COMPLEMENTS TO FOUVRY-KATZ-LAUMON STRATIFICATION

EMMANUEL KOWALSKI

1. Fouvry-Katz-Laumon stratification

The goal of this note is to provide some complements to the stratification results for exponential sums given by Fouvry and Katz in [2] (building on the work of Katz and Laumon [7]; see also Fouvry's paper [1] for the first applications of these results to analytic number theory).

We recall the statements of Theorems 1.1 and 1.2 in [2] (compare with [1, Prop. 1.0]).
Theorem 1 (Fouvry-Katz, Th. 1.1). Let d and n be positive integers. Let V be a locally closed subscheme of $\mathbf{A}_{\mathbf{Z}}^{n}$ such that $\operatorname{dim} V_{\mathbf{C}} \leqslant d$. Let $f \in \mathbf{Z}\left[X_{1}, \ldots, x_{n}\right]$ be given.

Then there exists a constant C, depending on (n, d, V, f) closed subschemes $X_{j} \subset \mathbf{A}_{\mathbf{Z}}^{n}$ for $1 \leqslant j \leqslant n$, of relative dimension $\leqslant n-j$, such that

$$
\mathbf{A}_{\mathbf{z}}^{n} \supset X_{1} \supset \cdots \supset X_{n}
$$

with the property that: for any invertible function g on V, for any prime number p, for any $h \in\left(\mathbf{A}^{n}-X_{j}\right)\left(\mathbf{F}_{p}\right)$, for any non-trivial additive character ψ of \mathbf{F}_{p} and for any multiplicative character χ of \mathbf{F}_{p}^{\times}, we have

$$
\begin{equation*}
\left|\sum_{x \in V\left(\mathbf{F}_{p}\right)} \chi(g(x)) \psi\left(f(x)+h_{1} x_{1}+\cdots+h_{n} x_{n}\right)\right| \leqslant C p^{d / 2+(j-1) / 2} \tag{1}
\end{equation*}
$$

We will denote below by $C(V, f) \geqslant 0$ any constant C for which Theorem 1 holds for the data (V, f) (the dependency on n and d is left implicit).
Theorem 2 (Fouvry-Katz, Th. 1.2). Let d, n and D be positive integers. Let V be a closed subscheme of $\mathbf{A}_{\mathbf{Z}[1 / D]}^{n}$ such that $V_{\mathbf{C}}$ is irreducible and smooth of dimension d. Suppose that $A(V, k, \psi) \geqslant 1$ for all finite fields k of sufficiently large characteristic and for all $\overline{\mathbf{Q}}_{\ell}^{\times}$-valued non-trivial additive characters ψ of k. Then:
(1) There exists a constant C, depending only on V, closed subschemes $X_{j} \subset \mathbf{A}_{\mathbf{Z}[1 / D]}^{n}$ for $1 \leqslant j \leqslant n$, of relative dimension $\leqslant n-j$, such that

$$
\mathbf{A}_{\mathbf{Z}[1 / D]}^{n} \supset X_{1} \supset \cdots \supset X_{n}
$$

such that for any $h \in\left(\mathbf{A}^{n}-X_{j}\right)\left(\mathbf{F}_{p}\right)$ we have

$$
\begin{equation*}
\left|\sum_{x \in V\left(\mathbf{F}_{p}\right)} \psi\left(h_{1} x_{1}+\cdots+h_{n} x_{n}\right)\right| \leqslant C p^{\max (d / 2,(d+j-2) / 2)} \tag{2}
\end{equation*}
$$

(2) Morever, we may choose the closed subschemes X_{j} to be defined by the vanishing of homogeneous forms.

Date: March 12, 2024, 14:27.

We will denote below by $C^{\prime}(V) \geqslant 0$ any constant C for which Theorem 2 holds for V.
Motivated by a question of L. Pierce and F. Thorne, we wish to consider some uniformity aspects of these statements in the situation where V ranges over a family of varieties V_{a} defined by equations $\Delta(x)=a$, where $a \in \mathbf{Z}$ is a parameter. As we will explain, one can indeed obtain uniform estimates for the constant C in Theorems 1 and 2, as well as for the subschemes X_{j}. We will do this for both theorems in turn in the next sections.

Acknowledgments. Thanks to L. Pierce and F. Thorne for raising the question of uniformity of the constant C, and to É. Fouvry for pointing out that the interest of understanding the dependency of the varieties X_{j}. Thanks to all three of them for comments and feedback concerning this note.

2. Uniformity in Theorem 1

We consider a locally closed subscheme

$$
W \subset \mathbf{A}_{\mathbf{Z}}^{n}
$$

of relative dimension $\leqslant d+1$, given with an arbitrary morphism $\Delta: W \longrightarrow \mathbf{A}_{\mathbf{Z}}^{1}$ such that $\operatorname{dim} V_{a, \mathbf{C}} \leqslant d$ for all a, where $V_{a}=\Delta^{-1}(a)$ is the fiber of Δ above a (viewed as a point of $\mathbf{A}_{\mathbf{Z}}^{1}$). We may then apply Theorem 1 for any $a \in \mathbf{Z}$ to the data $\left(V_{a}, f\right)$.

