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1. Introduction

This survey is a written and slightly expanded version of the talk given at the ICMS
workshop on motivic integration and its interactions with model theory and non-archi-
medean geometry. Its presence may seem to require a few preliminary words of expla-
nation: not only does the title apparently fail to reflect any of the three components of
that of the conference itself, but also the author is far from being an expert in any of
these. However, one must remember that there is but a small step from summation to
integration. Moreover, as I will argue in the last section, there are some basic problems in
the theory of exponential sums (and their applications) for which it seems not impossible
that logical ideas could be useful, and hence presenting the context to model-theorists in
particular could well be useful. In fact, the most direct connection between exponential
sums and the topics of the workshop will be a survey of the extension to exponential sums
of the beautiful counting results of Chatzidakis, van den Dries and McIntyre’s [CDM].
These may also have some further applications.

Acknowledgements. I wish to thank warmly the organizers of the workshop for
preparing a particularly rich and inspiring program, and for inviting me to participate.
I also thank B. Conrad for pointing out a potentially misleading statement related to
Poincaré duality on page 10.

2. Where exponential sums come from

Exponential sums, in the most general sense, are any type of finite sums of complex
numbers

S =
∑

16n6N

e(θn)

where we write e(z) = exp(2iπz), as is customary in analytic number theory, and where
the phases θn are real numbers. Such as sum is trivially bounded by the number of terms

|S| 6 N,

and of course if nothing more is known about θn, this can not be improved. However,
in applications (whether arithmetic or otherwise), one knows something more, and the
goal is very often to go from this to substantial improvements of the trivial bound: one
typically wishes to prove

|S| 6 NΣ(N)−1

with Σ(N) increasing as N → +∞, as fast as possible. This is interpreted as being the
result of substantial oscillations of the phases (in R/Z) which result in the sum being
somewhat comparable with a random walk in the plane C = R2.

In analytic number theory, exponential sums arise from many different sources. For the
purpose of this survey, we will emphasize questions of equidistribution as leading naturally
to exponential sums, as this will give a motivating framework for all the examples we
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want to consider here, and leads to problems and results which have obvious interest for
all arithmeticians. So we will not speak about, e.g., the direct occurrence of exponential
sums in the circle method, or in the distribution of primes (see, e.g., [IK, Ch. 20] for the
former, and [IK, Ch. 5, 17–19] for the latter).

We therefore recall the definition of equidistribution, as well as the important Weyl
criterion. Let (X,µ) be a compact topological space with a (Borel) probability measure

µ. Given finite sequences (xn)n6N , where xn = x
(N)
n may depend on N , one says that

they become µ-equidistributed in X if, for any open set U with µ(∂U) = 0, the sample
counts

1

N
|{n 6 N | xn ∈ U}|

converge to the measure µ(U) of U as N gets large. Equivalently, for any continuous
function f on X, the sample average

1

N

∑
n6N

f(n)

is close to the integral of f over X. In the important special case where X is the torus
R/Z and µ the (unit) Lebesgue measure, this means that

1

N
|{n 6 N | a < xn < b}| → (b− a)

for any a, b with 0 6 a < b 6 1. The basic criterion of H. Weyl states that there is
µ-equidistribution if and only if, for some orthonormal basis (fh) of L2(X,µ), elements
of which are continuous functions with f0 = 1, we have

lim
N→+∞

1

N

∑
n6N

fh(xn) = 0, for any fixed h 6= 0.

If we consider again X = R/Z, we can take fh(x) = e(hx), and the criterion becomes

lim
N→+∞

1

N
Sh(N) = 0, where Sh(N) =

∑
n6N

e(hxn),

which are clearly some sort of exponential sum, and the goal is to exhibit some cancella-
tion, for every non-zero frequency h.

There are quite a few techniques available to deal with sums of the type∑
16n6N

e(f(n))

if f is some smooth real-valued function defined on R, leading to many equidistribution
statements. However, currently, the sums which are best understood are those of “al-
gebraic nature”, where extremely deep techniques of algebraic geometry are available to
analyze the sums (“dissect” wouldn’t be too strong a word!).

As an example of such algebraic exponential sum, which we will also carry along this
survey, we take one of the most important one in analytic number theory, the Kloosterman
sums. They are also among the first examples to have been considered historically in a
non-trivial way.1

1 Though the very first case is probably to be found in Gauss sums.
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In keeping with our emphasis, we introduce those sums by means of an equidistribution
statement which depends on estimates for Kloosterman sums.2

Theorem 1. For n > 1, let R4(n) denote the set of 4-tuples (n1, . . . , n4) ∈ Z4 such that

n = n2
1 + · · ·+ n2

4.

(1) We have

|R4(n)| = 8n
∏
p|n
p>3

(
1 +

1

p

)
for all n > 1, in particular r4(n) = |R4(n)| tends to infinity as n does.

(2) Consider the set of points

R̃4(n) = {x ∈ R4 | ‖x‖ = 1, and n1/2x ∈ R4(n)}

in the unit 3-sphere S3 ⊂ R4. Then, as n → +∞, R̃4(n) becomes equidistributed with
respect to the Lebesgue measure on S3, i.e., for any continuous function f on the sphere,
we have

lim
n→+∞

1

r4(n)

∑
x∈R4(n)

f
( x

‖x‖

)
=

∫
S3

f(x)dx.

It is the proof of Part (2) which requires exponential sums, while (1) is a result go-
ing back at least to Jacobi, which can be proved in many different ways (arithmetic of
quaternions, theta functions, etc; see, e.g., [HW, §20.12] for an elementary approach).

