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Random / not Random

In 1995, the Metropolitan Museum in New York had an exhibition
entitled

Rembrandt / not Rembrandt

exploring the issues in determining the œuvre of Rembrandt.

This talk will deal instead with issues related to randomness, where
we attempt to distinguish authentic randomness from pseudo- or
quasi-randomness coming from deterministic arithmetic objects.
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Values of the Euler function

Normalized Euler function: f(n) =
ϕ(n)

n
=
∏
p|n

(
1− 1

p

)
.

Schoenberg (1928): if we look at integers n ≤ N and let N→ +∞,
the probability distribution of f(n) converges in law to the infinite
random product

F =
∏
p

(
1− Bp

p

)
where (Bp) are independent Bernoulli random variables with

P(Bp = 1) =
1

p
, P(Bp = 0) = 1− 1

p
.

In other words: lim
N→+∞

1

N
|{n ≤ N | ϕ(n) ≤ αn}| = P(F ≤ α)
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Values of the Euler function

Erdős (1939): the distribution is singular; g(α) = P(F ≤ α) is
continuous, strictly increasing, and has g′(α) = 0 for almost all α.



Kloosterman paths

Kloosterman sums: Kl(a; p) =
1
√
p

∑
1≤x<p

exp
(

2iπ
ax+ x̄

p

)
(p prime, a coprime to p, xx̄ ≡ 1 (mod p))

Kloosterman paths: continuous function Kp(a) : [0, 1]→ C linearly
interpolating

j

p− 1
7→ 1
√
p

∑
1≤x≤j

exp
(

2iπ
ax+ x̄

p

)
, 0 ≤ j ≤ p− 1.
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Kloosterman paths

K. & Sawin (2016): as p→ +∞, if we take a modulo p uniformly at
random, the Kloosterman paths Kp(a) converge in law to the Fourier
series

K(t) = tX0 +
∑
h∈Z
h6=0

Xh
exp(2iπth)− 1

2iπh

where (Xh)h∈Z are independent and distributed on [−2, 2] according
to the density

1

π

√
1− x2

4
dx.



Picturesque randomness

One of these two pictures is a sample of the “authentic” random
Fourier series, the other one is a Kloosterman path.
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The “bat-like” shape (dixit Granville and Granville, Prime suspects)
is due to the fact that the Fourier coefficients are purely imaginary.
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Kloosterman paths

Size of Kloosterman sum:

|Kl(a; p)| =
∣∣∣ 1
√
p

∑
1≤x<p

exp
(

2iπ
ax+ x̄

p

)∣∣∣ ≤ 2.

Sum of p− 1 “randomly oscillating” numbers of modulus 1 without
Central Limit Theorem, or any kind of large deviations; the
Kloosterman paths are not random walks.

The random Fourier series leaves no hint of its arithmetic origin.

(Vexing) open question: does there exist a continuous function f in
the support of K that is “space filling”?

Equivalently: is there a continuous space-filling curve f with Fourier
coefficients of size O(1/h)?
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Where does the randomness come from?

Weil (1948): the full length Kloosterman sum Kl(a; p) is the trace of
a matrix θa,p ∈ SU2(C); so |Kl(a; p)| ≤ 2.

Deligne / Katz (1988): these matrices are uniformly distributed, up
to conjugacy, in SU2(C).

These results are special cases of the general form of the Riemann
Hypothesis over Finite Fields, due to Deligne (the most important
result in number theory of the 20th century).

The (pseudo-)randomness implications of this remarkable result are
certainly still very far from being exhausted.
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A classical question of analysis

Consider f : R→ C continuous with period 1.

Parseval formula:
∑
n∈Z

|cn(f)|2 =

∫ 1

0

|f(x)|2dx < +∞

where

cn(f) =

∫ 1

0

f(x) exp(−2iπnx)dx.

Question: is the exponent 2 best possible? Could there exist δ > 0

such that
∑
n∈Z

|cn(f)|2−δ < +∞ for any continuous f?



A classical question of analysis

Legendre symbol: p prime,
(n
p

)
=


0 p | n
1 n a square mod p

−1 n not a square mod p

Carleman (1917): f(x) =
∑
k≥1

1

k2
fpk(x),

pk ≡ 1 (mod 4) such that pk > 4p2
k−1,

fp(x) =
2

p1/2

p−1∑
n=1

(
1− n

p

)(n
p

)
cos(2πnx).

Then
∑
n∈Z

|cn(f)|2−δ = +∞ for any δ > 0.

But also g(x) =
∑
n≥2

e2iπn logn

√
n(log n)2

e2iπnx (cf Zygmund, p. 199).
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A much more difficult question: ultraflat polynomials

fN(x) =
∑

0≤m≤N

a(m) exp(2iπmx), |a(m)| = 1

Question (Erdős 1957, Littlewood 1966): is it possible to find fN

such that |fN(x)| =
√

N(1 + o(1)) for all x?

Kahane (1980): probabilistic construction.

Bombieri–Bourgain (1999): explicit arithmetic construction with

|fN(x)| =
√

N + O(N1/2−1/18).

