
BIG SYMPLECTIC MONODROMY: A THEOREM OF C. HALL

E. KOWALSKI (D’APRÈS C. HALL)

For “The large sieve, monodromy and zeta functions of curves”, it is important to have
criteria to show that, for a family of sheaves of F`-vector spaces with symplectic monodromy,
the geometric monodromy groups are maximal for ` large enough.

A particular case used in loc. cit. is:

Theorem 1 (J-K. Yu). Let q be an odd power of a prime p, f ∈ Fq[T ] a monic squarefree
polynomial of degree 2g. Let U/Fq be the open subset of the affine line which is the complement
of the closed subset of zeros of f , and let C π−→ U be the family of hyperelliptic curves

C : y2 = f(x)(x− t)
with C → U being given by t. For ` 6= p, let F` = R1π!F`. Then for ` - 2p, the geometric
monodromy group of F` is the whole symplectic group Sp(2g,F`).

Yu’s proof, working by lifting to characteristic zero, is still unpublished.
Recently, C. Hall found new techniques to prove that certain monodromy groups modulo `

are large. Those were first stated for the case (more difficult) of orthogonal monodromy, but he
also quickly found the following symplectic version which suffices to recover the theorem above.

Theorem 2 (C. Hall). Let ` 6= 2 be a prime number, V a 2g-dimensional vector space over
F` with a non-degenerate alternating pairing 〈·, ·, 〉. Let G ⊂ Sp(V ) be a subgroup of the corre-
sponding symplectic group. Assume that:

– G is irreducible, i.e., the only F`-subspaces W ⊂ V which are invariant under G are W = 0
and W = V .

– there is some r > 1 and a set of generators S ⊂ G with all elements γ ∈ S of drop
drop(γ) 6 r.

– G contains one element of drop 1, i.e., G contains a transvection.
Then, denoting by S0 the subset of S of elements with order divisible by some prime ` 6 r+1,

we have either
– G = Sp(V ), or
– dim(V ) < 2(r + 1)|S0|.
In this statement, recall that the drop of an endomorphism A of a vector space V over a field

k is defined as the codimension of the invariant subspace V A = {v | Av = v}. An element
of drop 1 with determinant 1 is a transvection. If A is symplectic for some pairing on V , the
orthogonal (V A)⊥ is equal to Im(A− 1) and is of dimension 1. If rA is a non-zero generator of
this space, it is called a root of A. One can write

Av = v + α〈v, rA〉rA
for some α ∈ k. (Note that rA ∈ V A because the pairing is alternating!)

Proof of Th. 1 from Th. 2. We will apply Th.2 with set of generators S given by the local
monodromy operators around the finite singularities of U , i.e., the zeros of f . Each of these
will turn out to be a transvection, so that one can take r = 1 in Th. 2, and because symplectic
transvections (over fields of characteristic 6= 2) are not of order 2, we have S0 = 0, and therefore
the conclusion must be that G = Sp(V ). (In fact, the proof of Th. 2 for an irreducibly group
G generated by a set S of transvections is much quicker: one can directly apply the theorem of
Zalesskĭı and Serežkin in the last step (13) below)...

The transvectional nature of local monodromy in this case follows from 3.3.6 of “Rigid local
systems” by Katz (knowing that the theory of middle convolution which is developped there for

1



Q̄`-sheaves works identically for F̄`-sheaves), or by Katz-Sarnak, Lemma 10.1.13 (which works
with the Q̄`-sheaf also, but in ways that do not affect the argument for the reduction modulo
`, i.e., for our sheaf F`).

The irreducibility of the action of the geometric monodromy group on F` is more tricky. For
almost all `, this follows from Lemma 10.1.15 of Katz-Sarnak, since the action is irreducible at
the Q̄` level. For all `, it seems one must refer to 3.3.6 of “Rigid local systems”. �

Proof of Th. 2. The proof is divided in many small steps.