What is the link with exponential sums? Kloosterman’s approach was based on a
refinement of the circle method of Hardy-Littlewood-Ramanujan (which remains of great
importance today), but this particular problem is probably better understood by an
appeal to modular forms. More precisely, Weyl’s criterion shows that it is enough to
prove that the limit exists and is equal to zero for non-constant spherical (harmonic)
polynomials P on the three-sphere, which are the eigenvalues of the (Riemannian) Laplace
operator on S3 (those functions, including the constant 1, are well-known to form an
orthonormal basis of L2(S3)). Fix one P ; then one can form the generating function

θ(z; f) =
∑
n>1

nd/2
( ∑
x∈R4(n)

P (x/‖x‖)
)
e(nz),

which exists for z ∈ H = {z | Im(z) > 0}, where d is the degree of f . Using modularity
properties, it is possible to express the coefficient of e(nz) as a finite linear combination of
those of other functions called Poincaré series. These last coefficients, as shown already
by Poincaré himself, are roughly of the form∑

c>1

1

c
S(m,n; c)J(4π

√
mn/c)

where m is a non-zero integer, the function J is a Bessel function, and S(m,n; c) is a
Kloosterman sum:

S(m,n; c) =
∑

x (mod c)
(x,c)=1

e
(mx+ nx−1

c

)
,

2 This is not quite what Kloosterman himself did, which involved counting solutions to diagonal
quadratic equations in four variables a1n

2
1 + · · · + a4n

2
4 = N ; however, the analysis which is required is

very similar.
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where the inverse of x is of course the inverse in the unit group (Z/cZ)×. One then
uses facts about Bessel functions to verify that the theorem follows from any non-trivial
estimate for Kloosterman sums of the type

S(m,n; c)� c1−δ

for a fixed δ > 0, and for all m, n coprime with c. This is what Kloosterman already
proved:

Proposition 2. Let c > 1 be an integer, let m, n ∈ Z be such that the gcd (m,n, c) = 1.
Then

|S(m,n; c)| < 2c3/4.

The main difference between sums like Kloosterman’s and general exponential sums is
that the range of summation is the set of points of an algebraic variety over a finite ring,
and the phases are obtained by evaluating rational functions defined on this variety (in his
case, the variety is the multiplicative group, and the rational function is x 7→ mx+n/x).
This crucial algebraicity suggests that the theory of more general sums like

S(f, V, c) =
∑

x∈V (Z/cZ)

e(f(x)/c)

should be accessible for general algebraic varieties V (defined over Z/cZ or over Z more
simply), and for f an algebraic function on V .

There is indeed such a theory, which in fact splits into two fairly distinct questions.
This can be seen from the original example of Kloosterman: his argument started by using
the Chinese Remainder Theorem to relate S(m,n; c1c2) to S(m1, n1; c1) and S(m2, n2; c2)
when c1 and c2 are coprime (with m1, n1, m2, n2 simple rational functions of m, n, c1,
c2). So Proposition 2 was reduced to the case where c = pk, with k > 1, is the power of
a prime number. Now it turns out (and this is a general feature) that the case c = p is
very different from c = pk with k > 2.

Precisely, in the case of Kloosterman sums, one gets exact formulas for k > 2 (due to
Salié, see, e.g., [I, 4.3]); as an example, if p > 3 is ≡ 1 (mod 4), we have

S(1, 1; pk) = 2pk/2 cos
(4πn

pk

)
if k > 2, and those formulas lead immediately to the desired estimate (with the better
exponent 1/2) without any more work.

Such a drastic simplification is not rare in concrete examples arising in analytic number
theory, but it is not to be expected in all cases. Indeed, there is a whole theory of trying to
understand the behavior of exponential sums of algebraic origin over Z/pkZ as k → +∞,
to which the name of Igusa is most commonly attached; for recent results along these
lines, see for instance the paper [C] of R. Cluckers.

We will now concentrate (almost) exclusively on the case k = 1, i.e., on sums over
finite fields. For many concrete applications, this turns out to be the most important,
and this justifies somewhat this special attention, but we repeat that one should not
immediately consider a problem solved when the relevant sums are understood in that
case: sometimes, it is higher powers of primes which are most difficult. An example of
this is given in the work of Belabas and Fouvry [BF, 3.c].

3. Weil’s interpretation of exponential sums over finite fields

Kloosterman’s argument to prove Proposition 2 for c = p a prime number was elegant,
but not immediately generalizable to more situations (it can be seen in [I, 4.4]). Around
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1940, A. Weil, following hints of Davenport and Hasse in particular, realized that the
Riemann Hypothesis for curves over finite fields led to a stronger result and a better
understanding of the underlying problem: namely, using results on the number of points
over finite fields of the curves with equations

(1) yp − y = mx+
n

x
,

Weil showed that
|S(m,n; p)| 6 2

√
p

for all primes p and m, n coprime with p. In fact, this was based on combining almost
trivially two remarkable properties. The first one, already showing the importance of
viewing the problem algebraically, is the rationality of the generating function

Zm,n(T ) = exp
(∑
ν>1

Sν(m,n)
T ν

ν

)
∈ C[[T ]]

formed with the analogues of the Kloosterman sum over extension fields Fpν/Fp – not to
be mistaken with the finite rings Z/pkZ – defined by

Sν(m,n) =
∑
x∈F×

pν

e
(Trν(xm+ n/x)

p

)
in terms of the trace map Fpν

Trν−→ Fp. These sums do not (as far as the author knows!)
occur naturally in problems of analytic number theory,3 but the whole family (Sν(m,n))
really contains the key to the general theory. Indeed, the rationality property already
mentioned takes the form of the formula

