EXPLICIT MULTIPLICATIVE COMBINATORICS

E. KOWALSKI

We give explicit forms of some of the results in Tao’s paper [3] on product set estimates
in finite (non-necessarily abelian) groups, which are useful for implementing the Bourgain-
Gamburd reduction of the expander properties for certain families of Cayley graphs to a suitable
classification of approximate subgroups.

The presentation is highly condensed, and there might well be minor computational mistakes
remaining — these points will hopefully be improved when incorporating this in the lecture
notes [1].

Below all sets are subsets of a fixed finite group GG, and are all non-empty. We use the notation
d(A, B) and E(A, B) from [3] or [4] for the Ruzsa distance and the multiplicative energy.

1. DIAGRAMS

We will use the following diagrammatic conventions to allow for bookkeeping of constants.
(1) If A and B are sets with d(A, B) < log «r, we write

Ae———B

(2) If A and B are sets with |B| < a]A|, we write
Be“= A

and in particular if | X| < «, we write

X1

(3) If A and B are sets with e(A, B) = E(A, B)/(|A||B|)*/? > 1/a, we write
AeleB

(4) If A C B, we write
A>——B.

The following rules are easy to check (in addition to some more obvious ones which we do
not spell out):
(1) From
Ae——=B

we can get
2 2
Ae®> B, Be2sA.
(2) (Ruzsa’s triangle inequality, [3, Lemma 3.2]) From
Ae—eBe_—C

aq
we get
*aras’
(3) From
Ce2s Be 4
we get
Co 2 A



(4) (“Unfolding edges”) From

we get

AB e VP 4

(note that by the second point in this list, we only need to have

Be——A
g

to obtain the full statement with o = 52, which is usually qualitatively equivalent.)
(5) (“Folding”) From
AB le%s A 0L> B
we get

A
a61/2

Note that the relation Ae——= B is purely a matter of the size of A and B, while the other
arrow types depend on structural relations involving the sets (for A>—— B ) and product sets

(for Ae——B or Ae-sB).

2. STATEMENTS AND “PROOFS”
Theorem 2.1 (Ruzsa covering lemma; Tao, Lemma 3.6). If
ABe>> A,
there exists a set X which satisfies
X>>B, Xe%s1, B> A1AX,
and symmetrically, if
BAe*s A,
there exists Y with
Y>—>B, Ye2s1, B>—>YAA!.

Definition 2.2 (Approximate group; Tao, Def. 3.8). A set H is an a-approximate group if
1€ H, H= H', and there exists a set X with

Xe%s1, H?> > XH.

Next is another result which is essentially due to Ruzsa: the tripling constant of a symmetric
set controls all other n-fold product sets.

Theorem 2.3 (Ruzsa). If A is symmetric and

AB) e 25 A |
then we have
AW e 9" 4
for alln = 3. In particular, we get
AD 4

In [2, Th. 1.6] or [3, Lemma 3.4], one finds versions of this result with A" replaced by any
n-fold product of factors equal to A or A=, But we will only use symmetric subsets, in which
case the above has much better constants.
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Theorem 2.4 (Tao, Th. 3.9 and Cor. 3.10). Let A= A~ with 1 € A and
A® e s A
Then H = A®) is q (2a°)-approzimate subgroup containing A.
Proof. We have first
He—> A, A——H.

Then by Ruzsa’s resut, we get

5

AH® = AMe* s 4

and by the Ruzsa covering lemma there exists X with

X H® X1 ,
such that
Taking X; = X U X!, we get

20°

Xi——=H® X517,
and
H®~ - HX, H®— s XH,
which are the properties defining a (2a°)-approximate subgroup. O

Theorem 2.5 (Tao, Th. 4.6, (i) implies (ii)). Let A and B with
A’T‘B_l

Then there exists a y-approximate subgroup H and a set X with

Xe's1, A-—>XH, B=—>HX, He’sA,

where
21 28 104 14
v <2 aSO, 71<28a0, Y2 < 8.

Furthermore, one can ensure that

(1) H) o 20T
Proof. From
Aeto A,
e
we get first
AA e A

By [3, Prop. 4.5, we find a set S with! 1 € S and S = S~! such that

2na4n+2

A2 g ASM) 41

for all n > 1. In particular, we get

A

208

1 2a8
AS~1 = AS A, S A.