We first make an important technical remark: when dealing with this situation, we must be precise concerning the variation of the function g, since it depends on V (as being the place where it is defined). There are two variants we will deal with:
(1) Statements valid for all a, with g allowed to depend on a with no restriction, among functions invertible on V_{a};
(2) Statements valid for all a with g ranging over invertible functions on W (i.e., the restriction of g to V_{a} varies "algebraically").
Our first result addresses the uniformity of the constant C, and allows arbitrary variation of g with a, but with a complexity restriction.
Proposition 3. With notation as above, for the sums

$$
\begin{equation*}
\sum_{x \in V_{a}\left(\mathbf{F}_{p}\right)} \chi(g(x)) \psi\left(f(x)+h_{1} x_{1}+\cdots+h_{n} x_{n}\right) \tag{3}
\end{equation*}
$$

the constants $C\left(V_{a}, f\right)$ in Theorem 1 may be bounded independently of $a \in \mathbf{Z}$, provided we only consider functions g of the type $g=g_{1} / g_{2}$ where $g_{i} \in \mathbf{Z}\left[X_{1}, \ldots, X_{n}\right]$ are polynomials such that $\operatorname{deg}\left(g_{i}\right)$ is bounded.

Proof. The point is that any specific instance of sums (1) is obtained from an application of the Lefschetz trace formula, which expresses a sum

$$
S=\sum_{x \in V\left(\mathbf{F}_{p}\right)} K(x)
$$

where $V_{\mathbf{F}_{p}}$ is an algebraic variety and $K: \mathbf{F}_{p} \longrightarrow \mathbf{C}$ is the trace function of some étale sheaf \mathcal{F} of weight 0 , as the sum

$$
S=\sum_{i=0}^{2 \operatorname{dim}(V)}(-1)^{i} \operatorname{Tr}\left(\operatorname{Fr} \mid H_{c}^{i}\left(V \times \overline{\mathbf{F}}_{p}, \mathcal{F}\right)\right)
$$

where Fr denotes the geometric Frobenius automorphism of \mathbf{F}_{p}.
Both V and K may depend on parameters; in the case of (3), $V=V_{a}$ depends on a and K depends on (a, h, χ, f, g, ψ).

The Katz-Laumon and Fouvry-Katz stratification estimates are based on combining, for suitable instances, some vanishing condition

$$
\begin{equation*}
H_{c}^{i}\left(V \times \overline{\mathbf{F}}_{p}, \mathcal{F}\right)=0 \tag{4}
\end{equation*}
$$

for $i \geqslant 2 d-k+1$, for some integer $k \geqslant 0$, and the estimates

$$
\left|\operatorname{Tr}\left(\operatorname{Fr} \mid H_{c}^{i}\left(V \times \overline{\mathbf{F}}_{p}, \mathcal{F}\right)\right)\right| \leqslant p^{i / 2} \operatorname{dim} H_{c}^{i}\left(V \times \overline{\mathbf{F}}_{p}, \mathcal{F}\right)
$$

that follow from Deligne's Riemann Hypothesis (and the fact that we assume that \mathcal{F} is of weight 0).

So the constant C in (1) can be taken to be some upper-bound for

$$
\sum_{i=0}^{2 d-k} \operatorname{dim} H_{c}^{i}\left(V_{a} \times \overline{\mathbf{F}}_{p}, \mathcal{F}\right)
$$

taken over the ranges of instances (a, h, χ, g, h, ψ) of the sums (3) which are considered. (In [2], the parameter denoted k here is related to the parameter j in the statement of Theorem 1.)

The point is then that, for the type of trace functions K used in Theorem 1, a result of Katz [4] gives explicit uniform estimates for

$$
\sum_{i=0}^{2 d} \operatorname{dim} H_{c}^{i}\left(V_{a} \times \overline{\mathbf{F}}_{p}, \mathcal{F}\right)
$$

independently of the vanishing condition (4). Precisely, one applies [4, Th. 12], which gives a bound depending (explicitly) on:

- The dimension N of the affine space in which V_{a} is embedded;
- The number of polynomial equations (and non-vanishing conditions) defining V_{a};
- The degree of these equations and non-vanishing conditions defining V_{a};
- The degree of the polynomials f, g_{1} and g_{2} in the representation

$$
K(x)=\chi\left(g_{1}(x)\right) \overline{\chi\left(g_{2}(x)\right)} \psi\left(f\left(x_{1}, \ldots, x_{n}\right)+h_{1} x_{1}+\cdots+h_{n} x_{n}\right)
$$

In particular, we see that when all other parameters are fixed, this bound by Katz is the same for all varieties V_{a} for any $a \in \mathbf{Z}$, which leads to a uniform bound on C, provided that g_{1} and g_{2} are polynomials of bounded degree.

Remark 4. In applications, the restriction we make on the degree of g_{1} and g_{2} is unlikely to be a serious one, and it might be that some additional refinement of [4] would allow us to avoid it.

We now consider the issue of uniformity with respect to a of the subschemes X_{j} of Theorem 1. In this context, we consider functions $g: W \longrightarrow \mathbf{A}_{\mathbf{Z}}^{1}$ that are invertible on all of W.