Zm,n(T ) =
1

1− S1(m,n)T + pT 2

with (of course) S1(m,n) = S(m,n; p), the original Kloosterman sum. What this means,
in particular, is that the size of S1(m,n) is dictated precisely by the poles of the gen-
erating function, which is not surprisingly called the zeta function associated with the
Kloosterman sum. Precisely, factor the quadratic term as

1− S1(m,n)T + pT 2 = (1− αm,nT )(1− βm,nT ),

so that

(2) |S1(m,n)| = |αm,n + βm,n| 6 |αm,n|+ |βm,n|.
The next result, due to Weil, then explains his bound for Kloosterman sums: the two

(inverse) roots αm,n, βm,n, for m, n coprime with p, satisfy

|αm,n| = |βm,n| =
√
p.

This is called the Riemann Hypothesis (for Kloosterman sums), because of the following
interpretation: if we introduce a complex variable s and take T = p−s, the resulting
complex function ζm,n(s) = Zm,n(p−s) is meromorphic and its only poles are situated on
the line Re(s) = 1/2.

Weil showed that this type of interpretation could be extended naturally (and beauti-
fully) to all sums of algebraic origin in one variable, i.e., ranging over points of a curve
C/Fp, using suitable Artin-Shreier coverings of C and the corresponding zeta functions,
and most importantly appealing to the Riemann Hypothesis for all curves over finite

3 Of course, for a fixed ν, they may arise for problems over a number field with a finite residue field
of order pν , but then extensions of the latter would not occur.
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fields, which he proved during the 1940’s. This leads, for instance, to the following
estimate, which has been used in many contexts in analytic number theory:

Theorem 3 (Weil). Let P ∈ Z[X] be a monic polynomial of degree d > 1 which no
repeated factor. Let p be a prime such that P has no repeated root modulo p, i.e., such
that p does not divide the discriminant of P . Then we have∣∣∣ ∑

x (mod p)

e
(P (x)

p

)∣∣∣ 6 (d− 1)
√
p.

4. The yoga of Grothendieck-Deligne

Weil’s theory, beautiful and revolutionary as it was, did not extend well to situations
involving sums in more than one variable, or in other words, beyond the case where the
underlying set of summation is (the set of Fp-points of) a curve. Or, rather, it doesn’t
provide a way to analyze those sums except by “fibering by curves”, which is simply to
say writing∣∣∣∑

x,y

e(f(x, y)/p)
∣∣∣ =

∣∣∣∑
x

(∑
y

e(f(x, y)/p)
)∣∣∣ 6∑

x

∣∣∣∑
y

e(f(x, y)/p)
∣∣∣

and trying to understand individually the inner sums before putting them all together.
This can often be done using Theorem 3, but note that if x, y range over Fp, this means
that – in terms of p – the best possible estimate one can then expect is of order p3/2, as
no cancellation can be obtained from the sum over x.

Such estimates, although non-trivial, are often not enough for the purposes of applica-
tions. Here is an example, with an equidistribution problem. Recall that, for a prime p
and a multiplicative character χ : F×p → C× of the field Fp, the associated Gauss sum
(itself a type of exponential sum over finite field) is given by

τ(χ) =
∑
x∈F×

p

χ(x)e
(x
p

)
.

For a non-trivial character χ 6= 1, it is well known that |τ(χ)| = √p, which means one
can write

τ(χ) = p1/2e(θ(χ)), with θ(χ) ∈ [0, 1].

Is is then an interesting question to understand how the angles of the Gauss sums θ(χ)
vary. Indeed, Gauss considered the case where χ = (·/p) is a real-valued character (the
Legendre symbol modulo p), and succeeded in proving after much effort that, for p > 3,
we have

τ((·/p)) = 1, i.e., θ((·/p)) = 0, if p ≡ 1 (mod 4),

τ((·/p)) = i, i.e., θ((·/p)) =
1

4
, if p ≡ 3 (mod 4).

However, the angles seem intractable for most other characters,4 and one may suspect
that they are spread all over the unit circle. To test this, equidistribution theory suggests
strongly to try to estimate the Weyl-type sums, which are

Wn =
1

p− 2

∑
χ (mod p)
χ 6=1

e(nθ(χ))

4 A famous conjecture of Kummer considered what happens when χ is of order 3; for this story, see,
e.g., [HP].
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for n ∈ Z − {0}, where the sum is over non-trivial multiplicative characters modulo p
(the number of which is p− 2). For n > 1, this can be expressed as

Wn =
1

p− 2

∑
χ (mod p)
χ 6=1

(τ(χ)
√
p

)n

=
1

pn/2(p− 2)

∑
x1,...,xn

e
(x1 + · · ·+ xn

p

)∑
χ 6=1

χ(x1 · · ·xn)

=
p− 1

p− 2

Kn(p)

pn/2
,

where

Kn(p) =
∑

x1,...,xn (mod p)
x1···xn=1

e
(x1 + · · ·+ xn

p

)
is an exponential sum with n − 1 variables, called an hyper-Kloosterman sum (because,
in the case n = 2, we recover K2(p) = S(1, 1; p)).

