SUMS OF A. IRVING

ÉTIENNE FOUVRY, EMMANUEL KOWALSKI, AND PHILIPPE MICHEL

Let p be a prime, $h \in \mathbf{F}_{p}^{\times}$a fixed invertible element modulo p. Let χ be a fixed non-trivial multiplicative character modulo p.

We consider the function $W: \mathbf{F}_{p} \longrightarrow \mathbf{C}$ defined by

$$
W(x)=\frac{1}{\sqrt{p}} \sum_{n \in \mathbf{F}_{p}} \chi(n) \overline{\chi(n+h)} e_{p}(n x)
$$

In the notation of A. Irving's paper, we have $W(x)=p^{-1 / 2} W_{\chi, h}(x)$.
The goal is to study sums of products of values of W of the type

$$
S(y)=\sum_{x \in \mathbf{F}_{p}} \prod_{i=1}^{n_{1}} W\left(x+t_{i}\right) \prod_{j=1}^{n_{2}} \overline{W\left(x+s_{j}\right)} e_{p}(x y)
$$

where the t_{i} 's and s_{j} 's are in \mathbf{F}_{p} and $y \in \mathbf{F}_{p}$. The sum $K_{\chi, h}\left(h_{1}, \ldots, h_{k}, y\right)$ in Irving's paper is of this type, up to a factor $p^{-2^{k} / 2}$, with $n_{1}=n_{2}=2^{k-1}$ for some integer $k \geqslant 1$ and the $\left(t_{i}\right)$ (resp. $\left(s_{j}\right)$'s) are the sums

$$
\sum_{i \in I} h_{i}
$$

where I ranges over $I \subset\{1, \ldots, k\}$ with $|I|$ even (resp. odd).
We will prove:
Theorem 1. Assume $p>5$. We have

$$
|S(y)| \ll \sqrt{p}
$$

where the implied constant depends only on n_{1} and n_{2} if any of the following conditions hold:
(1) If $y+\frac{\left(n_{2}-n_{1}\right) h}{2} \neq 0$;
(2) If $y+\left(n_{2}-n_{1}\right) h / 2=0$ and there is some $x \in \mathbf{F}_{p}$ such that the total multiplicity

$$
\left|\left\{i \mid t_{i}=x\right\}\right|+\left|\left\{j \mid s_{j}=x\right\}\right|
$$

is odd.
The proof is based on the methods of algebraic geometry described in [1], based on the Riemann Hypothesis over finite fields of Deligne and additional ideas and computations of Katz [2]. We begin by a remark that allows us to remove the complex conjugates, and which is needed to apply cleanly the results of [1]. We define

$$
W^{\prime}(x)=W(x) e_{p}(\overline{2} h x)
$$

Date: March 27, 2015, 10:02.
Ph. M. was partially supported by the SNF (grant 200021-137488) and the ERC (Advanced Research Grant 228304). É. F. thanks ETH Zürich, EPF Lausanne and the Institut Universitaire de France for financial support. Ph.M. and E.K. were partially supported by a DFG-SNF lead agency program grant (grant 200021L_153647).

Lemma 2. We have

$$
S(y)=e_{p}(\alpha h) T\left(y+\frac{\left(n_{2}-n_{1}\right) h}{2}\right)
$$

where

$$
\alpha=\frac{1}{2}\left(\sum_{i} t_{i}-\sum_{j} s_{j}\right)
$$

and

$$
T(y)=\sum_{x \in \mathbf{F}_{p}} \prod_{l=1}^{n_{1}+n_{2}} W^{\prime}\left(x+u_{l}\right) e_{p}(x y)
$$

where $u_{l}=t_{l}$ for $1 \leqslant l \leqslant n_{1}$ and $u_{l}=s_{l-n_{1}}$ for $n_{1}+1 \leqslant l \leqslant n_{1}+n_{2}$.
Proof. This is a straightforward computation where the point is that $W^{\prime}(x)$ is real for all $x \in \mathbf{F}_{p}$; this follows in turn from the relation

$$
\begin{aligned}
e_{p}(-h x) \overline{W(x)} & =\frac{1}{\sqrt{p}} \sum_{n \in \mathbf{F}_{p}} \overline{\chi(n)} \chi(n+h) e_{p}(-(n+h) x) \\
& =\frac{1}{\sqrt{p}} \sum_{m \in \mathbf{F}_{p}} \overline{\chi(-m-h)} \chi(-m) e_{p}(m x)=W(x) .
\end{aligned}
$$

