The problem of coincidences

E. Kowalski

ETH Zürich
Andrew Granville's 60th birthday
CRM-Montréal, September 2022

"The problem of coincidences"

(1708 to 1750; P. de Montmort, N. Bernoulli I, A. de Moivre)
(1) One of the first problems concerning random permutations.
(2) First appearance of the Poisson distribution.

Theorem. X_{n} uniform on \mathfrak{S}_{n}.
$\operatorname{Fix}(\sigma)=\{$ fixed points of $\sigma\}$

$$
\left|\operatorname{Fix}\left(X_{n}\right)\right| \xrightarrow[\text { law }]{n \rightarrow+\infty} P_{1}
$$

where P_{1} is a Poisson distribution with parameter 1.

```
    P R O B L E M XXXV.
    Any number of Letters a, b, c, d, e, f, ङ®%. all of them
        different, being taken promifcuoully as it bappens: to find
        the Probability that fome of them flall be found in their
        places according to the rank they obtain in the Alpha-
        bet; and that others of them floll at the fame time be
        difplaced.
```

Solution.
Let the number of all the Letters be $=n$; let the number of thofe that are to be in their places be $=p$, and the number of thofe that are to be out of their places $=q$. Suppofe for brevity's fake
$\frac{1}{n}=r, \frac{1}{n \cdot n-1}=s, \frac{1}{n \cdot n-1 \cdot n-2}=t, \frac{1}{n \cdot n-1 \cdot n-2 \cdot n-3}$ $=v, \& c \mathrm{c}$. then let all the quantities $\mathrm{I}, r, s, t, v, \& \mathrm{c}$. be written down with Signs alternately pofitive and negative, beginning at 1 , if p be $=0$; at r, if p be $=\mathrm{r}:$ at s, if $p \mathrm{be}=2, \& \mathrm{cc}$. Prefix to thefe Quantities the Coefficients of a Binomial Power, whofe index is $\equiv q$; this being done, thofe Quantities taken all together will exprefs the Probability required. Thus the Probability that in 6 Letters

In other words: for any integer $k \geqslant 0$, we have

$$
\lim _{n \rightarrow+\infty} \frac{1}{n!}\left|\left\{\sigma \in \mathfrak{S}_{n}| | \operatorname{Fix}(\sigma)=k\right\}\right|=\frac{1}{e} \frac{1}{k!} .
$$

Proof. By explicit counting: for $k \geqslant 0$, the number of $\sigma \in \mathfrak{S}_{n}$ with $|\operatorname{Fix}(\sigma)|=k$ is $\binom{n}{k} D_{n-k}, D_{n}=\mid\left\{\sigma \in \mathfrak{S}_{n} \mid \operatorname{Fix}(\sigma)=\emptyset\right\}$.

But

$$
D_{n}=n!-n \cdot(n-1)!+\frac{n(n-1)}{2} \cdot(n-2)!-\cdots
$$

by inclusion-exclusion, so the probability that $|\operatorname{Fix}(\sigma)|=k$ is

$$
\frac{1}{n!} \cdot \frac{n!}{k!(n-k)!} \cdot(n-k)!\cdot\left(1-1+\frac{1}{2}-\frac{1}{6}+\cdots\right) \rightarrow \frac{1}{e} \frac{1}{k!}
$$

A... "festive" proof

(From ongoing joint work with A. Forey and J. Fresán)
Step 1. (Interpretation)
$n \geqslant 1, \sigma \in \mathfrak{S}_{n}$.

$$
|\operatorname{Fix}(\sigma)|=\operatorname{Tr}\left(u_{\sigma}\right)
$$

where u_{σ} is the $n \times n$ permutation matrix.

Step 2. (Convergence criterion)

According to the method of moments, it is enough to prove:
Proposition. $k \geqslant 0$ integer

$$
\frac{1}{n!} \sum_{\sigma \in \mathfrak{S}_{n}}|\operatorname{Fix}(\sigma)|^{k} \longrightarrow \mathbf{E}\left(P_{1}^{k}\right)
$$

Step 3. (Linear algebra/representation theory)
It is known that

$$
\frac{1}{n!} \sum_{\sigma \in \mathfrak{G}_{n}}|\operatorname{Fix}(\sigma)|=\begin{aligned}
& \text { dimension of the sub- } \\
& \\
& \\
& \\
& \text { space of } \mathbf{C}^{n} \text { inder }\left\{u_{\sigma}\right\}
\end{aligned}
$$

Better:

$$
\frac{1}{n!} \sum_{\sigma \in \mathfrak{S}_{n}}|\operatorname{Fix}(\sigma)|^{k}=\underset{\substack{\text { dimension of the sub- } \\ \text { space of } \mathbf{C}^{n^{k}} \text { invariant } \\ \text { under }\left\{u_{\sigma}^{\otimes k}\right\}}}{ }
$$

where σ permutes the $\{1, \ldots, k\} \rightarrow\{1, \ldots, n\}$, and $u_{\sigma}^{\otimes k}$ is the permutation matrix of size n^{k}.

