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1. Outline

• Weak convergence appears in probability theory (convergence

in law or distribution), random matrix theory and number

theory under non-standard forms.

• Review some of the classical results. How can one prove that

there is convergence to the standard Gaussian law?

• Is there a common ”probabilistic” framework (a ”higher order

central limit theorem”)? Illustrate the interplay between the

three areas.
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2. Some classical examples

1. Erdős-Kác. The number of (distinct) prime divisors of a

positive integer n ≥ 1, behaves for large n like a Gaussian random

variable with mean log logn and variance log logn:

lim
N→+∞

1

N
|{n ≤ N | a <

ω(n)− log logN√
log logN

< b}| =
1√
2π

∫ b
a
e−t

2/2dt

for any real numbers a < b.
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2. U(N) is the unitary group endowed with the (probability)

Haar measure. Take A ∈ U(N), define

YN(z) = det(I − zA)

and note YN ≡ YN(1).

Theorem [Keating-Snaith, 2000]:

lim
N→∞

|

A ∈ U(N);
logYN√
1
2 logN

∈ B

 | = 1

2π

∫ ∫
B

exp

−
(
x2 + y2

)
2

dxdy
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3. For any complex number λ with Re(λ) > −1, we have:

Theorem [Keating-Snaith, 2000]:

lim
N→∞

1

Nλ2 E
[
|YN |2λ

]
=

(G (1 + λ))2

G (1 + 2λ)
,

where G is the Barnes (double gamma) function.
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4. For any complex number λ with Re(λ) > −1, we should have

Conjecture.[Keating-Snaith, 2000]

lim
T→∞

1

(logT )λ
2

1

T

∫ T
0

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣2λ dt = M (λ)A (λ)

where M (λ) is the random matrix factor,

M (λ) =
(G (1 + λ))2

G (1 + 2λ)

while A (λ) is the arithmetic factor defined by the Euler product

A (λ) =
∏
p

(
1−

1

p

)λ2  ∞∑
m=0

(
Γ(λ+m)

m!Γ(λ)

)2

p−m
 ,
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5. The classical central limit theorem: let (Xk)k≥1 be a se-

quence of independent and identically distributed random vari-

ables on some probability space (Ω,F ,P), such that E[Xk] = µj,

and V(Xk) = σ2 ∈ (0,∞). Define

Sn = X1 + . . .+XN .

Then we have:
SN −Nµ
σ
√
N

d→ N (0,1),

where N (0,1) is a standard Gaussian random variable.
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3. Central limit theorems in Probability Theory

�
�

�
3.1 Convergence in law and the usual tools

Definition. A sequence of real-valued random variables (Xk)k≥1
is said to converge in law or in distribution to a random variable
X if for any continuous and bounded function f we have:

E[f(Xk)]→ E[f(X)], k →∞.

Remark. Alternative form: the sequence of probability measures
(µk) is said to converge weakly to the probability measure µ if

µk(f) =
∫
f(x)dµk(x)→ µ(f) =

∫
f(x)dµ(x), k →∞

for any continuous and bounded function f .

7



How to prove convergence in law?

1. The method of moments. If there is at most one probability

measure µ such that

lim
k→∞

∫
xndµk(x) =

∫
xndµ(x),

then

µk
d→ µ.

Remark. Requires the existence of all moments.
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2. The Fourier method. Let X be a random variable. Its

characteristic function is defined, for u ∈ R, by

ϕX(u) = E[eiuX].

The characteristic function always exists and uniquely determines

the law of X.

If X and Y are independent random variables, then:

ϕX+Y (u) = ϕX(u)ϕY (u).

If X is a Gaussian random variable with mean µ and variance σ2,

then

ϕX(u) = exp(iuµ− σ2u2/2).
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Lévy’s theorem. Let (Xk)k≥1 be a sequence of random vari-

ables.

a. If Xn
d→ X, then ϕXn(u) converges pointwise to ϕX(u).

b. If ϕXn(u) converges pointwise to a function h, which is con-

tinuous at 0, then there exists a random variable X, such that

h(u) = ϕX(u) and Xn
d→ X.
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�
	3.2 Some classical theorems for sums of iid rv’s

The Lyapunov theorem. Let X1, . . . , Xn be independent ran-

dom variables such that E
[
Xj
]

= 0. Assume that there exists

δ > 0 such that E
[
|Xj|2+δ

]
<∞. Put σ2

j = E
[
X2
j

]
; Bn =

∑N
j=1 σ

2
j .