– (1) Let H ⊂ G be a normal subgroup, W ⊂ V a non-trivial irreducible H-subspace. If
dimW > r + 1, then W = V .
� Indeed, notice that for any γ ∈ S, we have V γ ∩ W 6= 0 because drop(γ) 6 r. Let

w0 ∈ V γ ∩W , w0 6= 0. Any w ∈ W can be expressed as combination of the vectors hw0 for
h ∈ H, since W is H-irreducible. But w0 ∈ V γ and H normal in G imply

γhw0 = γhγ−1w0 = h′w0 with h′ ∈ H

so γ(hw0) ∈ W for all h, and therefore γW ⊂ W . As {γ} = S generates G, it follows that W
is a G-subrepresentation, hence irreducibility again gives W = V .

Let H and W be as above with dimW 6 r. Assume that there is a decomposition in direct
sum

(1) W =
⊕
i

giW

where {giW} runs over the set X of translates of W by G (i.e., if H 6= G, assume that G is
imprimitive, induced by H acting on W ).

– (2) Any subset Y of X containing at least (r+ 1)(dimW )−1 elements contains at least one
γ-orbit (i.e., one orbit of the subgroup generated by γ) for every γ ∈ S.
� Indeed, we have a direct sum

W ′ =
⊕
L∈Y

L ⊂W

with dimW ′ > r+1, hence again W ′∩V γ 6= 0. A non-zero vector in W ′∩V γ , when decomposed
according to (1), has only non-zero components at some of the elements in Y , say at Y ′ ⊂ Y .
The action of γ sends the non-zero components of v to those of γv; since γv = v, this means
γ permutes the non-zero components in Y ′, hence Y ′ is γ-stable, and in particular contains at
least one orbit.

– (3) If γ /∈ S0, i.e. if the order of γ is not divisible by a prime 6 r + 1, then γ acts trivially
on the set X of translates of W .
� Indeed, under this assumption any γ-orbit which is not reduced to a single subspace must

contain at least r + 2 elements; but then taking any (proper) subset of r + 1 elements in this
orbit, since dimW > 1 we would be able to apply step (2) to deduce that this subset contains
a γ-orbit, which is a contradiction.

– (4) If there exists a translate gW ∈ X which is not contained in any γ-orbit for some γ ∈ S0

which does not act trivially on X, then W = V .
� Indeed, if W ′ = gW ∈ X is as stated, we must have γW ′ = W ′ for any γ ∈ S0. Since it

follows first from (3) that W ′ is stable by γ ∈ S − S0, we conclude that W ′ is stable under the
action of S, hence under the action of G. By irreducibility, this means W ′ = V and W = V
also.

– (5) If γ ∈ S0, then ∑
i

(ei − 1) <
r + 1

dimW

where i runs over the γ-orbits in X, and each orbit has ei elements.
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� Let Y be a subset of X constructed by removing one element from each γ-orbit; then
Y has

∑
(ei − 1) elements and doesn’t contain any γ-orbit, so by (2) we must have |Y | <

(r + 1)(dimW )−1.

– (6) The number N of elements in X which are in γ-orbits containing at least two elements
for some γ ∈ S0 is < 2(r + 1)|S0|(dimW )−1.

� For given γ ∈ S0, we have ei − 1 > 1 for all orbits with at least two elements, hence the
number n(γ) of those orbits satisfies

n(γ) 6
∑
i

(ei − 1) <
r + 1

dimW

by (5). Then again by (5) we get that the total number N(γ) of elements of X in the union of
those γ-orbits satisfies

N(γ) =
∑
i

ei =
∑
i

(ei − 1) + n(γ) <
2(r + 1)
dimW

.

Finally

N =
∑
γ∈S0

N(γ) <
2(r + 1)|S0|

dimW
.

– (7) If dimV > 2(r + 1)|S0|, then W = V .

� Indeed, if such is the case, the dimension of the space⊕
L

L,

where L runs over those translates of X counted in (6), is < dimV , hence this space is distinct
from V , so the Assumption of (4) holds, and it follows that W = V .