Remark 5. In practice, if $g: W \longrightarrow \mathbf{A}_{\mathbf{Z}}^{1}$ is not invertible, one would replace W by the open subscheme $W\left[g^{-1}\right]$ where g is invertible (although this introduces a dependency on g in the estimates).

Proposition 6. With notation as above, assume further that Δ is the restriction to W of a function $\Delta: \mathbf{A}_{\mathbf{Z}}^{n} \longrightarrow \mathbf{A}_{\mathbf{Z}}^{1}$. Then there exist closed subschemes Y_{j} of $\mathbf{A}_{\mathbf{Z}}^{n+1}$ for $1 \leqslant j \leqslant n+1$ such that

$$
\mathbf{A}_{\mathbf{Z}}^{n+1} \supset Y_{1} \supset \cdots \supset Y_{n+1}
$$

with relative dimension $\leqslant n+1-j$, and with the property that Theorem 1 holds for $\left(V_{a}, f\right)$ with the closed subschemes

$$
X_{j}(a, f)=\left\{h \in \mathbf{A}_{\mathbf{Z}}^{n} \mid(a, h) \in Y_{j}\right\}
$$

for all but finitely many $a \in \mathbf{Z}$, the exceptional a depending only on (W, Δ, f), provided the sums

$$
\sum_{x \in V_{a}\left(\mathbf{F}_{p}\right)} \chi(g(x)) \psi\left(f(x)+h_{1} x_{1}+\cdots+h_{n} x_{n}\right)
$$

are considered only for $g: W \longrightarrow \mathbf{A}_{\mathbf{Z}}^{1}$ invertible on W.
In particular, in this situation, we have $\left|X_{j}(a, f)\left(\mathbf{F}_{p}\right)\right| \ll p^{n-j}$ where the implied constant depends only on (W, Δ, f).

In other words, one can find the subschemes X_{j} in Theorem 1 in such a way that they vary "algebraically" with a, up to maybe allowing finitely many exceptions. Note that each exception can be handled independently by the "fixed a " version of Theorem 1 , so this exceptional set is unlikely to create problems in applications.
Remark 7. The assumption on Δ is always true if W is closed in $\mathbf{A}_{\mathbf{Z}}^{n}$, since the ring of functions on W is a quotient of $\mathbf{Z}\left[X_{1}, \ldots, X_{n}\right]$ in that case.
Proof. The strategy is to prove a variant of [2, Th. 3.1] and then to deduce the statement from that. The key idea is to first construct the stratification using [2, Th. 2.1], which uses a first description of the relevant exponential sums. Then an alternate description, using the Fourier transform, gives cancellation using the formal properties of (semi)perverse sheaves.

We apply [2, Th. 2.1] with the following data:

- $T=\mathbf{A}_{\mathbf{Z}}^{n} \times \mathbf{A}_{\mathbf{Z}}^{1}$, with coordinates $(h, a)=\left(h_{1}, \ldots, h_{n}, a\right)$;
- $X=W \times \mathbf{A}_{\mathbf{Z}}^{n}$, with coordinates $(x, h)=\left(x_{1}, \ldots, x_{n}, h_{1}, \ldots, h_{n}\right)$; for the stratification X, we take $\{X\}$ alone;
- $\pi: X \longrightarrow T$ is given by $\pi(x, h)=(h, \Delta(x))$;
- the function f is the function $F: X \longrightarrow \mathbf{A}^{1}$ given by $F(x, h)=f(x)+\sum x_{i} h_{i}$ (viewed as a T-morphism $X \longrightarrow \mathbf{A}_{T}^{1}$).
Theorem 2.1 of [2] gives data (N, C, \mathcal{H}) where $N \geqslant 1$ is an integer, $C \geqslant 0$ is a real number and $\mathcal{H}=\left(H_{i}\right)_{i \in I}$ is a finite stratification of T, all of which depends only on (W, Δ, f). (Note that C is mentioned in the statement of [2, Th. 2.1], but does not appear in the statements of the properties (1) and (2) that (N, C, \mathcal{H}) are stated to satisfy; this is a typographical mistake, and the right-hand side of the main inequality in property (2) should be $C \sup _{x \in X_{t}}\|L\|(x)$ instead of $\left.\sup _{x \in X_{t}}\|L\|(x)\right)$.

Consider an object K of $D_{c}^{b}\left(W[1 / M \ell], \overline{\mathbf{Q}}_{\ell}\right)$ for some $M \geqslant 1$ and some prime ℓ, adapted to the stratification $\{W\}$ of W. For a finite field k of characteristic not dividing $N M \ell$, a given parameter tuple $t=(a, h) \in T(k)$, a non-trivial additive character $\psi: k \longrightarrow \overline{\mathbf{Q}}_{\ell}$ of k, and a direct factor L of $K \otimes k$, the associated "standard sum" S (see [2, p. 120]) is the trace function of the object

$$
\begin{equation*}
R=R \pi_{k,!}\left(p_{1, k}^{*} L \otimes \mathcal{L}_{\psi(F)}\right) \tag{5}
\end{equation*}
$$

where $p_{1}: X \longrightarrow W$ is the first projection. The pullback $p_{1, k}^{*} L$ is an object of $D_{c}^{b}\left(X_{k}, \overline{\mathbf{Q}}_{\ell}\right)$ which is a direct factor of $\left(p_{1}^{*} K\right) \otimes k$, and the object R belongs to $D_{c}^{b}\left(T_{k}, \overline{\mathbf{Q}}_{\ell}\right)$.

