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Je crois que je l’ai su tout de suite : je partirais
sur le Zéta, ce serait mon navire Argo, celui qui
me conduirait à la travers la mer jusqu’au lieu
dont j’avais rêvé, à Rodrigues, pour ma quête
d’un trésor sans fin.

J.M.G Le Clézio, “Le chercheur d’or”.

I think I knew it immediately: I would sail on
the Zeta, it would be my own Argo, the one
that would bring me across the sea to the place
I had dreamed of, to Rodrigues, for my quest of
a treasure without bounds.

J.M.G Le Clézio, “The prospector”.



Outline

This is an introduction for the probabilist audience and other
non-specialists. As such, it is probably heretical for the true
analytic number theorists.

1. Probabilistic interpretations of common patterns in analytic
number theory;

2. Introducing L-functions;

3. Introducing modular forms;

4. Introducing elliptic curves.
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Elements of analytic number theory

Analytic number theory is often concerning with understanding
some properties of (arithmetical) objects in a statistic sense, and
this can frequently be understood in probabilistic terms. These
typically involve asymptotic considerations that can be seen as
analogues of limits of random variables.

Example (Counting primes)

The function
π(X ) = |{n ≤ X | n is prime}|

counts primes up to X . The Prime Number Theorem states

π(X ) ∼ X

log X
as X → +∞,

which is often summarized as saying the the probability of an
integer n ' X being prime is about 1/ log X .
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Primes in progressions

Example (Primes in progressions)

Let q ≥ 1 be an integer, and a a non-zero integer; let

π(X ; q, a) = |{p ≤ X | p ≡ a (mod q)}|.

Consider reduction modulo q:

Z
ρq−→ Z/qZ.

Dirichlet’s Theorem, in quantitative form, states that if (a, q) = 1,
we have

π(X ; q, a) ∼ 1

ϕ(q)
π(X ), as X → +∞.

In other words: the image under ρq of the normalized counting
measure on {p ≤ X} converges in law, as X → +∞, to the
normalized counting measure on (Z/qZ)×.
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(cont.)

In fact, one can show (Siegel-Walfisz Theorem) that the
convergence above is uniform for q ≤ (log X )A, for any constant
A > 0.

Extending this uniformity is an outstanding problem and is directly
linked to the Generalized Riemann Hypothesis, which is equivalent
with the statement

π(X ; q, a) =
1

ϕ(q)

∫ X

2

dt

log t
+ O(

√
X (log qX )2)

for X ≥ 2 and (a, q) = 1.
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Fairly typical setting(s)

(1) A collection of (often) finite sets ΩX with counting measure (or
another probability measure), depending on a parameter X → +∞;

(2) Invariants (“random variables”) defined on ΩX , for which we
wish to understand the distribution;
(3) Both ΩX and the invariants have some arithmetic significance...
(3.1) ... which may be revealed by the possibility of local-global
considerations: reduction modulo primes give “local” information

ΩX
ρp−→ Yp

and one tries to leverage this local information over all primes...
(3.2) ... using very often the fact that ρp is well-distributed for a
fixed p as X → +∞, uniformly in p,...
(3.3) ... and “nearly” independent for p in a suitable range (“level
of distribution” in sieve theory).
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Example 1

1. ΩX = {n ≤ X}, with counting measure;

2. ρp is reduction modulo p;

3. Equidistribution modulo p:

PX (n ≡ a (mod p)) =
1

|ΩX |
|{n ≤ X | n ≡ a (mod p)}|

=
1

p
+ O(X−1)→ 1

p
as X → +∞;

4. ρp1 , ρp2 are “independent” on Z: Chinese Remainder
Theorem;

5. Approximate independence by combining the last two facts.
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Example 2 (Erdös-Kác Theorem)

Define “random variables”

ωX :

{
ΩX → N

n 7→ ω(n) = number of distinct primes p | n.

Theorem (Erdös-Kác)

As X → +∞, we have

PX

(ωX − log log X√
log log X

)
→ 1√

2π

∫ β

α
e−t2/2dt.

Same limit as for sums of random variables
∑

p≤X Bp, where (Bp)

are independent Bernoulli random variables with P(Bp = 1) = p−1,
but mod-Poisson convergence can distinguish the two.
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Example 3 (Gaps between primes)

With the same ΩX , consider random variables

GX ,c (n) = π(n + c log n)− π(n)

= (number of primes between n and n + c log n).

Conjecture

For any fixed c > 0, we have:

GX ,c
law−→ Poisson(c)

as X → +∞.

Strong heuristic evidence from sieve methods and Hardy-Littlewood
conjecture (Gallagher). Extends to gaps between twin primes, etc.
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L-functions

L-functions were invented by Dirichlet and generalized by many
people (Hecke, Maass, Langlands in particular) as the “right” tools
of harmonic analysis to detect many arithmetic conditions, such as:

1. Arithmetic progressions: n ≡ a (mod q) (Dirichlet
L-functions);

2. Determinant relations: ax − by = h (automorphic L-functions
of degree 2).

They are holomorphic functions with, among other properties, an
Euler product (“local-global”) expression:

L(s) =
∑
n≥1

λ(n)n−s =
∏

p

Lp(p−s)−1

where Lp ∈ C[X ] with Lp(0) = 1.
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(cont.)