Here we summarize what we have found by (1), (4) and (7): either dimV < 2(r+1)|S0| or W
is primitive, i.e., a decomposition such as (1) does not exist for any normal subgroup H ⊂ G.

Now assume that dimV > 2(r + 1)|S0|. Let R ⊂ G denote the subgroup of G generated by
the transvections in G.

– (8) R is a non-trivial normal subgroup of G.
� Indeed, G contains at least one transvection by assumption, so R is non-trivial, and the

conjugate of a transvection is still one, so that all conjugates of R are contained in R.

– (9) Let W ⊂ V be a non-zero R-irreducible subspace. Then WR = 0.
� Indeed, the subspace WR ⊂ V is a G-subrepresentation because R is normal in G:

g ∈ G, r ∈ R, w ∈WR implies r(gw) = g(g−1rg)w = g(r′w) = gw, i.e., gw ∈WR.

So either WR = 0 or WR = V by irreducibility, but since R is non-trivial, the second case is
impossible.

– (10) The roots of elements of R which lie in W span W .
� Notice first that if γ ∈ R is a transvection, then either γ acts trivially on W , or its roots

lie in W : indeed, the space Im(γ − 1) ∩W is either 0 or one-dimensional. In the first case, γ
acts trivially (since γw − w ∈ Im(γ − 1) ∩W ), and in the second case, the roots (i.e., non-zero
elements of Im(γ−1)) are in W . Let S1 denote the set of transvections in R of the second type,
and let rγ ∈W denote one root of γ ∈ S1. We have S1 6= ∅, because otherwise all transvections
(and hence R itself) act trivially on W , contrary to (9).

Now let W ′ be the space spanned by the roots rγ . Then W ′ is an R-subrepresentation of
W : indeed, for h ∈ R, it is easy to see that hrγ ∈ W is a root of h−1γh ∈ R, which is still a
transvection. Since W ′ 6= 0 (S1 6= ∅) we have W ′ = W .

– (11) For any g ∈ G such that gW 6= W , we have gW ∩W = 0 and gW ⊥W .
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� Indeed, R normal in G implies that gW ∩W is an R-subrepresentation (because hgw =
g(g−1hg)w for h ∈ R, w ∈ W ), hence is 0 if gW 6= W . Then for any transvection γ with a
root in W , γ acts trivially on gW since gW ∩W = 0, and this means that the roots of γ are in
(gW )⊥. Therefore by (10), we have in fact gW ⊥W .

– (12) The space V is a direct orthogonal sum of the distinct translates of W , i.e., we have
a decomposition (1).
� Let {gW} be a maximal set of translates of W which are in orthogonal direct sum, and let

V ′ be their direct sum. By G-irreducibility of V , if V ′ 6= V there exists some other translate
g0W such that g0W is not contained in V ′. In particular for any g (parameterizing the set of
translates), we can apply (11) to gW and g0g−1(gW ) in place of W and gW , and conclude that
g0W ⊥ gW , g0W ∩ gW = 0. So g0W ⊥ V ′, and moreover g0W ∩ V ′ is an R-subrepresentation
of g0W , and is therefore either 0 or equal to g0W . The latter being impossible by assumption
(g0W is not contained in V ′), we have g0W ∩ V ′ = 0. All in all, we have constructed a set
{gW, g0W} contradicting the stated maximality of {gW}. So it must have been that V ′ = W
as desired.

– (13) Conclusion: the theorem holds.
� If dimV > 2(r + 1)|S0|, we have obtained in (12) a decomposition of type (1) for H = R

(which is normal in G) and W a non-trivial R-subspace. By (7), this means that W = V ,
i.e., this means that V is an irreducible R-space. Now the group R is generated by symplectic
transvections and acts irreducibly on V , and a theorem of Zalesskĭı and Serežkin implies that
R = Sp(V ). As G ⊃ R, we have G = Sp(V ) also. �
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