If

B
−1−δ/2
n

n∑
k=1

E[|Xk|2+δ]→ 0,

then

1√
Bn

n∑
k=1

Xk
d→ N (0,1).
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Theorem[Berry-Essen.] Let (Xn)n≥1 be independent random

variables such that E
[
Xj
]

= 0, and E
[
|Xj|3

]
< ∞. Put σ2

j =

E
[
X2
j

]
; Bn =

∑N
j=1 σ

2
j ; Fn (x) = P

[
B
−1/2
n

∑n
j=1Xj ≤ x

]
and

Ln =
1

B
3/2
n

n∑
j=1

E
[
|Xj|3

]
.

Then there exist two constants A and C not depending on n

such that the following uniform and non uniform estimates hold:

sup
x
|Fn (x)−Φ (x) | ≤ ALn

and

|Fn (x)−Φ (x) | ≤
CLn

(1 + |x|)3.
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These theorems can be very useful in the study of the asymp-

totics of the characteristic polynomials of random matrices. It

can be shown that the characteristic polynomial of random uni-

tary matrices can be decomposed in law as product of indepen-

dent random variables:

det(I − U)
law
=

n∏
k=1

Xk

where the Xk’s are some simple and remarkable random variables.

The central limit theorem easily follows (plus extra results): this

will be explained by Chris Hughes.

But the moments conjecture and the corresponding random ma-

trix result do not fit in a probabilistic framework.
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�

�
3.3 How about strong limit theorems?

Let X1, X2, . . . be independent random variables such that E
[
Xj
]

=

0, and σ2
j = E

[
X2
j

]
<∞. Set Bn =

∑N
j=1 σ

2
j ; Fn (x) = P

[
B
−1/2
n

∑n
j=1Xj ≤ x

]
and Φ(x) = 1√

2π

∫ x
−∞ e

−t2/2dt. If the conditions

1. Bn →∞;

2.
Bn+1
Bn
→ 1,

3.supx |Fn(x)−Φ(x)| = O
(
(logBn)−1−δ

)
,

are satisfied for some δ > 0, then

lim sup
Sn√

2Bn log logBn
= 1 a.s.
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It is a difficult task to give a satisfactory meaning to such strong

limit theorems in random matrix theory because the probability

spaces U(N) change with the dimension. This raises the prob-

lem of constructing a ”nice” infinite dimensional space ”sitting

above.”
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4. Mod-Gaussian convergence: basic facts.

Recall

lim
N→∞

1

Nλ2 E
[
|YN |2λ

]
=

(G (1 + λ))2

G (1 + 2λ)
.

Take λ = iu, u ∈ R, and let ZN = log |YN |2. Then:

lim
N→∞

eu
2 logN E[eiuZN ] = lim

N→∞
eu

2 logN E[eiu log |YN |2] =
(G (1 + iu))2

G (1 + 2iu)
.

In probability theory, the characteristic function is a more natural

object to consider, because it always exists.
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Definition. The sequence (ZN) is said to converge in the mod-

Gaussian sense if the convergence

e−iuβN+u2γN/2 E[eiuZN ] → Φ(u)

holds for all u ∈ R, where βN ∈ R and γN ≥ 0 are two sequences

and Φ is a complex-valued function which is continuous at 0

(note that necessarily Φ(0) = 1). We call (βN , γN) the parame-

ters, and Φ the associated limiting function.

The sequence (ZN) is said to strongly converge in the mod-

Gaussian sense if the convergence holds uniformly in u, on every

compact subset of R.
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Why call it mod-Gaussian?

Proposition. Let (XN) be a sequence of real random variables

converging in law to a limiting variable with characteristic func-

tion Φ. If for each N we let

ZN = XN +GN ,

where GN is a Gaussian random variable independent of XN ,

and with mean βN and variance γN , then we have the strong

mod-Gaussian convergence of the sequence (ZN), with limiting

function Φ and parameters (βN , γN).

Remark. As we shall see, the above situation does not cover all

cases of mod-Gaussian convergences.
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Proposition. (1) Let (ZN) be a sequence of real-valued random

variables for which the mod-Gaussian convergence holds with

parameters (βN , γN) and limiting function Φ. Then the mod-

Gaussian convergence holds for some other parameters (β′N , γ
′
N)

and limiting function Φ′, if and only if the limits

β = lim
N→+∞

(βN − β′N), γ = lim
N→+∞

(γN − γ′N), (1)

exist in R. In this case Φ′ is given by

Φ′(u) = eiβu−u
2γ/2 Φ(u), (2)

and if the strong convergence holds with the parameters (βN , γN)

it also holds with (β′N , γ
′
N).
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(2) Let (ZN) and (Z′N) be two sequences of random variable with

mod-Gaussian convergence (resp. strong convergence), with re-

spective parameters (βN , γN) and (β′N , γ
′
N), and limiting functions

Φ and Φ′. If ZN and Z′N are independent for all N , then the sums

(ZN +Z′N) satisfy mod-Gaussian convergence (resp. strong con-

vergence) with limiting function the product ΦΦ′ and parameters

(βN + β′N , γN + γ′N).
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Remark. Given a family F = (µλ)λ∈Λ of probability distributions

parametrized by some set Λ, such that the Fourier transforms

µ̂(λ, u) =
∫
R
eitxdµλ(t)

are non-zero for all u ∈ R, one would say that a sequence of

random variables (ZN) converges in the mod-F sense if, for some

sequence λN ∈ Λ, we have

lim
N→+∞

µ̂(λN , u)−1 E(eiuZN) = Φ(u)

for all u ∈ R, the limiting function Φ being continuous at 0.