If we sum over one variable using Weil’s bound, we can easily show that Kn(p) �
pn−3/2 for all p, but note that such a bound does not even allow us to recover the trivial
fact that |Wn| 6 1 if n > 4! On the other hand, standard probabilistic considerations
(“square-root cancellation philosophy”, taking root in the fact that a random walk of

length N with random, uniformly distributed phases, has modulus of size about
√
N

with overwhelmingly large probability) suggest that one should have

Kn(p)� p(n−1)/2,

or in other words, each of the n− 1 variables should, independently of the others, gain a
factor

√
p. This would lead to

Wn �
1
√
p

for p > 3 (and n fixed), and therefore5 we would conclude that the angles of the Gauss
sums τ(χ), where χ ranges over all non-trivial characters, become equidistributed, as
p→ +∞, on the unit circle.

This fact could only be proved (by Deligne [D2]) after Grothendieck and his school
of algebraic geometry had developed a new framework to study algebraic exponential
sums, which goes much further than the one of Weil in many respects: not only does it
encompass sums in arbitrarily many variables, but also it is formally much more flexible,
and makes it possible to study and exploit variations of exponential sums in families,
and indeed to analyze certain types of sums which do not look like the standard ones
S(f, V, p) we have mentioned earlier. However, because of considerations of space, we
will only sketch how this formalism applies to exponential sums of this type, pointing
(as an introduction) to the book of Katz [K2] for particularly striking illustrations of the
more general sums that can naturally be considered, in the setting of the distribution of
angles related to Kloosterman sums (see also another survey of the author [Ko2] for some
motivation and discussion of Deligne’s Equidistribution Theorem, which is an important
part of this type of issues).

To present a fairly general case, we consider an affine scheme of finite type V/Z, and
two functions f , g on V , with g invertible. Then, for any prime number p, any additive

5 For the application of the Weyl criterion to n < 0, one can use an obvious symmetry.
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character ψ : Fp → C× and any multiplicative character χ : F×p → C×, we look at the
sum

S = S(V, f, g, χ, ψ; p) =
∑

x∈V (Fp)

ψ(f(x))χ(g(x)).

The case of hyper-Kloosterman sums corresponds to the affine subvariety V ⊂ An

defined by the equation x1 · · ·xn = 1, to the additive character x 7→ e(x/p) (note that
all additive characters are of the form x 7→ e(ax/p) for some a modulo p) and to g = 1,
χ = 1.

The analysis of such sums in the Grothendieck framework (see [D1] for a more detailed
presentation, [IK, 11.11] for another survey tailored to analytic number theorists) starts
by choosing, for a given prime p, another prime ` 6= p. Then the formalism of the so-
called Lang torsor (which is, concretely, a fairly systematic analysis of Artin-Schreier
coverings (1) and of Kummer coverings for the multiplicative part) gives an object, called
an `-adic (lisse) sheaf of rank 1, L = Lψ(f)⊗Lχ(g), depending on all the data, which can be
seen as associating (in particular) to every rational point x ∈ V (Fp) a one-dimensional
Q̄`-vector space (the “stalk” Lx of L at x) together with an action of the Frobenius
automorphism, which is the natural generator of the Galois group of Fp, in such a way
that the basic formula

Tr(Frx | Lx) = ψ(f(x))χ(g(x))

holds, for Frx the inverse of x 7→ xp (the geometric Frobenius; up to changing f by −f
and g by g−1, we could use the standard Frobenius as well). Of course, since the stalk
is one-dimensional, speaking of the trace is somewhat pedantic, but the generalizations
briefly mentioned earlier will involve similar sheaves such that Lx is a vector space of
higher dimension.

Hence the exponential sums take the form

S =
∑

x∈V (Fp)

Tr(Frx | Lx),

and the next basic steps will work for sums defined in this way for an arbitrary lisse `-adic
sheaf on V/Fp.

The first transformation which is done is the analogue of the application of the ra-
tionality of the zeta function for Kloosterman sums (and it can be interpreted in this
manner, although this would be anachronistic, since the rationality, in general, is proved
exactly in this way): the trace formula of Grothendieck, a deep analogue of a formula of
Lefschetz in classical algebraic topology, states that∑

x∈V (Fp)

Tr(Frx | Lx) =
2d∑
i=0

(−1)i Tr(F | H i
c(VF̄p ,L)),

where the sum now runs only over integers up to 2d, with d the dimension of V/Fp, and F
denotes the global action of the geometric Frobenius automorphism on the various `-adic
cohomology spaces with compact support of V , base-changed to an algebraic closure of
Fp.

Example 4. The trace formula is already interesting for the “trivial” sheaf Q̄` itself, for
which all local traces are equal to 1, so that the associated sum is∑

x∈V (Fp)

Tr(Frx | Q̄`) = |V (Fp)|,
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which is the number of points on V over Fp. Indeed, the original Weil conjectures, which
motivated the general theory (and in fact, much of the development of modern algebraic
geometry, see the summary in [Ha, Appendix C]) concerned precisely this case. The trace
formula states that

|V (Fp)| =
2d∑
i=0

(−1)i Tr(F | H i
c(VF̄p ,Q`))

which is highly non-trivial in all but the simplest case.
One can see these formulas as black boxes, but of course this may become somewhat

unsatisfactory. As a baby step towards enlightenment, let us consider one of the very few
elementary situations where the formula becomes transparent. Consider the case where
V is 0-dimensional, given by the equation f(x) = 0, for some monic polynomial f ∈ Z[X]
of degree deg(f) > 1. Then, for any prime p, V/Fp is zero-dimensional and V (Fp) is the
number of zeros of f in the base field Fp. Since d = 0, the trace formula gives

|{x (mod p) | f(x) = 0}| = Tr(F | H0
c (VF̄p ,Q`)).