Example

The Riemann zeta function is

ζ(s) =
∑
n≥1

n−s =
∏

p

(1− p−s)−1.

It is meromorphic on C with a single pole with residue 1 at s = 1,
and satisfies a functional equation

Λ(s) = Λ(1− s), where Λ(s) = π−s/2Γ(s/2)ζ(s).
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Functional equation

These other properties extend to other L-functions, with a more
general functional equation:

Λ(L, s) = e iθ(L)q(L)1/2−sΛ(L̄, 1− s), Λ(L, s) = γ(L, s)L(s),

where q(L) ≥ 1 is the conductor of L(s), e iθ(L) is the
sign/argument of the functional equation, γ(L, s) is the
gamma/archimedean factor and

L̄(s) =
∑
n≥1

λ(n)n−s .



Zeros of L-functions

The logarithmic derivatives of L-functions may be used to control
the distribution of primes. Thus the location of their zeros is
extremely important as they give singularities of L′/L.

This can be seen in the explicit formula:∑
p≤X

log p = X −
∑
ρ

X ρ

ρ
+ (small term)

where ρ runs over the zeros of ζ(s) = 0 with 0 < Re(ρ) < 1.
The Riemann Hypothesis states that Re(ρ) = 1/2 for all those
zeros. It follows that

π(X ) =

∫ X

2

dt

log t
+ O(

√
X (log X )2).
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Example: smallest quadratic non-residue

For a prime `, define

q(`) = min{q ≥ 1 | q is not a square modulo `}

= min{q ≥ 1 |
(q

`

)
= −1}.

To show q(p) < A one can try to prove that

S`(A) =
∑
q≤A

(q

`

)
< A.
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(cont.)

By Mellin inversion (harmonic analysis), we have

S`(A) ' 1

2iπ

∫ 2+i∞

2−i∞

(∑
n≥1

(n

`

)
n−s
)

As ds

s
=

1

2iπ

∫ 2+i∞

2−i∞
L`(s)As ds

s
.

The function L`(s) is a Dirichlet L-function which is entire.
Integrating over Re(s) = 1/2, one can get

S`(A) ≤ C`1/4A1/2 < A, if A > C 2
√
`,

and hence q(`) ≤ C 2`1/2.
Improving this requires great ingenuity and quickly runs into issues
related to the Lindelöf and Generalized Riemann Hypothesis.
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Modular forms

A cusp form of weight k and level N is an holomorphic function

f : H = {z ∈ C | Im(z) > 0} → C

such that

f
( az + b

cNz + d

)
= (cNz + d)k f (z), if a, b, c , d ∈ Z, ad − bcN = 1,∫ 1

0

∫ +∞

1
|f (z)|2y k dxdy

y2
< +∞.

Example

The Ramanujan function, with N = 1 and k = 12:

∆(z) = e2iπz
∏
n≥1

(1− e2iπnz )24.
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L-functions of modular forms

Certain (“primitive”) cusp forms (including ∆) lead to L-functions

L(f , s) =
∑
n≥1

λf (n)n−s

=
∏
p-N

(1− λf (p)p−s + p−2s)−1
∏
p|N

(1− λp(p)p−s)−1,

with λf (n) characterizing f through the Fourier expansion

f (z) =
∑
n≥1

λf (n)n(k−1)/2 exp(2iπnz).

Those have conductor N and gamma factor

γ(s) = π−sΓ(s + k−1
2 ).
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Families of L-functions

There are only finitely many “primitive” cusp forms of given weight
and level.

One can see them probabilistically:

1. Ωk,N = {primitive f of weight k and level N};
2. Counting measure or “harmonic” measure (easier analytically);

3. Local factors ρp : f 7→ λf (p);

4. Approximate independence: trace formula or Petersson
formula;

5. Local equidistribution: with harmonic measure, if
λf (p) = 2 cos θf (p), we have

(f 7→ θf (p))
law−→ µST =

2

π
sin2 θdθ on [0, π].

6. Interesting random variable: L(f , 1
2).
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Elliptic curves

Equations of the type

y2 = x3 + Ax + B

where the parameters A, B ∈ Z are such that the right-hand side
has no double-root in C.

Question. Are there infinitely many rational solutions?

One may want to study this for a family:

1. ΩX = {(A,B) | |A|3, |B|2 ≤ X};
2. ρp associates the number of solutions modulo p, or even the

equation modulo p;
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Elliptic curve L-functions

It happens to be possible to package the local information in an
L-function

L(E , s)” = ”
∏

p

(1− app−s + p−2s)−1

where, for all p with finitely many exceptions, we have

|{(x , y) ∈ (Z/pZ)2 | y2 ≡ x3 + Ax + B}| = p − p1/2ap.

Taylor–Wiles (and Breuil, Conrad, Diamond, Taylor) proved that
this L-function is indeed the L-function of a cusp form of weight 2
and some level N (dividing the discriminant of X 3 + AX + B).
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Birch–Swinnerton-Dyer conjecture, “baby” version

Conjecture

There exist infinitely many rational solutions (x , y) ∈ Q2 to
y2 = x3 + Ax + B if and only if

L(E , 1/2) = 0.

A much more precise version relates the leading term of

L(E , s) = cr (s − 1/2)r + cr−1(s − 1/2)r−1 + · · ·

to many deep arithmetic invariants of the elliptic curve.
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