21



5. Mod-Gaussian convergence in probability theory

�
�

�
5.1 The CLT for mod-Gaussian convergence

Let (Xn
i ), for n ≥ 1 and 1 ≤ i ≤ n, be random variables, where

the variables

Xn
1 , . . . , X

n
n

in each row are i.i.d. with law denoted by µn. Let

Sn = Xn
1 + . . .+Xn

n .

Consider the logarithmic mean of the Sn:

ZN =
N∑
n=1

Sn

n
=

N∑
n=1

1

n
(Xn

1 + . . .+Xn
n)
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with variance:

V(ZN) = HN =
N∑
n=1

1

n
.

For a numerical sequence (un) that converges to a limit α, the

analogue logarithmic means

vN =
1

logN

N∑
n=1

un

n

also converge to this limit. This shows that, intuitively, the ZN
can “amplify” the sums SN by a logarithmic factor.



Theorem. Let
(
Xn
i

)
i.n≥1

be a triangular array of random vari-

ables, all independent, and such that the variables in the nth row

have the same law µn, and let us assume that µn has mean zero,

variance 1 and third absolute moment satisfying

∞∑
n=1

mn

n2
<∞, where mn =

∫
R
|x|3µn(dx).

Then the logarithmic means ZN strongly converge in the mod-

Gaussian sense, with parameters (0, HN), or with parameters

(0, logN).

Corollary. ZN/
√

logN converges in law to the standard Gaussian

law N (0,1).
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�

�
5.2 A Gnedenko-Kolmogorov type theorem

Definition. Denote by µn∗ the n-fold convolution of a probability

measure µ with itself. The probability measure µ on R is said

to be infinitely divisible if for any positive integer n, there is a

probability measure µn on R such that µ = µn∗n .
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Theorem. The following properties hold:

(1) If µ is an infinitely divisible distribution on R, then for u ∈ R,

we have

µ̂(u) ≡
∫ ∞
−∞

eiuxµ(dx) = exp
[
−

1

2
σu2 + iβu

+
∫
R

(
eiux − 1− iux11|x|≤1

)
ν(dx)

]
(3)

where σ ≥ 0, β ∈ R and ν is a measure on R, called the Lévy

measure, satisfying

ν({0}) = 0 and
∫
R

(
x2 ∧ 1

)
ν(dx) <∞. (4)

(2) The representation of µ̂(u) in (3) by σ, β and ν is unique.
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(3) Conversely, if σ ≥ 0, β ∈ R and ν is a measure satisfying (4),

then there exists an infinitely divisible distribution µ whose char-

acteristic function is given by (3).

The parameters (σ, β, ν) are called the generating triplet of µ.

Remark. Let h be a truncation function, that is a real function

on R, bounded, and such that h(x) = x on a neighborhood of 0.

Then for every u ∈ R, x 7→ (eiux − 1 − uh(x)) is integrable with

respect to ν, and (3) may be rewritten as:

µ̂(u) = exp
[
−

1

2
σu2 + iβhu+

∫
R

(
eiux − 1− iuh(x)

)
ν(dx)

]
where

βh = β +
∫ ∞
−∞

(h(x)− x11|x|≤1)ν(dx).



The triplet (σ, βh, ν) is called the generating triplet of µ with

respect to the truncation function h.



Theorem. In the setting of the previous Theorem, assume
further that the probability measures µn are infinitely divisible.
Then the sequence (ZN) strongly converges in the mod-Gaussian
sense, with the parameters (0, HN) and limiting function Φ = eΨ,
where

Ψ(u) =
∫ ∞
−∞

(
eiux − 1− iux+

u2x2

2

)
ν(dx)

and

ν =
∞∑
n=1

nν′n, (5)

and the measures ν′n are defined by

ν′n(A) =
∫ ∞
−∞

11A(x/n)νn(dx),

for any Borel set A. Consequently, ν is a positive measure which
satisfies ν({0}) = 0 and