But what is the 0-th cohomology space? Since VF̄p is simply the finite collection of

the zeros of f in F̄p, the intuition from topology (which can be confirmed by the barest
introduction to the definition of étale cohomology) states that H0

c (VF̄p , Q̄`) should be

isomorphic to Q̄δ
` , where δ is the number of distinct zeros of f (which was not assumed to

be squarefree, so repeated roots are possible). And how should the global Frobenius act?
It seems obvious (and again is confirmed easily) that its action on Q̄δ

` is simply obtained
from the permutation action of x 7→ xp (or rather its inverse) on the zeros of f . In other
words, the matrix representing this action is the permutation matrix associated with this
permutation of the zeros of f . What is its trace? It is, as is well-known, the number of
fixed points of the permutation, and this is precisely the number of zeros in Fp.

This example illustrates also one property which is important and may seem doubtful
at first: the trace formula works equally well for non-reduced schemes (e.g., if there are
repeated roots) as for reduced ones. This is useful for applications, where checking that
V/Fp is reduced might be quite bothersome.

As we leave this example, note that – even in this very simple case – the variation of
|V (Fp)| with p is by no means an easy question!

Coming back to the general application of the trace formula, we note that it does
not yet lead to any non-trivial estimate, because it might be that the traces on the
various cohomology groups are enormous. In fact, it is not even clear (and it is open in
general!) that the various terms on the right-hand side are independent of the choice of
the auxiliary prime ` 6= p. The eigenvalues may also conceivably be elements of Q̄` which
are not algebraic over Q.

However, the extraordinary general Riemann Hypothesis for varieties and sheaves over
finite fields, proved by Deligne [D3], leads to quite precise information concerning those
eigenvalues, from which non-trivial estimates may often be deduced.

In the context we consider, the result is the following: (1) any eigenvalue α of the
Frobenius acting on a cohomology space H i

c(VF̄p ,L), for L of the type described, is an
algebraic integer; (2) any such α has the property that if β ∈ C is an arbitrary Galois
conjugate of α (e.g., β = α if Q̄ is identified with a subfield of C), we have

|β| = pj/2

where the weight j = j(α) depends only on α and satisfies 0 6 j 6 i.
9



It is this last estimate of the weight which “is” the Riemann Hypothesis. To see
why, consider the example of Kloosterman sums S(1, 1; p): since the variety V is the
multiplicative group, of dimension 1, the yoga leads to

S(1, 1; p) =
2∑
i=0

(−1)i Tr(F | H i
c(Gm,F̄p ,K)),

for some suitable sheaf, and the result of Deligne says that the eigenvalues of F on H0
c

are of modulus 6 1, those on H1
c are of modulus 6

√
p, and those on H2

c of modulus
6 p. Comparing with Weil’s expression, one can guess (and it is true) that in fact
H0
c = H2

c = 0 here, and H1
c is 2-dimensional with eigenvalues of Frobenius given by the

algebraic integers α1,1 and β1,1 occurring in (2).
Here is a more general explanation of the relevance of Deligne’s result. We expect that

the number of points in the sum over x ∈ V (Fp) is roughly of size pd (in simple cases, such
as hyper-Kloosterman sumsKn(p), V is so simple that this is obvious; there, dimV = n−1
and |V (Fp)| = (p − 1)n−1). Deligne’s bound shows that only the topmost cohomology
group H2d

c may have eigenvalues as large as pd = p2d/2. If we let βi(L) = dimH i
c, we get

|S| = |S(V, f, g, χ, ψ; p)| 6 β2dp
d +R, |R| 6 qκ/2B

(after choosing a fixed embedding of Q̄ in C), where

κ = max{j 6 2d− 1 | βj 6= 0} 6 2d− 1, B = B(p) =
∑

06i6κ

dimH i
c(VF̄p ,L).

Thus getting some non-trivial estimate depends on showing that the topmost group
has dimension β2d = 0. This, it turns out, is often the case, because Poincaré duality
can be used to relate H2d

c to some H0, which can be analyzed fairly simply (there is a
subtlety, which is avoided if one assumes that V is smooth over Fp, which is most often
not a problem in analytic number theory). Here is a special case: for a fixed V/Z, and
for any prime p large enough, if V/Fp is geometrically connected, we have β2d = 0 unless
the function f is constant on U(Fp) for some dense open subset U/Fp of V (equal to
V if V is smooth over Fp). In that case (if χ = 1 at least), it is clear that we can not
expect cancellation, since we are just counting the number of points of summation. In
particular, this condition is trivially true for hyper-Kloosterman sums, and thus one gets
“for free” that

(3) |Kn(p)| 6 Bpn−3/2.

Strangely enough, in terms of exponential sums, this remains a trivial estimate, because
B has not been estimated explicitly,6 and it depends on p because the sheaves L that
were introduced to represent the exponential sums themselves depend on p (through the
additive and multiplicative characters). Thus the following theorem is crucial (see [K1]
for a very general statement):

Theorem 5 (Dwork, Bombieri, Adolphson-Sperber). Let V , p, χ, ψ, f ∈ Z[V ], g ∈
Z[V ]× be as above. Then there exists a constant B0, independent of p, such that∑

06i62d

dimH i
c(VF̄p ,L) 6 B0

for all p.

6 The corresponding estimate for the sums ranging over finite extensions Fpν would be non-trivial.
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In fact one can often write down a concrete value for B0.
Let us come back, to conclude this section, to the special case of hyper-Kloosterman

sums. The bound (3), reinforced by the bound B(p) 6 B0, is no better than the one
coming from Weil’s bound for one-dimensional sums and “fibering”. This is because it is
based on assuming (a worst case scenario) that κ = 2(n−1)−1, i.e., that the cohomology
space “topmost minus one” is non-zero, namely that

H2(n−1)−1
c 6= 0.

