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1. Introduction

This short note is a follow-up to (the second part of) Section 7.6 of my book [3]. There, earlier
results of N. Dunfield and W. Thurston [1] on a certain type of random 3-manifolds (compact, con-
nected) were improved and were made quantitative, using large-sieve inequalities for random walks
on discrete groups. Roughly speaking, these results expressed the fact that “typical” 3-manifolds
could be expected to have finite, but large, first homology with integer coefficients H1(M,Z). Here,
we will first obtain a stronger form of the basic result of [3], by a simple refinement of the underlying
arithmetic argument. Then, we will obtain a more satisfactory understanding of the nature of the
result by relating the asymptotic parameter defining Dunfield-Thurston manifolds (the length of
the underlying random walk) with more classical and intrinsic invariants of the manifolds them-
selves. This is of interest because otherwise it is by no means clear how, exactly, the results can be
interpreted as probable (heuristic) properties of a fixed 3-manifold.

We first recall the definition of the Dunfield-Thurston manifolds, and the result obtained in [3,
Prop. 7.19]. Their construction is based on a classical topological description of compact 3-
manifolds, due to Heegaard. First, fix an integer g > 2. Let Γg denote the mapping class group of
a closed surface Σg of genus g, and let S be a fixed finite set of generators of Γg, such that S = S−1

(i.e., a symmetric generating set). Then consider a random walk (Xk) on Γg defined by

X0 = 1, Xk+1 = Xkξk+1 for k > 0,

where (ξk) is a sequence of independent S-valued random variables with uniform distribution

P (ξk = s) =
1
|S|

, for all s ∈ S

(other distributions for S are allowable, but we use the simplest). Now the associated random
manifolds Mk (which depend on the underlying variable ω in the probability space on which the
random walk is defined) are obtained from two copies of a handlebody Hg of genus g with boundary
∂Hg = Σg by identifying their common boundary Σg using the mapping class Xk ∈ Γg.

We proved the following (which, in qualitative form, was proved in [1, Th. 8.4, Cor. 8.5]):

Proposition 1. With notation as before, we have

P
(

The order of H1(Mk,Z)tors is < kα log log k
)
� 1

log k
,

and for some constant α > 0, we have

E
(

Order of H1(Mk,Z)tors
)
� kα log log k

where H1(Mk,Z)tors is the torsion subgroup of H1(Mk,Z).

This is strongly improved:
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Proposition 2. Let ψ be any positive increasing function defined for integers k > 1 such that
limψ(k) = +∞ as k → +∞. Then we have

(1) lim
k→+∞

P
(

The order of H1(Mk,Z)tors is < exp
( k

ψ(k)

))
= 0.

Moreover, there exists a constant α > 0 such that we have

(2) E
(

Order of H1(Mk,Z)tors
)
� exp(αk)

for k large enough.

This result is still expressed in terms of the length of the random walk. In the next result, we can
replace this by a topological invariant of Mk instead, which gives a more satisfactory interpretation.

Corollary 3. Let ψ be any positive increasing function defined for integers k > 1 such that
limψ(k) = +∞ as k → +∞. Then we have

lim
k→+∞

P
(

The complexity c(Mk) is <
k

ψ(k)

)
= 0,

and also
E(c(Mk))� k

for k > 1.

The complexity c(M) of a 3-manifold which is used here is defined by Matveev (see [5, §2]);
it is a non-negative integer which has the property that (up to issues of irreducibility) there are
only finitely many closed 3-manifolds M with a given value c(M) = c (see Sequence A12885 in the
Online Encyclopedia of Integer Sequences). In many cases, c(M) is simply the minimal number of
tetrahedra in a triangulation of M (see [5, Rem. 2.1.7]).

Remark 4. In [1, Conjecture 2.11], Dunfield and Thurston conjecture that Mk should be hyperbolic
with large probability as k → +∞ and that “the expected volume of Mk grows linearly in k”. This
suggests another geometric interpretation of the parameter k as related to the volume. Indeed
J. Maher [4] (using the geometrization conjecture of Thurston, recently proved using Perelman’s
methods) has proved the first part: Mk is hyperbolic (i.e., can be given the structure of a compact
Riemannian manifold with constant negative curvature −1) with probability tending to 1 as k →
+∞. Moreover, Maher states that work in progress of Souto and Brock should prove the second
part, but it is not stated if this would yield an asymptotic comparison (with probability going to
1) of k and Vol(Mk), or a weaker estimate like

ck1 � E(Vol(Mk))� ck2

for some constants c1 > 1, c2 > 1.
If the former is correct, then Corollary 3 would also hold with complexity replaced by volume.

Acknowledgement. Thanks to N. Dunfield for some explanations about 3-manifolds and cor-
recting a misunderstanding about volume and homology.