∫∞
−∞ |x|3ν(dx) <∞.
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Theorem. Let (ZN) be a sequence of real-valued random vari-

ables whose respective laws µN are infinitely divisible, with gener-

ating triplets (σN , bN , νN) relative to a fixed truncation function

h. Then we have mod-Gaussian strong convergence if and only

if the following two conditions hold:

(1) The sequence κN =
∫∞
−∞ h(x)3νN(dx) converges to a finite

limit κ;

(2) There exists a nonnegative measure ν satisfying

ν({0}) = 0,
∫
R

(x4 ∧ 1)ν(dx) < +∞

and such that νN(f) → ν(f) for any continuous function f with

|f(x)| ≤ C(x4 ∧ 1) for x ∈ R and some constant C ≥ 0.
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Under these conditions, one may take the parameters

βN = bN , γN = σN + νN(h2),

and the limiting function is then Φ = exp(Ψ), where

Ψ(u) = −i
u3

6
κ+

∫ ∞
−∞

(
eiux − 1− iuh(x) +

u2h(x)2

2
+ i

u3h(x)3

6

)
ν(dx).



6. Mod-Gaussian convergence in Number Theory

�
�

�
6.1 The arithmetic factor in the moment conjecture

Recall the moment conjecture for the Riemann zeta function:

lim
T→+∞

1

T (logT )λ2

∫ T
0
|ζ(1/2 + it)|2λdt = A(λ)M(λ)

for any complex number λ such that Re(λ) > −1, where

M(λ) =
G(1 + λ)2

G(1 + 2λ)
, G(z) the Barnes double-gamma function,

(6)

A(λ) =
∏
p

(
1−

1

p

)λ2{ ∑
m≥0

(
Γ(m+ λ)

m!Γ(λ)

)2
p−m

}
. (7)
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Proposition. There exists a sequence (ZN) of positive real-

valued random variables and positive real numbers γN > 0 such

that

eu
2γN/2 E(eiuZN)→ A(iu)

locally uniformly for u ∈ R.
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Remark. let (Xp) be a sequence of independent random vari-

ables identically and uniformly distributed on the unit circle.

Then the sequence of random variables defined by

∑
p≤N

log
∣∣∣∣1− Xp

√
p

∣∣∣∣−2
= log

∏
p≤N

∣∣∣∣1− Xp
√
p

∣∣∣∣−2

converges as N → +∞, in the mod-Gaussian sense, with limit-

ing function given by the arithmetic factor evaluated at iu, and

parameters (0,2 log(eγ logN)).

Remark. Compare it with the formal identity:

|ζ(1/2 + it)|2 “ = ”
∏
p

∣∣∣∣1− 1

p1/2+it

∣∣∣∣−2
,
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�
�

�
6.2 Revisiting Erdős-Kác

lim
N→+∞

1

N
|{n ≤ N | a <

ω(n)− log logN√
log logN

< b}| =
1√
2π

∫ b
a
e−t

2/2dt

for any real numbers a < b.

Let

ω′(n) = ω(n)− 1

for n ≥ 2.

A Poisson random variable Pλ with parameter λ > 0 is one taking
integer values k ≥ 0 with

P(Pλ = k) =
λk

k!
e−λ.
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The characteristic function is then given by

E(eiuPλ) = exp(λ(eiu − 1)),

and strong mod-Poisson convergence of a sequence ZN of ran-

dom variables with parameters λN means that the limit

lim
N→+∞

exp(λN(1− eiu)) E(eiuZN) = Φ(u)

exists for every u ∈ R, and the convergence is locally uniform.

The limiting function Φ is then continuous and Φ(0) = 1.



Proposition. For u ∈ R, let

Φ(u) =
1

Γ(eiu + 1)

∏
p

(
1−

1

p

)eiu(
1 +

eiu

p− 1

)
. (8)

This Euler product is absolutely and locally uniformly convergent.

Moreover, for any u ∈ R, we have

lim
N→+∞

(logN)(1−eiu)

N

∑
2≤n≤N

eiuω
′(n) =

1

Γ(eiu + 1)

∏
p

(
1−

1

p

)eiu(
1 +

eiu

p− 1

)
,

and the convergence is locally uniform.
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Corollary. Consider random variables MN , for N ≥ 2, such that

P(MN = n) =
1

N − 1
, 2 ≤ n ≤ N,

and let ZN = ω′(MN). Then the sequence (ZN) converges

strongly in the mod-Poisson sense with limiting function Φ given

by (8) and parameters λN = log logN .
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Corollary. Erdős-Kác

Proof. We have to show that:

YN =
ω(MN)− log logN√

log logN

converges in law to a standard Gaussian variable. Elementary

asymptotic manipulations show that:

E(eiuYN)→ exp
(
−
u2

2

)
.

The result follows from Lévy’s theorem.
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