This would be the case if the hyper-Kloosterman sums were replaced, indeed, by sums
where only one variable is involved non-trivially, such as∑

x1,...,xn
x1···xn=1

e
(x2

1

p

)
where nothing may be gained from the contribution of the n − 2 variables x2, . . . , xn.
Of course, the actual hyper-Kloosterman sums do not look like that, but it is quite a bit
more delicate to prove that, in fact, the only possible contribution to the cohomology
comes from the “middle” dimension i = n− 1. This is a result of Deligne:

Theorem 6 (Deligne). For the variety V ⊂ An with equation X1 · · ·Xn = 1 and the
sheaf Kn corresponding to hyper-Kloosterman sums, we have

H i
c(VF̄p ,Kn) = 0 if i 6= n− 1,

dimHn−1
c (VF̄p ,Kn) = n.

As a corollary, the very precise bound

|Kn(p)| 6 np(n−1)/2

follows from Deligne’s analysis, hence also the equidistribution of angles of Gauss sums!
The proof of this theorem is quite intricate, but note that, because of the base change,

this is a geometric statement, not so much a theorem of arithmetic anymore. This, in
fact, explains partly why the method is so successful: it isolates geometric reasons for the
smallness of the exponential sums, and these reasons may be accessible to arguments (e.g.,
deformation, “continuity”) which are not available or visible from the purely arithmetic
viewpoint.

A more direct illustration of this is found in the next theorem, also due to Deligne:

Theorem 7 (Deligne). Let Fq be a finite field, P ∈ Fq[X1, . . . , Xn] a homogeneous
polynomial of degree d. Assume that the homogeneous part of degree d of P has the
property that its zero set in the projective space of dimension d− 1 (over F̄q) is a smooth
hypersurface. Then we have ∣∣∣∑

x∈Fnq

e
(P (x)

p

)∣∣∣ 6 (d− 1)nqn/2.

Notice that this generalizes in a powerful way Weil’s Theorem 3 to arbitrarily many
dimensions (the condition on P , though natural, is not necessary for the estimate to hold).
Deligne’s proof, which is quite instructive, can be sketched very roughly as follows: the
goal is to prove that the relevant cohomology groups (say of LP ) satisfy

H i
c(VF̄p ,LP ) = 0 if i 6= n, dimHn

c (VF̄p ,LP ) = (d− 1)n.

However, when P varies among all the “Deligne” polynomials of degree d (those satis-
fying the condition concerning the zero set of the part of degree d), it turns out that the
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dimensions of the cohomology groups remain constant (this is a type of “smoothness”
having to do with the fact that the Deligne polynomials are themselves parameterized by
a nice affine algebraic variety), and hence it is enough to check the desired property for
a single well-chosen P . This can be done for instance for

P = Xd
1 + · · ·+Xd

n,

for which the exponential sums factors∑
x∈Fnq

e
(P (x)

p

)
=
(∑
x∈Fq

e
(xd
p

))n
and (reverting the link between estimates and dimensions, as can be done) one obtains
the required statement, e.g. from Weil’s estimate (although these special one-variable
sums, which are variants of Gauss sums, can also be estimated more directly).

Remark 8. The richness of the formalism of Grothendieck-Deligne is such that, quite
often, it is possible to recover comparably precise estimates without requiring geometric
analysis as detailed as that of Theorem 6 – in other words, by combining some extra
arithmetic information that may well be available, for a given problem, with the geometric
structure. For hyper-Kloosterman sums, this was done very cleverly by Bombieri; see [IK,
11.11, Example 2] for his argument based on mean-square averages of a family of hyper-
Kloosterman sums and Galois-conjugacy.

5. Exponential sums over definable sets

We come back to the motivations from analytic number theory. Quite frequently, a
natural problem is to estimate sums which are obtained from an exponential sum of
algebraic origin by shortening the range of summation: for instance, estimates of

(4)
∑
n6pδ

χ(p),

where χ is a multiplicative character modulo p and 0 < δ < 1 are of considerable im-
portance in the theory of Dirichlet L-functions. This set is not the set of points of an
algebraic variety,7 but one may wonder if it is possible to extend the language used to
define algebraic sets to allow for a richer spectrum of possibilities that might contain
these “short intervals”. This, and the encounter with the paper [CDM], led the author
(see [Ko1]) to try to look at exponential sums over definable sets over finite fields. These
are probably the simplest generalizations of algebraic varieties: they amount to replacing
the set of points V (Fp) with a definable set ϕ(Fp) associated with a formula in the first
order language of rings, i.e., the set of x ∈ Fp for which the formula is satisfied.

The case of algebraic varieties corresponds to positive formulas without quantifiers: if
V/Fp is affine, embedded in An, we have

x = (x1, . . . , xn) ∈ V (A)⇔ f1(x) = . . . = fm(x) = 0

for any Fp-algebra A, where (f1, . . . , fm) are generators of the ideal in Fp[X1, . . . , Xn]
defined by V (i.e., those are possible equations defining V ).

But, over finite fields at least, definable sets are more general. As a very simple example,
consider the formula ϕ given by

ϕ(x) : ∃ y, x = y2,

7 In a reasonable way, at least: of course, any finite set is the set of zeros of suitable polynomials.
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so that ϕ(A), for any ring A, is the set of squares in A (recall that all quantifiers are
implicitly running over the ring A for which the formula is “evaluated”). In particular,
note that

|ϕ(Fp)| =
p+ 1

2
, if p is odd,

and there is no subvariety V/Z ⊂ A1/Z with this number of Fp-points for infinitely many
primes.

