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A fairly standard approach to prove the convergence in law towards X of a sequence of random
variables (Xn) with values in the Banach space C([0, 1]) of continuous functions on [0, 1] is to prove
convergence of finite distributions (i.e., for any integer m > 1 and any

0 6 t1 < t2 < · · · < tm−1 < tm = 1

the vectors
(Xn(t1), . . . , Xn(tm))

converge in law to (X(t1), . . . , X(tm))) with tightness. This is used, for instance, in many proofs of
Donsker’s Invariance Principle for random walks, or in certain constructions of Brownian motion.

When dealing with random walks or similar objects with suitable markovian properties, con-
vergence in finite distributions is relatively accessible. However, in other circumstances (such as
random Fourier series or exponential sums, as in the paper [3] of Kowalski and Sawin), one may
have to rely on the method of moments, which is sometimes awkward. Although the complex-
ity is partly purely a matter of notation, the requirement of existence of moments (or the use of
truncation to avoid this condition) may be problematic.

In this note, we describe an elementary Fourier-theoretic criterion for convergence of finite dis-
tributions, which may be useful in certain circumstances to shortcut the notational complexity
involved in moment computations. For an example, see the proof in [2, Ch. 4] of the functional
limit theorem of [3].

Intuitively, the statement is quite simple: a sequence (Xn) as above converges in finite distribu-
tions if and only if the Fourier coefficients converge in finite distribution. This is well-adapted to
applications where the limit X has independent Fourier coefficients.

To state the result precisely, we must be a bit careful because we wish to deal with the whole
space C([0, 1]), whereas Fourier series are only suitable for periodic functions satisfying f(0) = f(1).
We handle this by adding the identity function to the usual periodic exponentials for our Fourier
coefficients, observing that for f ∈ C([0, 1]), the function t 7→ f(t) − t(f(1) − f(0)) is continuous
and periodic.

Let • be a symbol and let Z̃ = Z∪{•}, with the obvious topology where • is isolated. We denote
e•(t) = t for t ∈ [0, 1] and for h ∈ Z, we put eh(t) = e(ht).

We denote by C0(Z̃) the Banach space of complex-valued functions on Z̃ converging to 0 at

infinity, with the sup norm. We then have a continuous linear map FT: C([0, 1]) → C0(Z̃) that
maps a function f to the function determined by

f̃(•) = f(1)− f(0),

and

f̃(h) =

∫ 1

0
(f(t)− t(f(1)− f(0)))e(−ht)dt =

∫ 1

0
(f − f̃(•)e•)e−h
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for h ∈ Z.

We will relate convergence in law in C([0, 1]) with convergence in law of these (generalized)

Fourier coefficients in C0(Z̃).

First, since FT is a continuous map, we have one obvious implication:

Lemma 1. If (Xn)n is a sequence of C([0, 1])-valued random variables that converges in law to a

random variable X, then FT(Xn) converges in law to FT(X) in C(Z̃).

Next, we prove that the Fourier coefficients also determine the law of a C([0, 1])-valued random
variable.

Lemma 2. If X and Y are C([0, 1])-valued random variables and if FT(X) and FT(Y ) have the
same finite distributions, then X and Y have the same law.

Proof. Let f ∈ C([0, 1]). The function g = f−f̃(•)e• extends to a 1-periodic continuous function on
R. By Féjer’s Theorem on the uniform convergence of Cesàro means of Fourier series of continuous
periodic functions (see, e.g, [4, III, Th. 3.4]), we have

g(t) = lim
H→+∞

∑
|h|6H

(
1− |h|

H

)
f̃(h)e(ht)

uniformly for t ∈ [0, 1], hence we deduce that f = limH→+∞CH(f) where

CH(f) = f̃(•)e• +
∑
|h|6H
h6=0

(
1− |h|

H

)
f̃(h)eh.

Note that CH(f) ∈ C([0, 1]) for all H > 1.

We now claim that the C([0, 1])-valued random variable CH(X) converges to X in C([0, 1]).
Indeed, let ϕ be a continuous and bounded function on C([0, 1]), say |ϕ(f)| 6 M for all f ∈
C([0, 1]). By the above, we have ϕ(CH(X)) → ϕ(X) as H → +∞ pointwise on C([0, 1]). Since
|ϕ(CH(X))| 6 M , which is integrable on the underlying probability space, Lebesgue’s dominated
convergence theorem implies that E(ϕ(CH(X)))→ E(ϕ(X)). This proves the claim.

In view of the definition of CH(f), which only involves finitely many Fourier coefficients, the
equality of finite distributions of FT(X) and FT(Y ) implies by composition that the C([0, 1])-
valued random variables CH(X) and CH(Y ) have the same law for any H > 1. Since the previous
argument implies that CH(X) converges in law to X and that CH(Y ) converges in law to Y , it
follows that X and Y have the same law. �

Finally, we can state our convergence criterion.

Proposition 3. Let (Xn) be a sequence of C([0, 1])-valued random variables and let X be a C([0, 1])-
valued random variable. Suppose that FT(Xn) converges to FT(X) in the sense of finite distribu-
tions. Then (Xn) converges in law to X in the sense of C([0, 1])-valued random variables if and
only if (Xn) is tight.

Proof. It is elementary that if (Xn) converges in law to X, then the family (Xn) is tight, so we
need only prove the converse assertion.

It suffices to prove that any subsequence of (Xn) has a further subsequence that converges in
law to X (see [1, Th. 2.6]). Because (Xn) is tight, so is any of its subsequences. By Prokhorov’s
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Theorem ([1, Th. 5.1]), such a subsequence therefore contains a further subsequence, say (Xnk
)k>1,

that converges in law to some probability measure Y .

By Lemma 1, the sequence of Fourier coefficients FT(Xnk
) converges in law to FT(Y ). On the

other hand, this sequence converges to FT(X) in the sense of finite distributions by assumption.
Hence FT(X) and FT(Y ) have the same finite distributions, which implies that X and Y have the
same law by Lemma 2. �

Remark 4. A classical example that shows that convergence in finite distributions in C([0, 1])
does not imply convergence in law (see [1, Ex. 2.5]) also shows that the convergence of finite
distributions of FT(Xn) to FT(X) is not sufficient to conclude that (Xn) converges in law to X.

Indeed, in this example, we define the random variable Xn to be the constant random variable
equal to the function fn that is piecewise linear on [0, 1/n], [1/n, 1/(2n)] and [1/(2n), 1], and such
that 0 7→ 0, 1/n 7→ 1, 1/(2n) 7→ 0 and 1 7→ 0. Then it is elementary that Xn converges to the
constant zero random variable in the sense of finite distributions, but that Xn does not converge in
law to 0 (because fn does not converge uniformly to 0). On the other hand, for n > 1, the random
variable Xn satisfies Xn(0) = Xn(1) = 0, and by direct computation, its Fourier coefficients (are

deterministic and) satisfy also |X̃n(h)| 6 n−1 for all h ∈ Z, which implies that FT(Xn) converges

in the sense of finite distributions to the constant random variable equal to 0 ∈ C0(Z̃).
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