The trace function τ_{R} of R is given at $t=(h, a) \in T(k)$ by

$$
\begin{aligned}
\tau_{R}(t) & =\sum_{(x, h) \in \pi^{-1}(t)(k)} \psi\left(F_{t}(x)\right) \operatorname{Tr}\left(\operatorname{Fr}_{k,(x, h)} \mid p_{1}^{*} L_{t}\right) \\
& =\sum_{\substack{x \in W(k) \\
\Delta(x)=a}} \psi\left(f(x)+h_{1} x_{1}+\cdots+h_{n} x_{n}\right) \operatorname{Tr}\left(\operatorname{Fr}_{k,(x, h)} \mid p_{1}^{*} L\right) \\
& =\sum_{x \in V_{a}(k)} \psi\left(f(x)+h_{1} x_{1}+\cdots+h_{n} x_{n}\right) \operatorname{Tr}\left(\operatorname{Fr}_{k, x} \mid L\right),
\end{aligned}
$$

which is the basic sum of interest for V_{a}.
The second key point is another description of the same family of sums as a Fourier transform; this will lead to the stratification estimates, through the perversity properties of the Fourier transform.

To do so, we define a function $G: \mathbf{A}_{\mathbf{Z}}^{n+1} \longrightarrow \mathbf{A}_{\mathbf{Z}}^{1}$ by

$$
G(x, b)=-b \Delta(x)
$$

We denote by $i_{W}: W_{k} \longrightarrow \mathbf{A}_{k}^{n}$ the natural immersion (over the given finite field k). Then we define the object

$$
\begin{equation*}
M=q_{1}^{*}\left(i_{W,!}(L) \otimes \mathcal{L}_{\psi(f)}\right)[1] \otimes \mathcal{L}_{\psi(G)} \tag{6}
\end{equation*}
$$

in $D_{c}^{b}\left(T_{k}, \overline{\mathbf{Q}}_{\ell}\right)$, where $q_{1}: T_{k}=\mathbf{A}_{k}^{n} \times \mathbf{A}_{k}^{1} \longrightarrow \mathbf{A}_{k}^{n}$ is the first projection (the final [1] denotes the shift operation in $\left.D_{c}^{b}\left(T_{k}, \overline{\mathbf{Q}}_{\ell}\right)\right)$. Note in particular that q_{1} is a smooth morphism of relative dimension 1 .

We now compute the trace function τ_{N} of the Fourier transform $N=\mathrm{FT}_{\psi}(M)$ of M, which belongs to $D_{c}^{b}\left(\mathbf{A}_{k}^{n+1}, \overline{\mathbf{Q}}_{\ell}\right)$: if $(a, h) \in \mathbf{A}^{n+1}(k)$ denote the Fourier variables, we have

$$
\begin{align*}
\tau_{N}(a, h) & =(-1)^{n+1} \sum_{(x, b) \in k^{n+1}} \psi\left(a b+h_{1} x_{1}+\cdots+h_{n} x_{n}\right) \operatorname{Tr}\left(\operatorname{Fr}_{k,(x, b)} \mid M\right) \tag{7}\\
& =(-1)^{n} \sum_{\substack{(x, b) \in k^{n+1} \\
x \in W(k)}} \psi\left(a b+h_{1} x_{1}+\cdots+h_{n} x_{n}\right) \operatorname{Tr}\left(\operatorname{Fr}_{k, x} \mid L\right) \psi(f(x)) \psi(-b \Delta(x)) \tag{8}\\
& =(-1)^{n} \sum_{x \in W(k)} \psi\left(f(x)+h_{1} x_{1}+\cdots+h_{n} x_{n}\right) \operatorname{Tr}\left(\operatorname{Fr}_{k, x} \mid L\right) \sum_{b \in k} \psi(b(a-\Delta(x))) \tag{9}\\
& =(-1)^{n}|k| \sum_{x \in V_{a}(k)} \psi\left(f(x)+h_{1} x_{1}+\cdots+h_{n} x_{n}\right) \operatorname{Tr}\left(\operatorname{Fr}_{k, x} \mid L\right) \tag{10}
\end{align*}
$$

by orthogonality. Up to the factor $(-1)^{n}|k|$, this is the same as the standard sum. This translates the fact that $R \simeq N$, up to a shift and a Tate twist (accounting for the sign and the factor $|k|)$. More precisely, we claim that $N \simeq R[n+2](-1)$. We will give the proof in Lemma 8 below.

Now assume that K and L are fibrewise semiperverse and fibrewise mixed of weight $\leqslant d+1$, as in [2, Th. 3.1] (except that there the weight is $\leqslant d$; this shift reflects the fact that $\operatorname{dim} W$ is $\leqslant d+1$, which influences the normalization). Then M is semiperverse and mixed of weight
$\leqslant d+2$. Indeed, the first factor is so as in [2, p. 123, last paragraph], using the fact that the operation $q_{1}^{*}(\cdot)[1]$ preserves semiperversity and adds 1 to the weight (the relative dimension of q_{1}; see e.g. $\left.[7,1.3 .2(4)]\right)$. Then we tensor it by the lisse sheaf $\mathcal{L}_{\psi(G)}$ of weight 0 on \mathbf{A}_{k}^{n+1}, which preserves semiperversity and the weight. Now, by the theory of the Fourier transform, N is therefore also semiperverse, and it is mixed of weight $\leqslant d+2+n+1=d+n+3$ (see e.g. [7, Cor. 2.1.5 (iii), Th. 2.2.1]).