Hence the result follows from the following result concerning sums like T :
Proposition 3. Let $\left(u_{1}, \ldots, u_{n}\right)$ be distinct elements of \mathbf{F}_{p}, let $\nu_{i} \geqslant 1$. Let

$$
T(y)=\sum_{x \in \mathbf{F}_{p}} \prod_{i=1}^{n} W^{\prime}\left(x+u_{i}\right)^{\nu_{i}} e_{p}(x y)
$$

for $y \in \mathbf{F}_{p}$. Then we have $T \ll p^{1 / 2}$, where the implied constant depends only on n and the ν_{i}, provided either that $y \neq 0$, or that $y=0$ and some ν_{i} is odd.

Proof. We will first apply [1, Th. 2.7] and then [1, Prop. 1.1] to the following data:

- the sheaf \mathcal{G} is $\mathcal{L}_{\psi(-y X)}$, with ψ the additive character corresponding to e_{p},
- the family of sheaves is $\left(\mathcal{F}_{i}\right)_{1 \leqslant i \leqslant n}$ with

$$
\mathcal{F}_{i}=\left[+u_{i}\right]^{*} \mathcal{F},
$$

where $\mathcal{F}=\mathrm{FT}_{\psi}(\mathcal{H}) \otimes \mathcal{L}_{\psi(h X / 2)}$, with \mathcal{H} the sheaf-theoretic Fourier transform of the Kummer sheaf

$$
\mathcal{L}_{\chi(X) \bar{\chi}(X+h)} .
$$

- the open set U is the complement of $\left\{-u_{i}\right\}$ in the affine line.

By definition of the Fourier transform, the trace function of \mathcal{F} is the function W^{\prime} (one must check that the tensor product defining \mathcal{H} is a middle-extension, but this is straightforward), and that of \mathcal{F}_{i} is $W^{\prime}\left(x+u_{i}\right)$, so the sum T is exactly of the type controlled by [1, Prop. 1.1] in that case.

We now check that the family $\left(\mathcal{F}_{i}\right)$ is strictly U-generous, in the sense of [1, Def. 2.1], which is the hypothesis in [1, Th. 2.7]. This is true because:
(1) The \mathcal{F}_{i} are geometrically irreducible middle-extensions of weight 0 , because so is \mathcal{F}, in turn because it is a tensor product of an Artin-Schreier sheaf (of weight 0 and of rank 1) with the Fourier transform of the middle-extension sheaf \mathcal{H} of weight 0 which is geometrically irreducible and of Fourier type (not being an Artin-Schreier sheaf); as noted above, the middle-extension property is checked directly.
(2) The geometric monodromy group of \mathcal{F} is equal to SL_{2} for $p>5$ (see below for the justification), so that the same holds for \mathcal{F}_{i}, and this group satisfies the second condition of loc. cit.,
(3) Any pairs of SL_{2} with their standard representations is Goursat-adapted (see [2, Example 1.8.1, p. 25]), so the third condition holds;
(4) For $i \neq j$, we have no geometric isomorphism

$$
\mathcal{F}_{i} \simeq \mathcal{F}_{j} \otimes \mathcal{L}, \text { or } \mathrm{D}\left(\mathcal{F}_{i}\right) \simeq \mathcal{F}_{j} \otimes \mathcal{L},
$$

of sheaves on U, for any rank 1 sheaf \mathcal{L} lisse on U (see also below), where $\mathrm{D}\left(\mathcal{F}_{i}\right)$ is the dual of \mathcal{F}_{i}.
Leaving for a bit later the last checks indicated, we can finish the proof of the proposition first. From [1, Prop. 1.1], it is enough to show that the abstract "diagonal" classification of [1, Th. 2.7] implies that

$$
H_{c}^{2}\left(U \times \overline{\mathbf{F}}_{p}, \bigotimes \mathcal{F}_{i}^{\otimes \nu_{i}} \otimes \mathrm{D}(\mathcal{G})\right)=0
$$

unless $y=0$ and all ν_{i} are even. But [1, Th. 2.7] shows that this cohomology group vanishes unless we have a geometric isomorphism