Example 9. There are other examples of definable sets which are quite a bit more refined.
Here are two types of important examples.

(1) Let f(X, Y ) ∈ Z[X, Y ] be a non-constant irreducible polynomial in two variables.
There is then a formula ϕf (x) such that, for any A, we have

ϕf (A) = {x ∈ A | the polynomial f(x, Y ) ∈ A[Y ] is irreducible}

(these sets occur in the context of the Hilbert Irreducibility Theorem, and are often called
Hilbert sets). Even more is true here: if we let (ai,j)i+j6d denote variables representing
the coefficients of a polynomial f ∈ Z[X, Y ] of degree 6 d, there is a single formula
ϕd(x, ai,j) with parameters (ai,j) such that

ϕd(A, ai,j) = {x ∈ A | the polynomial
∑
i,j

ai,jx
iY j ∈ A[Y ] is irreducible}

for any choice of parameters (ai,j). In other words, even the variation of the Hilbert sets
ϕf (A) with f is “definable”, and this is an important property which can be crucial in
applications. In algebraic geometry, the analogue variation would be that of the fibers
Vy = π−1(y) for a morphism V

π−→ W , where W is seen as the space of parameters.
Concretely, assume d = 2 (the simplest case). Then the parameters are (a, b, c, d, e, f) =

(a0,0, a1,0, a0,1, a1,1, a2,0, a0,2) for the polynomials

a+ bX + cY + dXY + eX2 + fY 2 ∈ A[X, Y ],

and since a polynomial of degree 2 is irreducible if and only it has no zero, we have

ϕ2(x, a, b, c, d, e, f) : ∀ y, a+ bx+ ex2 + (c+ dx)y + fy2 6= 0.

The nature of the sets ϕ2(Fp, a, b, c, d, e, f) is not clear a priori, and even less so when
the number of variables grows.

(2) Let G/Fp be a linear algebraic group defined over Fp, for instance G = GL(n)
or SL(n), or a symplectic group. After embedding G in a suitable affine space Am, we
have coordinates x = (x1, . . . , xm) for G, and G is defined by finitely many equations in
terms of these, while the product and inverse maps of G are also given by polynomials
with coefficients in Fp. Then, we can see for instance that the conjugacy classes Cg are
definable: if ψG(x1, . . . , xm) is a formula defining G in the affine space, then

ϕconj(x, g) : ψG(g) ∧ ψG(x) ∧ (∃ z, ψG(z) ∧ x = zgz−1)

with variables x = (x1, . . . , xm) and parameters g = (g1, . . . , gm) is such that ϕconj(A, g)
is naturally identified with the conjugacy class in G(A) of g ∈ G(A). In general, of
course, such conjugacy classes are not the set of points of an algebraic variety.

Chatzidakis, van den Dries and Macintyre studied such definable sets (with parameters)
in [CDM], in the case of finite fields, and established a beautiful result concerning the
possible number of points. (See also [FHJ]).
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Theorem 10 (Chatzidakis, van den Dries, Macintyre). Let ϕ(x, y) be a formula in the
language of rings with n variables x = (x1, . . . , xn) and m parameters y = (y1, . . . , ym).
There exist a set D of finitely many pairs (δ, µ) ∈ Q+ ×N and a constant C depending
only on ϕ(x, y), with the following properties:

(1) For any finite field Fq with q elements, and y ∈ Fm
q such that ϕ(Fq, y) 6= ∅, there

exist (δ, µ) ∈ D for which ∣∣∣|ϕ(Fq, y)| − δqµ
∣∣∣ 6 Cqµ−1/2.

(2) For any (δ, µ) ∈ D, there exists a formula Cd,µ(y) with m parameters in the language
of rings such that (1) holds for Fq and y ∈ Fm

q if and only if y ∈ Cd,µ(Fq).

So, intuitively, the number of points |ϕ(Fp, y)| always looks like δqµ for some rational
“density” δ and some integral “dimension” µ, and although those may vary with y (and
thus with p), there are only finitely many possibilities for a given ϕ – a type of “tameness”
property of the variation of definable sets –, and moreover, the sets of parameters for
which the density and dimension are fixed are themselves definable.

Some remarkable applications of this result in group theory where found by Hrushovski
and Pillay in [HP], including a new proof of a difficult theorem of Mathews-Vaserstein-
Weisfeiler on Strong Approximation for algebraic groups over Z, which has many im-
portant applications in analytic number theory, in particular in applications of sieve
methods.

It was fairly natural to try to extend this to results concerning exponential sums over
definable sets, with the hope that these could have number-theoretic applications. More
precisely (restricting to additive sums only for simplicity), given a formula ϕ(x, y), a
polynomial f ∈ Z[X], we can define a family (indexed by y) of exponential sums

Sϕ(f, y) = Sϕ(Fq, f, ψ, y) =
∑

x∈ϕ(Fq ,y)

ψ(f(x))

where ψ is an additive character of Fq. These sums, to an analytic number theorist,
are even worth investigating independently of possible applications, and this study was
begun in [Ko1].

It turns out that the proof of Theorem 10 can be combined with the procedure of
Section 4, with some care. This leads to the following statement (see [Ko1, Th. 13],
which is a bit more general and more precise).