Let η_{i} be the dimension of a strat H_{i} in \mathcal{H}. Translating the semiperversity and weight condition in terms of the Lefschetz trace formula, as done in [2, p. 124, 125], leads to the property that

$$
|k|\left|\sum_{x \in V_{a}(k)} \psi\left(f(x)+h_{1} x_{1}+\cdots+h_{n} x_{n}\right) \operatorname{Tr}\left(\operatorname{Fr}_{k, x} \mid L\right)\right| \leqslant C\left(\sup _{v \in W(k)}\|L\|(v)\right)|k|^{\left(d+n+3-\eta_{i}\right) / 2}
$$

for $(a, h) \in H_{i}(k)$. Cancelling the factor $|k|$ on both sides, we get

$$
\left|\sum_{x \in V_{a}(k)} \psi\left(f(x)+h_{1} x_{1}+\cdots+h_{n} x_{n}\right) \operatorname{Tr}\left(\operatorname{Fr}_{k, x} \mid L\right)\right| \leqslant C\left(\sup _{v \in W(k)}\|L\|(v)\right)|k|^{\left(d+n+1-\eta_{i}\right) / 2}
$$

for $(a, h) \in H_{i}(k)$.
Let's check this for consistency: there is a unique i such that the "generic" strat H_{i} has relative dimension $\eta_{i}=\operatorname{dim}_{\mathbf{Z}} T=n+1$; for (a, h) in this strat we get a sum over V_{a} of size $|k|^{d / 2}$, which is square-root cancellation.

To finish, we must handle the possibility that, for some strat H_{i} and some $a \in \mathbf{Z}$, the fiber $H_{i, a}=\left\{h \mid(a, h) \in H_{i}\right\}$ could still be of relative dimension η_{i} instead of $\eta_{i}-1$ (as is needed to obtain $X_{j}(a, f)$ of dimension $\left.\leqslant n-j\right)$. We work around this possibility as follows: for each i, we consider the projection

$$
\pi_{i}: H_{i} \longrightarrow \mathbf{A}_{\mathbf{Z}}^{1}
$$

on the first coordinate a, so that $H_{i, a}=\pi_{i}^{-1}(a)$. Let $J \subset I$ be the subset of those $j \in I$ where π_{j} is not dominant, i.e., such that the image of π_{j} is not Zariski-dense in $\mathbf{A}_{\mathbf{Z}}^{1}$. For $j \in J$, the Zariski-closure $A_{j} \subset \mathbf{A}_{\mathbf{Z}}^{1}$ of the image of π_{j} is such that $A_{j, \mathbf{C}}(\mathbf{C})$ is a finite set of values. We denote by A_{0} the union of the sets $A_{j, \mathbf{C}}(\mathbf{C})$ for $j \in J$. This is a finite set, since the stratification is finite, and it depends only on (W, Δ, f).

For $i \notin J$, the map π_{i} is dominant. Then there exists a dense open subset $U_{i} \subset \mathbf{A}_{\mathbf{Z}}^{1}$ such that $\operatorname{dim}_{\mathbf{Z}} H_{i, a}=\eta_{i}-1$ for all $a \in U_{i}$, by standard algebraic geometry (see, e.g., [3, Cor. $14.116(\mathrm{i})]$). The complement \tilde{A}_{i} of U_{i} is such that $\tilde{A}_{i, \mathbf{C}}(\mathbf{C})$ is finite. We denote by A_{1} the union of $\tilde{A}_{i, \mathbf{C}}(\mathbf{C})$ for $i \notin J$, and finally we let $A=A_{0} \cup A_{1}$. This is again a finite set, depending only on (W, f).

Let $a \in \mathbf{Z}$. If $a \notin A$ and $i \notin J$, the fiber $H_{i, a}$ is then of relative dimension $\eta_{i}-1$ by the above.

Denote then

$$
Y_{j}=\overline{\bigcup_{\eta_{i} \leqslant n+1-j} \bar{H}_{i}}
$$

as in [2], the schematic closure of the Zariski closure in $T[1 / N]$ of the union of the strat with relative dimension $\leqslant n+1-j$.