$$
\mathcal{G} \simeq \bigotimes \Lambda_{i}\left(\mathcal{F}_{i}\right)
$$

where Λ_{i} is an irreducible representation of SL_{2} contained in the ν_{i}-th tensor of its standard representation (the covering π in loc. cit. is trivial here because we are in a strictly U generous situation). Assume we have such an isomorphism. Then, since the rank of \mathcal{G} is 1 , we see that Λ_{i} is trivial for all i, and therefore \mathcal{G} is also geometrically trivial, which means that $y=0$. Then we see that ν_{i} must be even for the trivial representation to be contained in the ν_{i}-th tensor power. (Note that this is the same argument as for sums of products of classical Kloosterman sums in [1, Cor. 3.2]).

We now finish checking the conditions (2) and (4) above. For (2), we first need to prove that the connected component of the identity G^{0} of the geometric monodromy group G of \mathcal{F} is SL_{2}. Since the tensor product with $\mathcal{L}_{\psi(h X / 2)}$ does not alter this property, this is a special case of [2, Th. 7.9.4], because \mathcal{H} is a tame pseudoreflection sheaf, ramified only at ∞ and at the points in $S=\{0,-h\} \subset \mathbf{A}^{1}$ (see also [2, Th. 7.9.6]). We then need to check that in fact G is connected so that $G=G^{0}=\mathrm{SL}_{2}$. This is because \mathcal{F} is geometrically self-dual, as follows from the formula [2, Th. 7.3.8 (2)] for the dual of a Fourier transform (intuitively, this is because W^{\prime} is real-valued). Indeed, G is semisimple and hence of the form $\mu_{N} \mathrm{SL}_{2}$ for some $N \geqslant 1$, where μ_{N} is the group of N-th roots of unity. This group is self-dual in the standard representation if and only if $N \leqslant 2$, but $\mu_{2} \mathrm{SL}_{2}=\mathrm{SL}_{2}$.

For (4), assume first that we have a geometric isomorphism

$$
\begin{equation*}
\mathcal{F}_{i}=\left[+u_{i}\right]^{*} \mathcal{F} \simeq\left[+u_{j}\right]^{*} \mathcal{F} \otimes \mathcal{L}=\mathcal{F}_{j} \otimes \mathcal{L} \tag{1}
\end{equation*}
$$

(on U) for some rank 1 sheaf \mathcal{L}.

By [2, Cor. 7.4.6] (1), the sheaf \mathcal{F} is tamely ramified at 0 with drop 1 , and it is unramified on \mathbf{G}_{m} by [2, Th. 7.9.4]. If $i \neq j$, then the left-hand sheaf in (??) is therefore unramified at $-u_{j}$, since $u_{i} \neq u_{j}$. On the other hand, \mathcal{F}_{j} is ramified at $-u_{j}$ and has rank 2 and drop 1 . Thus the tensor product with the rank 1 sheaf \mathcal{L} is ramified at $-u_{j}$ (the dimension of the inertial invariants is at most 1), which is a contradiction. Thus an isomorphism as above is impossible unless $i=j$.

There remains to deal with the possibility of an isomorphism

$$
\mathcal{F}_{i}=\left[+u_{i}\right]^{*} \mathcal{F} \simeq\left[+u_{j}\right]^{*} \mathrm{D}(\mathcal{F}) \otimes \mathcal{L}=\mathrm{D}\left(\mathcal{F}_{j}\right) \otimes \mathcal{L} .
$$

But we have seen that $\mathrm{D}(\mathcal{F}) \simeq \mathcal{F}$, so this is also impossible if $i \neq j$.

References

[1] É. Fouvry, E. Kowalski and Ph. Michel: A study in sums of products, Phil. Trans. R. Soc. A, to appear; dx.doi.org/10.1098/rsta.2014.0309
[2] N.M. Katz: Exponential sums and differential equations, Annals of Math. Studies 124, Princeton Univ. Press (1990).

Université Paris Sud, Laboratoire de Mathématique, Campus d’Orsay, 91405 Orsay Cedex, France

E-mail address: etienne.fouvry@math.u-psud.fr
ETH ZÜrich - D-MATH, Rämistrasse 101, CH-8092 ZÜrich, Switzerland
E-mail address: kowalski@math.ethz.ch
EPFL/SB/IMB/TAN, Station 8, CH-1015 Lausanne, Switzerland
E-mail address: philippe.michel@epfl.ch

