The problem of coincidences

E. Kowalski

ETH Zürich

Andrew Granville's 60th birthday CRM-Montréal, September 2022

"The problem of coincidences"

(1708 to 1750; P. de Montmort, N. Bernoulli I, A. de Moivre)

(1) One of the first problems concerning random permutations.

(2) First appearance of the Poisson distribution.

Theorem. X_n uniform on \mathfrak{S}_n . Fix $(\sigma) = \{$ fixed points of $\sigma \}$

$$|\operatorname{Fix}(X_n)| \xrightarrow[law]{n \to +\infty} P_1$$

where P_1 is a Poisson distribution with parameter 1.

In other words: for any integer $k \ge 0$, we have

$$\lim_{n\to+\infty}\frac{1}{n!}|\{\sigma\in\mathfrak{S}_n\mid |\mathsf{Fix}(\sigma)=k\}|=\frac{1}{e}\frac{1}{k!}.$$

Proof. By explicit counting: for $k \ge 0$, the number of $\sigma \in \mathfrak{S}_n$ with $|\operatorname{Fix}(\sigma)| = k$ is $\binom{n}{k} D_{n-k}$, $D_n = |\{\sigma \in \mathfrak{S}_n \mid \operatorname{Fix}(\sigma) = \emptyset\}$. But

$$D_n = n! - n \cdot (n-1)! + \frac{n(n-1)}{2} \cdot (n-2)! - \cdots$$

by inclusion-exclusion, so the probability that $|Fix(\sigma)| = k$ is

$$\frac{1}{n!}\cdot\frac{n!}{k!(n-k)!}\cdot(n-k)!\cdot\left(1-1+\frac{1}{2}-\frac{1}{6}+\cdots\right)\rightarrow\frac{1}{e}\frac{1}{k!}.$$

(From ongoing joint work with A. Forey and J. Fresán) **Step 1.** (Interpretation) $n \ge 1, \sigma \in \mathfrak{S}_n$.

 $|\mathsf{Fix}(\sigma)| = \mathsf{Tr}(u_{\sigma})$

where u_{σ} is the $n \times n$ permutation matrix.

Step 2. (Convergence criterion)

According to the *method of moments*, it is enough to prove:

Proposition. $k \ge 0$ integer

$$\frac{1}{n!}\sum_{\sigma\in\mathfrak{S}_n}|\mathsf{Fix}(\sigma)|^k\longrightarrow \mathsf{E}(P_1^k).$$

Step 3. (Linear algebra/representation theory) It is known that

$$\frac{1}{n!} \sum_{\sigma \in \mathfrak{S}_n} |\mathsf{Fix}(\sigma)| = \text{dimension of the sub-space of } \mathbf{C}^n \text{ invariant} \\ \text{under } \{u_{\sigma}\}$$

Better:

$$\frac{1}{n!} \sum_{\sigma \in \mathfrak{S}_n} |\mathsf{Fix}(\sigma)|^k = \text{dimension of the subspace of } \mathbf{C}^{n^k} \text{ invariant} \\ \text{under } \{ u_{\sigma}^{\otimes k} \}$$

where σ permutes the $\{1, \ldots, k\} \rightarrow \{1, \ldots, n\}$, and $u_{\sigma}^{\otimes k}$ is the permutation matrix of size n^{k} .

"Then felt I like some watcher of the skies When a new planet swims into his ken" (J. Keats)

Step 4.

For a **variable** *t*, Deligne (2004) and Knop (2007) have defined "the symmetric group \mathfrak{S}_t ",

- \rightarrow "permutation matrices of size t
- \longrightarrow dimension¹ of the "invariant subspace"

¹in the usual sense!

Property 1: one can "specialize" *t* to *n*, and the dimension **decreases**:

$$\dim \left(\begin{array}{c} \text{subspace of } \mathbf{C}^{n^{k}} \\ \text{invariant} \end{array} \right) \leq \dim \left(\begin{array}{c} \text{subspace of } \mathbf{C}^{t^{k}} \\ \text{invariant} \end{array} \right)$$

with **equality** if (and only if)

Property 2: there is a canonical basis of the invariant subspace of C^{t^k} whose elements are the partitions of the finite set $\{1, ..., k\}$.

Consequently

$$\frac{1}{n!}\sum_{\sigma\in\mathfrak{S}_n}|\mathsf{Fix}(\sigma)|^k\xrightarrow[n\to+\infty]{if n\geqslant k}b_k$$

where b_k is this number of partitions.

But $b_k = \mathbf{E}(P_1^k)$ [e.g. because both sequences satisfy the recursive relation $a_{k+1} = \sum_{i=0}^k {k \choose i} a_i$], hence the theorem.

(The coincidence of the moments was observed by Diaconis and Shahshahani in 1994.)

Is this an honest proof?

(1) It can be generalized *mutatis mutandis* $(+\varepsilon)$ to many other situations. For instance:

Theorem (Fulman, 1997; Fulman–Stanton, 2016; F-F-K). *E* finite field. Y_n uniform on $GL_n(E)$ (on Aff_n(*E*))

$$\frac{|\mathsf{Ker}(\mathsf{1}_n-Y_n)|}{|\mathsf{Fix}(Y_n)|} \xrightarrow[n \to +\infty]{\mathsf{law}} F_E$$

where F_E is characterized by

$$\mathbf{E}(F_E^k) = \text{number of subspaces of } E^k$$
(number of affine subspaces
of E^k)

(2) The proof gives an idea of the origin of the Poisson limit (image under the trace of the uniform probability measure on \mathfrak{S}_t)

(3) But there remain questions...

- (i) What about $\operatorname{Sp}_{2n}(E)$?
- (ii) What about the number of 2-cycles in σ ? Of 3-cycles?

(4) But now, to conclude...

Arithmetic speculations...

Theorem (Frobenius; Chebotarev). $g \in \mathbf{Z}[X], \deg(g) = n, \operatorname{Gal}(g) = \mathfrak{S}_n$ $|\{x \mod p \mid g(x) = 0\}| \longrightarrow |\operatorname{Fix}(\sigma)|$ $\sigma \in \mathfrak{S}_n$

(average of the number of roots over $p \leq x, x \to +\infty$).

(Reason: $Z_p = \{\text{roots of } g \text{ in } \overline{\mathbf{F}}_p\}, |Z_p| = n, x \mapsto x^p \text{ permutes } Z_p,$ giving a $\sigma_p \in \mathfrak{S}_n$,

$$\{\sigma_p \mid p \leq x\} \xrightarrow{x \to +\infty} \sigma$$
 uniform.

Challenge: Have \mathfrak{S}_t appear instead of \mathfrak{S}_n ...

Pseudo-polynomial

Let
$$f(n) = \lfloor en! \rfloor = 1 + n + n(n-1) + \cdots$$

The function *f* is a *pseudo-polynomial*: the function $f \mod q \colon \mathbb{Z}/q\mathbb{Z} \to \mathbb{Z}/q\mathbb{Z}$ has a sense $(q \ge 1 \text{ integer})$.

Conjecture (K.–Soundararajan)

$$|\{x \mod p \mid f(x) = 0 \mod p\}| \longrightarrow \begin{array}{c} P_1 \\ (= |\mathsf{Fix}(\sigma)|, \ \sigma \in \mathfrak{S}_t) \end{array}$$

Numerically: $p \leq 10^6$

k	1	2	3	4
Moment	0.99671	1.9964	5.0034	15.054