For all integers $a \notin A$, the fibers $Y_{j, a}$ of Y_{j} are then of relative dimension $\leqslant n-j$, by construction of A. Moreover, for any prime p large enough and for any integer $a \notin A$, we
derive

$$
\left|\sum_{x \in V_{a}(k)} \psi\left(f(x)+h_{1} x_{1}+\cdots+h_{n} x_{n}\right) \operatorname{Tr}\left(\operatorname{Fr}_{\mathbf{F}_{p}, x} \mid L\right)\right| \leqslant C\left(\sup _{v \in W(k)}\|L\|(v)\right)|k|^{d / 2+(j-1) / 2}
$$

if $(a, h) \in \mathbf{F}_{p}^{n+1}-Y_{j}\left(\mathbf{F}_{p}\right)$.
Assume χ is of order κ. We can take the object

$$
K=g^{*}\left(\left[x \mapsto x^{\kappa}\right]_{*} \overline{\mathbf{Q}}_{\ell}\right)[n+1]
$$

(which is adapted to $\{W\}$) and the shifted Kummer sheaf $L=\mathcal{L}_{\chi(g)}[d+1]$ as direct factor of $K \otimes \mathbf{F}_{p}$. Since L satisfies

$$
\operatorname{Tr}\left(\operatorname{Fr}_{\mathbf{F}_{p}, x} \mid L\right)=\chi(g(x))
$$

for all $x \in W\left(\mathbf{F}_{p}\right)$, and since $\|L\|(v)=1$ for all $v \in W\left(\mathbf{F}_{p}\right)$, we obtain our statement.
To conclude, the bound

$$
\left|X_{j}(a, f)\right| \ll p^{n-j}
$$

follows for $a \notin A$ from standard uniform bounds for point-counting in algebraic families, and the implied constant may be adjusted to include the finitely many $a \in A$.

Here is the lemma we used. Such computations are quite standard (see for instance in the works [5] or [6] of Katz), and follow line by line the computation from (7) to (10) using the function-sheaf dictionary (but involve a fair amount of notational bookkeeping).
Lemma 8. With notation as in the proof, we have $N \simeq R[n+2](-1)$.
Proof. In this proof, all morphisms and schemes are viewed as defined over the given finite field k. Recall that by definition (see [8, Def. 1.2.1.1]) we have

$$
N=R \pi_{2,!}\left(\pi_{1}^{*} M \otimes \mathcal{L}_{\psi(x \cdot h+b a)}\right)[n+1]
$$

where π_{1} and π_{2} are the two projections

$$
\left\{\begin{array}{l}
\left(\mathbf{A}^{n} \times \mathbf{A}^{1}\right) \times\left(\mathbf{A}^{n} \times \mathbf{A}^{1}\right) \longrightarrow \mathbf{A}^{n} \times \mathbf{A}^{1} \\
(x, b, h, a) \stackrel{\pi_{1}}{\longmapsto}(x, b) \\
(x, b, h, a) \stackrel{\pi_{2}}{\longmapsto}(h, a) .
\end{array}\right.
$$

and $x \cdot h=x_{1} h_{1}+\cdots+x_{n} h_{n}$. (This is the analogue of (7).)
Let $\tilde{\pi}_{1}$ and $\tilde{\pi}_{2}$ denote the restrictions of π_{1} and π_{2} to $W \times \mathbf{A}^{1} \times \mathbf{A}^{n} \times \mathbf{A}^{1}$, and \tilde{q}_{1} the projection $W \times \mathbf{A}^{1} \longrightarrow W$. Then the presence of the $i_{W!!}$ term in the definition (6) of M gives

$$
N \simeq R \tilde{\pi}_{2,!}\left(\tilde{\pi}_{1}^{*}\left(\tilde{q}_{1}^{*}\left(L \otimes \mathcal{L}_{\psi(f)}\right)[1] \otimes \mathcal{L}_{\psi(G)}\right) \otimes \mathcal{L}_{\psi(x \cdot h+b a)}\right)[n+1]
$$

(where $\mathcal{L}_{\psi(f)}$ and $\mathcal{L}_{\psi(G)}$ denote here the restriction to W and $W \times \mathbf{A}^{1}$ of the corresponding sheaves on \mathbf{A}^{n} and \mathbf{A}^{n+1}). This formula is the analogue of (8).

Next we factor $\tilde{\pi}_{2}=\beta \circ \alpha$ where

$$
\begin{gathered}
\alpha: W \times \mathbf{A}^{1} \times \mathbf{A}^{n} \times \mathbf{A}^{1} \longrightarrow W \times \mathbf{A}^{n} \times \mathbf{A}^{1} \\
\beta: W \times \mathbf{A}^{n} \times \mathbf{A}^{1} \longrightarrow \mathbf{A}^{n} \times \mathbf{A}^{1}
\end{gathered}
$$

are given by $\alpha(x, b, h, a)=(x, h, a)$ and $\beta(x, h, a)=(h, a)$. Correspondingly we get $N=$ $R \tilde{\beta}_{!}\left(N_{1}\right)[n+1]$ where

$$
N_{1}=R \alpha_{!}\left(\tilde{\pi}_{1}^{*}\left(\tilde{q}_{1}^{*}\left(L \otimes \mathcal{L}_{\psi(f)}\right)[1] \otimes \mathcal{L}_{\psi(G)}\right) \otimes \mathcal{L}_{\psi(x \cdot h+b a)}\right)
$$