We have
S(g) . 8ol Ae 202 S :

L The property 1 € S is not explicitly stated in [3], but follows from the explicit definition used by Tao, namely
S={rec G| |AnAz| > (2a*) A[}.
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and Theorem 2.4 says that H = S®) is a y-approximate subgroup containing S, with v =
2(16a10)5 = 221080 and (as we see)

He 8" 4.

Moreover, we have

2938 202
Ae—=§

H® =g, . 4509 4-1

which gives (1).
Now from

202 1

AH = AS® e84, SeltoH,

we see by the Ruzsa covering lemma that there exists Y with

1616

1 A——=YHH .

Y——=A, Y ,

By definition of an approximate subgroup, there exists Z with

Ze a1, HH~—>ZH,

and hence
A—— (YZ)H .
Now we go towards B. First we have

8alt 202

AH_IZAS(3) A" H

which, again by folding, gives

Ae——H

al
with a1 = 8v/2a'®. Hence we can write

H0—0A0—0B_1 ,
ai «a

and so
H B~1.
ao
In addition, we have
80{14 0(2
H Ae“ s Bl
and therefore we get
I 8,16 1
.\_/. ’
oo
from which it follows by unfolding that
32020

Ble®s 42 |

B lH1'=B1H

Once more by the Ruzsa covering lemma, we find Y7 with

26,24

Yi>—Bl, Yje——">1, B l—sYVHH— (V12)H.
Now we need only take X = (Y1ZUY Z), so that
Xe o1
with 71 = v(64a2* + 16a!%), in order to conclude. Since
7 < 228104
we are done. g

The next result is a version of the Balog-Gowers-Szemerédi Lemma.
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Theorem 2.6 (Balog-Gowers-Szemerédi; Tao, Th. 5.2). Let A and B with
AelsB.
Then there exist A1, By with
Aj>—A, B ——=DB,

as well as

820 Sa

A Al, B Bla

and
A -—oBl_1
(¢35}
where a = 223a°.

This is not entirely spelled out in [3], but only the last two or three inequalities in the proof
need to be made explicit to obtain this value of «;.

Theorem 2.7 (Tao, Th. 5.4; (i) implies (iv)). Let A and B with
AeleB.
Then there exist a B-approximate subgroup H and x, y € G, such that

Helo 4, Al anzn, B~ BnHY,
where
6 < 21861a720’ ﬁl < 22424059377 ,62 < 232506126'

Moreover, one can ensure that

H@).LH

where Bz = 2930360,

Proof. By the Balog-Gowers-Szemerédi Theorem, we get Ay, By with
Al > > A , Bl > B y

as well as

8v 2 8a

A

A, B

Bl 3
and

Aje—eB;!
aq

where a; = 2%3a°. Applying Theorem 2.5 to A; and By, we get a [S-approximate subgroup H
and a set X with

14
8ay

H Aje—ts4
and
Xe'ls1, A~—>XH, B-—HX,
where
B = 22180 — 1861720 y = 228,104 — 92420956
and moreover
H® P g

where 33 = 210040 = 29304360,
Applying the pigeonhole principle, we find x such that

8v2a A10L>A1ﬂxH>—>AﬂxH

5
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and y with

B Sa Bl'—k BlﬂHy>—>BﬁHy'
This gives what we want with
B1 < 8V2ay < 2%, B, = 8ald = 9312,

REFERENCES

[1] E. Kowalski: Ezpander graphs, lecture notes (in progress), available at www.math.ethz.ch/~kowalski/
expander-graphs.pdf

[2] G. Petridis: New proofs of Plinnecke-type estimates for product sets in groups, preprint (2011), arXiv:
1101.3507v3.

[3] T. Tao: Product set estimates for non-commutative groups, Combinatorica 28 (2008), 547-594.

[4] T. Tao and V. Vu: Additive combinatorics, Cambridge Studies Adv. Math. 105, Cambridge Univ. Press
(2006).

E-mail address: kowalski@math.ethz.ch