"Then felt I like some watcher of the skies When a new planet swims into his ken" (J. Keats)

Step 4.
For a variable t, Deligne (2004) and Knop (2007) have defined "the symmetric group \mathfrak{S}_{t} ",
\longrightarrow "permutation matrices of size t
\longrightarrow dimension ${ }^{1}$ of the "invariant subspace"

Property 1: one can "specialize" t to n, and the dimension decreases:

$$
\operatorname{dim}\binom{\text { subspace of } \mathbf{C}^{n^{k}}}{\text { invariant }} \leqslant \operatorname{dim}\binom{\text { subspace of } \mathbf{C}^{t^{k}}}{\text { invariant }}
$$

with equality if (and only if)

$$
k \leqslant n .
$$

Property 2: there is a canonical basis of the invariant subspace of $\mathrm{C}^{t^{k}}$ whose elements are the partitions of the finite set $\{1, \ldots, k\}$.

Consequently

$$
\frac{1}{n!} \sum_{\sigma \in \mathfrak{S}_{n}}|\operatorname{Fix}(\sigma)|^{k} \xrightarrow[n \rightarrow+\infty]{=\text { if } n \geqslant k} b_{k}
$$

where b_{k} is this number of partitions.
But $b_{k}=\mathbf{E}\left(P_{1}^{k}\right)$ [e.g. because both sequences satisfy the recursive relation $\left.a_{k+1}=\sum_{j=0}^{k}\binom{k}{j} a_{j}\right]$, hence the theorem.
(The coincidence of the moments was observed by Diaconis and Shahshahani in 1994.)

Is this an honest proof?

(1) It can be generalized mutatis mutandis ($+\varepsilon$) to many other situations. For instance:

Theorem (Fulman, 1997; Fulman-Stanton, 2016; F-F-K).
E finite field.
Y_{n} uniform on $\mathrm{GL}_{n}(E)$ (on $\operatorname{Aff}_{n}(E)$)

$$
\underset{\left|\operatorname{Kix}\left(Y_{n}\right)\right|}{\left|\operatorname{Ker}\left(1_{n}-Y_{n}\right)\right| \xrightarrow[n \rightarrow+\infty]{\text { law }} F_{E}, ~}
$$

where F_{E} is characterized by

$$
\begin{aligned}
\mathbf{E}\left(F_{E}^{k}\right)= & \text { number of subspaces of } E^{k} \\
& (\text { number of affine subspaces } \\
& \text { of } \left.E^{k}\right)
\end{aligned}
$$

(2) The proof gives an idea of the origin of the Poisson limit (image under the trace of the uniform probability measure on \mathfrak{S}_{t})
(3) But there remain questions...
(i) What about $\mathrm{Sp}_{2 n}(E)$?
(ii) What about the number of 2-cycles in σ ? Of 3-cycles?
(4) But now, to conclude...

Arithmetic speculations...

Theorem (Frobenius; Chebotarev).
$g \in \mathbf{Z}[X], \operatorname{deg}(g)=n, \operatorname{Gal}(g)=\mathfrak{S}_{n}$

$$
|\{x \bmod p \mid g(x)=0\}| \longrightarrow \underset{\sigma \in \mathfrak{S}_{n}}{|\operatorname{Fix}(\sigma)|}
$$

(average of the number of roots over $p \leqslant x, x \rightarrow+\infty$).
(Reason: $Z_{p}=\left\{\right.$ roots of g in $\left.\bar{F}_{p}\right\},\left|Z_{p}\right|=n, x \mapsto x^{p}$ permutes Z_{p}, giving a $\sigma_{p} \in \mathfrak{S}_{n}$,

$$
\left\{\sigma_{p} \mid p \leqslant x\right\} \xrightarrow{x \rightarrow+\infty} \sigma \text { uniform. }
$$

Challenge: Have \mathfrak{S}_{t} appear instead of $\mathfrak{S}_{n} \ldots$

Pseudo-polynomial

Let $f(n)=\lfloor e n!\rfloor=1+n+n(n-1)+\cdots$
The function f is a pseudo-polynomial: the function $f \bmod q: \mathbf{Z} / q \mathbf{Z} \rightarrow \mathbf{Z} / q \mathbf{Z}$ has a sense ($q \geqslant 1$ integer).

Conjecture (K.-Soundararajan)

$$
|\{x \bmod p \mid f(x)=0 \bmod p\}| \longrightarrow \stackrel{P_{1}}{\left(=|\operatorname{Fix}(\sigma)|, \sigma \in \mathfrak{S}_{t}\right)}
$$

Numerically: $p \leqslant 10^{6}$

k	1	2	3	4
Moment	0.99671	1.9964	5.0034	15.054