Note that $N_{1}=R \alpha_{!}\left(\alpha^{*} N_{2} \otimes \mathcal{L}_{\psi(b(a-\Delta(x)))}\right)$ with

$$
N_{2}=r_{1}^{*}\left(L \otimes \mathcal{L}_{\psi(f)}\right)[1] \otimes \mathcal{L}_{\psi(x \cdot h)}
$$

where $r_{1}: W \times \mathbf{A}^{n} \times \mathbf{A}^{1} \longrightarrow W$ is the obvious projection. By the projection formula (see, e.g., [9, Th. 7.4.7]), we get

$$
N_{1} \simeq r_{1}^{*}\left(L \otimes \mathcal{L}_{\psi(f)}\right)[1] \otimes \mathcal{L}_{\psi(x \cdot h)} \otimes R \alpha_{!}\left(\mathcal{L}_{\psi(b(a-\Delta(x)))}\right)
$$

and hence

$$
N \simeq R \beta_{!}\left(r_{1}^{*}\left(L \otimes \mathcal{L}_{\psi(f)}\right)[1] \otimes \mathcal{L}_{\psi(x \cdot h)} \otimes R \alpha_{!}\left(\mathcal{L}_{\psi(b(a-\Delta(x)))}\right)\right)[n+1]
$$

which is the analogue of (9).
By standard properties of the Artin-Schreier sheaf we have

$$
R \alpha_{!}\left(\mathcal{L}_{\psi(b(a-\Delta(x)))}\right) \simeq i_{\Gamma,!} \overline{\mathbf{Q}}_{\ell}(-1)
$$

where $i_{\Gamma}: \Gamma \longrightarrow W \times \mathbf{A}^{n} \times \mathbf{A}^{1}$ is the natural immersion of

$$
\Gamma=\left\{(x, h, a) \in W \times \mathbf{A}^{n} \times \mathbf{A}^{1} \mid \Delta(x)=a\right\}
$$

Precisely, consider the cartesian diagram

Consider the lisse sheaf $\mathcal{L}_{\psi(v w)}$ on $\mathbf{A}^{1} \times \mathbf{A}^{1}$ in the top-right corner; applying the proper base change theorem (see, e.g., [9, Th. 7.4.4]) we get an isomorphism

$$
\theta^{*} R p_{1,!} \mathcal{L}_{\psi(v w)} \simeq R \alpha_{!} \xi^{*} \mathcal{L}_{\psi(v w)}=R \alpha_{!}\left(\mathcal{L}_{\psi(b(a-\Delta(x)))}\right) .
$$

Then we need only know that $R p_{1,!} \mathcal{L}_{\psi(v w)}=i_{0,!} \overline{\mathbf{Q}}_{\ell}(-1)$, where $i_{0}:\{0\} \longrightarrow \mathbf{A}^{1}$ is the immersion, to deduce that

$$
R \alpha_{!}\left(\mathcal{L}_{\psi(b(a-\Delta(x)))}\right) \simeq \theta^{*} i_{0,!} \overline{\mathbf{Q}}_{\ell}(-1)=i_{\Gamma,!} \overline{\mathbf{Q}}_{\ell}(-1)
$$

This step translates the use of the orthogonality relation to go from (9) to (10). Coming back to N, we therefore have

$$
\begin{aligned}
N & \simeq R \beta_{!}\left(r_{1}^{*}\left(L \otimes \mathcal{L}_{\psi(f)}\right)[1] \otimes \mathcal{L}_{\psi(x \cdot h)} \otimes i_{\Gamma,!} \overline{\mathbf{Q}}_{\ell}(-1)\right)[n+1] \\
& \simeq R \tilde{\beta}_{!}\left(\tilde{r}_{1}^{*} L \otimes \mathcal{L}_{\psi(f(x)+x \cdot h)}\right)[n+2](-1)
\end{aligned}
$$

where $\tilde{\beta}$ is the restriction of β to Γ and $\tilde{r}_{1}: \Gamma \longrightarrow W$ the restriction of r_{1}. But now observe that we have an isomorphism

$$
\gamma\left\{\begin{array}{l}
X \longrightarrow \Gamma \\
(x, h) \mapsto(x, h, \Delta(a))
\end{array}\right.
$$

such that $\tilde{\beta} \circ \gamma=\pi$ and $\tilde{r}_{1} \circ \gamma=p_{1}$. It follows that

$$
N \simeq R \pi_{!}\left(p_{1}^{*} L \otimes \mathcal{L}_{\psi(f(x)+x \cdot h)}\right)[n+2](-1) \simeq R[n+2](-1)
$$

as claimed.

3. Uniformity in Theorem 2

We now address similar uniformity issues for Theorem 2. We consider now a closed subscheme $W \subset \mathbf{A}_{\mathbf{Z}}^{n}$ such that $W_{\mathbf{C}}$ is irreducible and smooth of dimension $d+1$, and a function $\Delta: W \longrightarrow \mathbf{A}_{\mathbf{Z}}^{1}$. There is then some $D \geqslant 1$ such that W_{S} / S is smooth with geometrically connected fibers of dimension $d+1$, where $S=\operatorname{Spec}(\mathbf{Z}[1 / D])$.