Theorem 11. Let ϕ(x, y) be a formula in the language of rings with n variables x =
(x1, . . . , xn) and m parameters y = (y1, . . . , ym), and let f ∈ Z[X]. Let D be the set given
by Theorem 10 for ϕ(x, y). There exists p0 > 1, a constant η > 0, and B > 0, depending
only on ϕ and the degree of f , such that for p > p0 and y ∈ Fm

q , we have

|Sϕ(f, y)| 6 BSϕ(1, y)
√
p

=
B|ϕ(Fp, y)|
√
p

,

unless there exists c ∈ Fp with

|{x ∈ ϕ(Fp, y) | f(x) = c}| > ηSϕ(1, y) = η|ϕ(Fp, y)|.

This statement is not entirely satisfactory, in that by itself it does not provide a way
to understand when (or if) there is more cancellation than the p−1/2 gain stated, which
is comparable with the outcome of the Weil and fibering method. The condition which
is excluded to obtain cancellation is easily understood: it means that f is constant for
a positive proportion of the points of summation. If that is the case, any compensation
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in the sum (there may not be any, e.g., if f = 1) will have entirely different origins than
what we expect generically. (This happens already for sums over varieties V if VF̄p is not
geometrically connected, where f might be constant on the geometric components, and
the sum of these values might lead to cancellation).

From the proof of this theorem, one can extract some geometric information to help
investigate further cancellation, which could, in principle, sometimes lead to stronger
bounds. It would be highly interesting to find cases where this can be done, beyond cases
involving only algebraic varieties, but the geometry is not as easily understood as that
case (which may already be quite involved!). In particular, note that there may be little
relation between ϕ(F̄p) and ϕ(Fp), i.e., no analogue of the fact that Fp-rational points on
V are fixed point of the Frobenius among the F̄p-points. This is already clear for the set
of squares in Fp, which is non-trivial, but which of course is the whole line geometrically.

On the positive side, at least in the case of one-variable sums, the result is essen-
tially optimal. So although we have not yet been able to find convincing purely arith-
metic applications, we can prove the following statement (see [Ko1, Remark 19]), where
equidistribution reappears:

Corollary 12. Let ϕ(x) be a formula in one variable in the first order language of rings.
Let p run over any increasing sequence of primes, if it exists, such that |ϕ(Fp)| → +∞ as
p grows. Then the finite families ({(x/p})x∈ϕ(Fp), where {x} denotes the fractional part,
become equidistributed in R/Z, with respect to Lebesgue measure, as p→ +∞.

Indeed, we simply apply the Weyl Criterion: for h 6= 0, we need to show that

1

|ϕ(Fp)|
∑

x∈ϕ(Fp)

e
(hx
p

)
converges to 0 as p grows. This is an exponential sum over the definable set ϕ(Fp), hence
by Theorem 11, we can find constants B > 0 and η > 0 for which∑

x∈ϕ(Fp)

e
(hx
p

)
6 B|ϕ(Fp)|p−1/2,

unless the function x 7→ hx is constant for at least η|ϕ(Fp)| values of x ∈ ϕ(Fp). However,
the latter is clearly impossible if |ϕ(Fp)| → +∞.

In particular, this corollary means that it is not possible to find a formula ϕ(x) such
that, for infinitely many primes p, we have

ϕ(Fp) = {x (mod p) | p/2 6 x 6 3p/2}.
Note that this could not be derived directly from the point counting of Theorem 10,

since the right-hand side forms a set which always has a density (namely, 1/2) and a
dimension (namely, 1) in the sense of that theorem.

6. Questions

We conclude with a few questions which, possibly, could be the occasion of useful
meetings of the minds between analytic number theory, algebraic geometry and model-
theoretic ideas.

– We have seen that for applications to number theory, when p varies, Theorem 5 is
crucial to the efficiency of the Grothendieck-Deligne approach to algebraic exponential
sums. Except in the case where the additive character is trivial, its proof is not entirely
satisfactory: one would hope to derive it as a type of “uniformity in parameters”, flowing
naturally from the fact that the sums over finite fields come from an object “defined
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over Z”. However, algebraic geometry does not provide such a global object for additive
character sums, because the Artin-Schreier coverings (1) depend on p. Can one use model
theory, possibly using a richer language than that of rings, to develop such a theory of
“exponential sums over Z”? (See the paper [K3] of Katz for some speculations on this
hypothetical theory).

– In some cases, “elementary” methods give better results than the algebraic methods
(either Weil’s, or those of Grothendieck-Deligne): consider for instance sums like

Sm,p =
∑

x (mod p)

e
(xm + x

p

)
where now m is not bounded, but increases with p. By Theorem 3, we get

|Sm,p| 6 m
√
p

(this is a one-variable sum, and in the cohomological framework, we have H0
c = H2

c = 0
and dimH1

c = d− 1, so the method of Section 4 give the same result). Thus, if m >
√
p,

this result is worse than the trivial bound |Sm,p| 6 p. Analytic heuristics, however, still
suggest that Sm,p should be “small” for larger values of m, provided certain conditions
hold. Such results are indeed known (see, e.g., [B]), but the methods are completely
different (based on additive combinatorics). Can progress be made on understanding this
type of examples using algebraic geometry or model theory?

– Are there applications of Theorem 11 to model theory or algebraic geometry, maybe
in the spirit of the work of Hrushovski and Pillay [HP]? This is also suggested by the
work of Tomašić [T], but the author lacks competence to suggest any plausible track to
follow...

– And the most important, maybe, for analytic number theory: is there an approach
to more general exponential sums (such as those over short intervals (4)) involving a
formalism as efficient (or comparable!) to the Grothendieck-Deligne approach?
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