The proof involves again the Riemann Hypothesis over Finite Fields.
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Pseudo-random functions in the sense of Gowers

Gowers norms: p prime, f : Z/pZ→ C, k ≥ 0

‖f‖0 =
1

p

∣∣∣ ∑
x∈Z/pZ

f(x)
∣∣∣, ‖f‖2

k+1

k+1 =
1

p

∑
h∈Z/pZ

∥∥∥(x 7→ f(x)f(x+ h)
)∥∥∥2k

k
.

Exercise (Tao–Vu). If f is “random” then ‖f‖2k

k = O(p−1).

Fouvry, K., Michel (2013): for f(a) = Kl(a; p), we have

‖f‖2
k

k ≤ 20(k+1)2k

/p.
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The approximation property

Question: does there exist f continuous on [0, 1]2 such that∫ 1

0

f(x, t)f(t, y)dt = 0, (x, y) ∈ [0, 1]2,

∫ 1

0

f(t, t)dt 6= 0 ?

Grothendieck (1955): Yes ⇐⇒ some Banach space E does not have
the approximation property (the identity on E cannot be
approximated uniformly on compact sets by finite rank operators).

Enflo (1973): constructs spaces without the approximation property,
so the answer is Yes. Davie has a different probabilistic construction.

Key probabilistic requirement. For k ≥ 1, find (αi)1≤i≤3·2k in
{−2, 1} with sum 0 such that∣∣∣∑

i

αiχ(i)
∣∣∣ ≤ C(k + 1)1/22k/2

for all characters of Z/3 · 2kZ.
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Expander graphs

(Barzdin–Kolmogorov 1967; Bassalygo–Pinsker 1973):
(Γn)n≥1, sequence of finite d-regular graphs with |Γn| → +∞.

δ-expander: for all n ≥ 1, all ∅ 6= X ⊂ Γn, we have

(?)
|{edges of Γn joining X to Γn X}|

min(|X|, |Γn X|)
≥ δ > 0.

Existence first proved by probabilistic methods: a “random” d-regular
graph with n vertices has probability at least ≥ δd > 0 of satisfying (?)



Expander graphs

(Barzdin–Kolmogorov 1967; Bassalygo–Pinsker 1973):
(Γn)n≥1, sequence of finite d-regular graphs with |Γn| → +∞.

δ-expander: for all n ≥ 1, all ∅ 6= X ⊂ Γn, we have

(?)
|{edges of Γn joining X to Γn X}|

min(|X|, |Γn X|)
≥ δ > 0.

Existence first proved by probabilistic methods: a “random” d-regular
graph with n vertices has probability at least ≥ δd > 0 of satisfying (?)



Ramanujan graphs

Condition (?) equivalent to∑
x∼y
|f(x)− f(y)|2∑
x∈Γn

|f(x)|2
≥ δ′ > 0

(
f : Γn → C,

∑
x∈Γn

f(x) = 0
)

(for some δ′ depending on δ).

Alon–Boppana (1986): best possible δ′ is 2
√
d− 1.

Ramanujan graph (Lubotzky–Phillips–Sarnak, 1988): a graph
such that δ′ = 2

√
d− 1 is possible.

Lubotzky–Phillips–Sarnak construct explicit Ramanujan graphs
for d = p+ 1; essential tools are results of Deligne (not only the
Riemann Hypothesis).

Marcus–Spielman–Srivastava (2015): probabilistic construction of
bipartite Ramanuajan graphs (but for all d ≥ 3).
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The Banach–Mazur compact spaces

Banach–Mazur distance: n ≥ 1 integer; E, F complex Banach spaces
of dimension n; log dBM(E,F) = min

u : E'F
‖u‖ ‖u−1‖.

Banach–Mazur spaces: BMn = space of Banach spaces of
dimension n, up to isometry, with distance dBM; it is a compact
metric space.

Gluskin (1981): the diameter of BMn is of order about n
for n→ +∞.

Probabilistic construction: for random vectors X = (Xk) on the
euclidean unit sphere of Cn, define EX by the norm

‖x‖X = inf
{∑

k

|λk| | x =
∑
k

λkXk

}
.

With high probability, dBM(EX,EX̃) ≈ n.
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A conjecture about Banach–Mazur spaces

Attempt at derandomization of Gluskin’s construction: take n = p,
identify Cp with functions Z/pZ→ C, and take families X and X̃ of
functions

f(x) = exp
(

2iπ
P(x)

p

)
, f̃(x) =

(Q(x)

p

)
where P and Q are polynomials of bounded degree d ≥ 2.

Question. Is is true that dBM(EX,EX̃) ≈ p?

These spaces appear in any case quite naturally in many results of
Fouvry, K., Michel; do they have special properties as Banach spaces?



A conjecture about Banach–Mazur spaces

Attempt at derandomization of Gluskin’s construction: take n = p,
identify Cp with functions Z/pZ→ C, and take families X and X̃ of
functions

f(x) = exp
(

2iπ
P(x)

p

)
, f̃(x) =

(Q(x)

p

)
where P and Q are polynomials of bounded degree d ≥ 2.

Question. Is is true that dBM(EX,EX̃) ≈ p?

These spaces appear in any case quite naturally in many results of
Fouvry, K., Michel; do they have special properties as Banach spaces?