We assume that there exists a finite set $F \subset \mathbf{Z}$ and $M \geqslant 1$ such that for $a \notin F$, the following holds:

- the fiber V_{a} is such that $V_{a, \mathbf{C}}$ is smooth of dimension d;
- we have $A\left(V_{a}, k, \psi\right) \geqslant 1$ for all finite fields k of characteristic $p \nmid M$ and for all $\overline{\mathbf{Q}}_{\ell}^{\times}$-valued non-trivial additive characters ψ of k.
Then Theorem 2 applies to all V_{a} for $a \notin F$. The analogue of Proposition 3 is very simple:
Proposition 9. With notation and assumptions as above, for the sums

$$
\begin{equation*}
\sum_{x \in V_{a}\left(\mathbf{F}_{p}\right)} \psi\left(h_{1} x_{1}+\cdots+h_{n} x_{n}\right) \tag{11}
\end{equation*}
$$

the constants $C^{\prime}\left(V_{a}\right)$ in Theorem 2 may be bounded independently of $a \notin F$.
Proof. This follows from Theorem 2 and [4] exactly as in Proposition 3, noting that no restriction on g is needed since this parameter does not occur.

We conclude with the analogue of Proposition 6:
Proposition 10. With notation as above, there exist closed subschemes Y_{j} of \mathbf{A}_{S}^{n+1} for $1 \leqslant j \leqslant n+1$ such that

$$
\mathbf{A}_{S}^{n+1} \supset Y_{1} \supset \cdots \supset Y_{n+1}
$$

with relative dimension $\leqslant n+1-j$, and with the property that Theorem 2 holds for V_{a} with the closed subschemes

$$
X_{j}(a)=\left\{h \in \mathbf{A}_{\mathbf{Z}}^{n} \mid(a, h) \in Y_{j}\right\}
$$

for all but finitely many $a \in \mathbf{Z}$, the exceptional a depending only on (W, Δ).
In particular, in this situation, we have $\left|X_{j}(a)\left(\mathbf{F}_{p}\right)\right| \ll p^{n-j}$ where the implied constant depends only on (W, Δ).

Proof. We begin first as in the proof of Proposition 6 with $f=0$, constructing varieties Y_{j}, obtaining an integer $N \geqslant 1$ and a stratification \mathcal{H} indexed by I, with H_{i} of relative dimension η_{i}. We define the set J and the finite set A as in the final steps of that proof, so that for $a \notin A$ and $i \notin J$, the fibers $H_{i, a}$ are of relative dimension $\eta_{i}-1$. These sets depend only on (W, Δ).

Consider a finite field k of characteristic $p \nmid N M D$ and non-trivial additive character k. Let then $L=K=\overline{\mathbf{Q}}_{\ell}[d]$, and define the object R, as in the proof of Proposition 6 in this special case (see (5)).

The point is that, for $a \notin A \cup F$, if i_{a} denotes the closed immersion $\mathbf{A}^{n} \hookrightarrow \mathbf{A}^{n} \times \mathbf{A}^{1}$ given by $i_{a}(h)=(h, a)$, then by proper base change (see, e.g., [9, Th. 7.4.4]), we have $i_{a}^{*} R \simeq R_{a}$, where R_{a} is the object used in $[2$, proof of Th .1 .1$]$ for $\left(V_{a}, 0\right)$ and $K=L=\overline{\mathbf{Q}}_{\ell}[d]$.

By the proof of [2, Th. 3.1], R_{a} is semiperverse, geometrically irreducible and geometrically non-zero (because it is the Fourier transform of $i_{!} \overline{\mathbf{Q}}_{\ell}[d]$, where here $i: V_{a} \hookrightarrow \mathbf{A}^{n}$, which is geometrically irreducible, and because of the condition on the A-number, by its very
definition [2, p. 127]). Since R_{a} is adapted to the stratification $\left(i_{a}^{*} \mathcal{H}_{i}\right)_{i \notin J}$, the same reasoning as in the proof of Theorem 4.4 of [2] gives the additional vanishing of cohomology that implies the uniformity for the first part of Theorem 2.

For the second part (the homogeneity of the varieties $X_{j}(a)$), for $a \notin A \cup F$, we see that the argument in [2, p. 131] applies without change.

References

[1] É. Fouvry: Consequences of a result of N. Katz and G. Laumon concerning trigonometric sums, Israel J. Math. 120 (2000), 81-96.
[2] É. Fouvry and N. Katz: A general stratification theorem for exponential sums, and applications, Crelle 540 (2001), 115-166.
[3] U. Görtz and T. Wedhorn: Algebraic geometry, I: schemes, Vieweg-Teubner 2010.
[4] N. M. Katz: Sums of Betti numbers in arbitrary characteristics, Finite Fields and Their Applications 7 (2001), 29-44.
[5] N. M. Katz: Affine cohomological transforms, perversity and monodromy, Journal AMS 6 (1993), 149-222.
[6] N. M. Katz: Moments, monodromy and perversity, Annals of Math. Studies 159, Princeton Univ. Press (2005).
[7] N.M. Katz and G. Laumon: Transformation de Fourier et majoration de sommes exponentielles, Publ. Math. IHÉS 62 (1985); 145-202; Corrigendum 69 (1989), 233.
[8] G. Laumon: Transformation de Fourier, constantes d'équations fonctionnelles et conjecture de Weil, Publ. Math. IHÉS 65 (1987), 131-210.
[9] L. Fu: Étale cohomology theory, Nankai Tracts in Math. 13, World Scientific (2010).
ETH ZÜrich - D-MATH, Rämistrasse 101, CH-8092 ZÜrich, Switzerland
Email address: kowalski@math.ethz.ch