2. Proofs

Proof of Proposition 2. The basic tool is the following inequality, which is a consequence of the
large sieve for random walks on Sp(2g,Z), and which is proved in [3, p. 142, line -1]: for any real
numbers 1 < M < L, and any choice of a finite set L of primes such that

M < ` 6 2L
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for ` ∈ L, we have

E
((∑

`∈L
δ`(Mk)− V (L)

)2)
6 (1 + CLA exp(−ck))V (L)

where δ`(Mk) is 1 if H1(Mk,Z/`Z) 6= 0 and 0 otherwise, c, C and A are constants depending only
on g and S, and

V (L) =
∑
`∈L

(
1−

∏
16j6g

1
1 + `−j

)
=
∑
`∈L

1
`

+O(1)

(see [3, p. 142, eq. (7.24)] for the last step).
Moreover, we also proved in [3, Prop. 7.19 (1)] that if Bk is the event {H1(Mk,Q) 6= 0}, we have

(3) P (Bk)� exp(−δk)

for some δ > 0 and k > 2.
From this, we deduce first

P (H1(Mk,Z/`Z) = 0 for at least 1
2V (L) primes) 6 4(1 + CLA exp(−ck))V (L)−1,

by positivity, and then using the dyadic localization of the primes involved,1 we get

P (|H1(Mk,Z)tors| >M
1
2V (L)) > 1− 4(1 + CLA exp(−ck))V (L)−1 − P (Bk).

Let now f(k) be a positive increasing function defined for k > 1; we take L and M as follows:

L = C−1/A exp(ck/A), logM =
logL
f(k)

,

assuming that M > 2, which is certainly the case for all k large enough (depending on the choice
of f , and on c, C and A). Note that (again for k large enough) we have

logL >
ck

2A
.

Then, we select L to be all primes between M and L. Then we have

V (L) =
∑

M<`6L

1
`

+O(1) = log logL− log logM +O(1) = log f(k) +O(1) > 1
2 log f(k)

for k sufficiently large (again in terms of (g, c, C,A)).
Thus, for these k, the basic inequality translates to

P (|H1(Mk,Z)tors| >M
1
2V (L)) > 1− 8

log f(k)
− P (Bk)→ 1,

by (3). Now, we also have

M
1
2V (L) > exp(1

4 log f(k) logM) = exp
(

logL× log f(k)
4f(k)

)
> exp

( k

φ(k)

)
,

with

φ(k) =
8A
c

f(k)
log f(k)

.

Now for an arbitrary positive increasing function ψ(k), we can select f(k) so that ψ(k) > φ(k)
for k large enough; thus (1) follows.

The proof of (2) is very similar; the only trick is to use positivity to write

E(|H1(Mk,Z)tors|) >MP (|H1(Mk,Z)tors| >M)

1 We are being wasteful here since rarefaction of primes implies a better lower bound for the product of the first
1
2
V (L) primes larger than M , but this is not important here since ψ(k) is arbitrary.
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(for M > 0) and to check that one can take M of size exp(αk) for some α > 0 so that

P (|H1(Mk,Z)tors| >M)� 1

for k large enough. To do this, one proceeds with L chosen as above, but now with M as large as
possible so that

V (L) > 0,
which ensures that at least one prime > M divides |H1(Mk,Z)tors| (of course, one restricts to the
event Bk). Clearly, taking

L = C−1/A exp(ck/A), logM =
1
∆

logL

with ∆ > 3 is enough, provided k is sufficiently large. Then since

V (L) = log ∆ +O(1) > 1
2 log ∆

for k large enough, we find

P (|H1(Mk,Z)tors| >M) > 1− P (Bk)−
16

log ∆
.

For k large enough and ∆ sufficiently large, this gives

(4) P (|H1(Mk,Z)tors| >M)� 1,

and since
M = exp( 1

∆ logL) > exp
( ck

2∆A

)
,

we get (2). �

Corollary 3 is an immediate consequence of a general bound linking the complexity and the size
of the torsion of H1(M,Z): we have

c(Mk) > 2 log5(|H1(Mk,Z)|tors) + dimH1(Mk,Q)− 1

(a result of Matveev and Pervova, see [5, Th. 2.6.2]; log5 x is the logarithm in base 5), if the
manifold Mk is irreducible (which means that any embedded sphere S2 bounds a 3-ball in Mk).
However, a result of J. Maher (see [4, Th. 1.1] and the remarks after the statement that Heegaard
splitting distance greater than 2 implies irreducibility) implies that

lim
k→+∞

P (Mk is reducible) = 0,

hence we see that Corollary 3 is immediate from Proposition 2 and from (4).

Remark 5. In the database used in [2], containing 10986 distinct hyperbolic 3-manifolds, the max-
imal size of the torsion subgroup of H1(M,Z) is 423; the number of prime factors doesn’t exceed
5.
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