathbf{F}}_p, \bigotimes \mathcal{F}_i^{\otimes \nu_i} \otimes \mathcal{D}(\mathcal{G})) = 0$$

unless y = 0 and all ν_i are even. But [1, Th. 2.7] shows that this cohomology group vanishes unless we have a geometric isomorphism

$$\mathfrak{G}\simeq\bigotimes\Lambda_i(\mathfrak{F}_i)$$

where Λ_i is an irreducible representation of SL₂ contained in the ν_i -th tensor of its standard representation (the covering π in loc. cit. is trivial here because we are in a strictly *U*generous situation). Assume we have such an isomorphism. Then, since the rank of \mathcal{G} is 1, we see that Λ_i is trivial for all *i*, and therefore \mathcal{G} is also geometrically trivial, which means that y = 0. Then we see that ν_i must be even for the trivial representation to be contained in the ν_i -th tensor power. (Note that this is the same argument as for sums of products of classical Kloosterman sums in [1, Cor. 3.2]).

We now finish checking the conditions (2) and (4) above. For (2), we first need to prove that the connected component of the identity G^0 of the geometric monodromy group G of \mathcal{F} is SL₂. Since the tensor product with $\mathcal{L}_{\psi(hX/2)}$ does not alter this property, this is a special case of [2, Th. 7.9.4], because \mathcal{H} is a tame pseudoreflection sheaf, ramified only at ∞ and at the points in $S = \{0, -h\} \subset \mathbf{A}^1$ (see also [2, Th. 7.9.6]). We then need to check that in fact G is connected so that $G = G^0 = \mathrm{SL}_2$. This is because \mathcal{F} is geometrically self-dual, as follows from the formula [2, Th. 7.3.8 (2)] for the dual of a Fourier transform (intuitively, this is because W' is real-valued). Indeed, G is semisimple and hence of the form $\mu_N \mathrm{SL}_2$ for some $N \ge 1$, where μ_N is the group of N-th roots of unity. This group is self-dual in the standard representation if and only if $N \le 2$, but $\mu_2 \mathrm{SL}_2 = \mathrm{SL}_2$.

For (4), assume first that we have a geometric isomorphism

(1)
$$\mathcal{F}_i = [+u_i]^* \mathcal{F} \simeq [+u_j]^* \mathcal{F} \otimes \mathcal{L} = \mathcal{F}_j \otimes \mathcal{L}$$

(on U) for some rank 1 sheaf \mathcal{L} .

By [2, Cor. 7.4.6] (1), the sheaf \mathcal{F} is tamely ramified at 0 with drop 1, and it is unramified on \mathbf{G}_m by [2, Th. 7.9.4]. If $i \neq j$, then the left-hand sheaf in (??) is therefore unramified at $-u_j$, since $u_i \neq u_j$. On the other hand, \mathcal{F}_j is ramified at $-u_j$ and has rank 2 and drop 1. Thus the tensor product with the rank 1 sheaf \mathcal{L} is ramified at $-u_j$ (the dimension of the inertial invariants is at most 1), which is a contradiction. Thus an isomorphism as above is impossible unless i = j.

There remains to deal with the possibility of an isomorphism

$$\mathcal{F}_i = [+u_i]^* \mathcal{F} \simeq [+u_j]^* \mathcal{D}(\mathcal{F}) \otimes \mathcal{L} = \mathcal{D}(\mathcal{F}_j) \otimes \mathcal{L}.$$

But we have seen that $D(\mathcal{F}) \simeq \mathcal{F}$, so this is also impossible if $i \neq j$.

References

- E. Fouvry, E. Kowalski and Ph. Michel: A study in sums of products, Phil. Trans. R. Soc. A, to appear; dx.doi.org/10.1098/rsta.2014.0309
- [2] N.M. Katz: Exponential sums and differential equations, Annals of Math. Studies 124, Princeton Univ. Press (1990).

UNIVERSITÉ PARIS SUD, LABORATOIRE DE MATHÉMATIQUE, CAMPUS D'ORSAY, 91405 ORSAY CEDEX, FRANCE

E-mail address: etienne.fouvry@math.u-psud.fr

ETH ZÜRICH – D-MATH, RÄMISTRASSE 101, CH-8092 ZÜRICH, SWITZERLAND *E-mail address*: kowalski@math.ethz.ch

EPFL/SB/IMB/TAN, STATION 8, CH-1015 LAUSANNE, SWITZERLAND *E-mail address*: philippe.michel@epfl.ch