
EXPLICIT MULTIPLICATIVE COMBINATORICS

E. KOWALSKI

We give explicit forms of some of the results in Tao’s paper [3] on product set estimates
in finite (non-necessarily abelian) groups, which are useful for implementing the Bourgain-
Gamburd reduction of the expander properties for certain families of Cayley graphs to a suitable
classification of approximate subgroups.

The presentation is highly condensed, and there might well be minor computational mistakes
remaining – these points will hopefully be improved when incorporating this in the lecture
notes [1].

Below all sets are subsets of a fixed finite group G, and are all non-empty. We use the notation
d(A,B) and E(A,B) from [3] or [4] for the Ruzsa distance and the multiplicative energy.

1. Diagrams

We will use the following diagrammatic conventions to allow for bookkeeping of constants.

(1) If A and B are sets with d(A,B) 6 logα, we write

A • α
•B

(2) If A and B are sets with |B| 6 α|A|, we write

B •
α // A

and in particular if |X| 6 α, we write

X •
α // 1

(3) If A and B are sets with e(A,B) = E(A,B)/(|A||B|)3/2 > 1/α, we write

A •
α •B

(4) If A ⊂ B, we write

A // // B .

The following rules are easy to check (in addition to some more obvious ones which we do
not spell out):

(1) From

A • α
•B

we can get

A •
α2
// B , B •

α2
// A .

(2) (Ruzsa’s triangle inequality, [3, Lemma 3.2]) From

A • α1
•B • α2

•C

we get

A •α1α2
•C .

(3) From

C •
α1 // B •

α2 // A

we get

C •
α1α2 // A .
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(4) (“Unfolding edges”) From

B •
α //

•
β

•A

we get

AB−1 •
√
αβ // A

(note that by the second point in this list, we only need to have

B •
β
•A

to obtain the full statement with α = β2, which is usually qualitatively equivalent.)
(5) (“Folding”) From

AB−1 •
α // A •

β // B

we get

A •
αβ1/2

•B .

Note that the relation A •
α // B is purely a matter of the size of A and B, while the other

arrow types depend on structural relations involving the sets (for A // // B ) and product sets

(for A • α
•B or A •

α •B ).

2. Statements and “Proofs”

Theorem 2.1 (Ruzsa covering lemma; Tao, Lemma 3.6). If

AB •
α // A ,

there exists a set X which satisfies

X // // B , X •
α // 1 , B // // A−1AX ,

and symmetrically, if

BA •
α // A ,

there exists Y with

Y // // B , Y •
α // 1 , B // // Y AA−1 .

Definition 2.2 (Approximate group; Tao, Def. 3.8). A set H is an α-approximate group if
1 ∈ H, H = H−1, and there exists a set X with

X •
α // 1 , H(2) // // XH .

Next is another result which is essentially due to Ruzsa: the tripling constant of a symmetric
set controls all other n-fold product sets.

Theorem 2.3 (Ruzsa). If A is symmetric and

A(3) • α // A ,

then we have

A(n) • αn−2
// A

for all n > 3. In particular, we get

A(7) • α
5
// A .

In [2, Th. 1.6] or [3, Lemma 3.4], one finds versions of this result with An replaced by any
n-fold product of factors equal to A or A−1. But we will only use symmetric subsets, in which
case the above has much better constants.
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Theorem 2.4 (Tao, Th. 3.9 and Cor. 3.10). Let A = A−1 with 1 ∈ A and

A(3) • α // A .

Then H = A(3) is a (2α5)-approximate subgroup containing A.

Proof. We have first

H •
α // A , A // // H .

Then by Ruzsa’s resut, we get

AH(2) = A(7) • α
5
// A ,

and by the Ruzsa covering lemma there exists X with

X // // H(2) , X •
α5
// 1 ,

such that

H(2) // // A(2)X // // A(3)X = HX .

Taking X1 = X ∪X−1, we get

X1
// // H(2) , X1 •

2α5
// 1 ,

and

H(2) // // HX , H(2) // // XH ,

which are the properties defining a (2α5)-approximate subgroup. �

Theorem 2.5 (Tao, Th. 4.6, (i) implies (ii)). Let A and B with

A • α
•B−1

Then there exists a γ-approximate subgroup H and a set X with

X •
γ1 // 1 , A // // XH , B // // HX , H •

γ2 // A ,

where
γ 6 221α80, γ1 6 228α104, γ2 6 8α14.

Furthermore, one can ensure that

(1) H(3) • 210α40
// H .

Proof. From

A •
1 //

•

α2

•A ,

we get first

AA−1 •
α2
// A .

By [3, Prop. 4.5], we find a set S with1 1 ∈ S and S = S−1 such that

A •
2α2
// S , AS(n)A−1 •

2nα4n+2
// A

for all n > 1. In particular, we get

AS−1 = AS •
2α6

// A , S •
2α6

// A .

We have

S(3) • 8α14
// A •

2α2
// S ,

1 The property 1 ∈ S is not explicitly stated in [3], but follows from the explicit definition used by Tao, namely
S = {x ∈ G | |A ∩Ax| > (2α2)−1|A|}.
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and Theorem 2.4 says that H = S(3) is a γ-approximate subgroup containing S, with γ =
2(16α16)5 = 221α80, and (as we see)

H •
8α14

// A .

Moreover, we have

H(3) = S(9) // // AS(9)A−1 •
29α38

// A •
2α2
// S ,

which gives (1).
Now from

AH = AS(3) • 8α14
// A •

2α2
// S •

1 // H ,

we see by the Ruzsa covering lemma that there exists Y with

Y // // A , Y •
16α16

// 1 , A // // Y HH .

By definition of an approximate subgroup, there exists Z with

Z •
γ // 1 , HH // // ZH ,

and hence
A // // (Y Z)H .

Now we go towards B. First we have

AH−1 = AS(3) • 8α14
// A •

2α2
// H

which, again by folding, gives

A • α1
•H

with α1 = 8
√

2α15. Hence we can write

H • α1
•A • α

•B−1 ,

and so

H • αα1
•B−1 .

In addition, we have

H •
8α14

// A •
α2
// B−1 ,

and therefore we get

H •
8α16

//
•

αα1

•
B−1,

from which it follows by unfolding that

B−1H−1 = B−1H •
32α20

// B−1 •
α2
// A •

2α2
// H .

Once more by the Ruzsa covering lemma, we find Y1 with

Y1 // // B−1 , Y1 •
26α24

// 1 , B−1 // // Y1HH // // (Y1Z)H .

Now we need only take X = (Y1Z ∪ Y Z), so that

X •
γ1 // 1

with γ1 = γ(64α24 + 16α16), in order to conclude. Since

γ1 6 228α104,

we are done. �

The next result is a version of the Balog-Gowers-Szemerédi Lemma.
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Theorem 2.6 (Balog-Gowers-Szemerédi; Tao, Th. 5.2). Let A and B with

A •
α •B .

Then there exist A1, B1 with

A1
// // A , B1

// // B ,

as well as

A •
8
√
2α // A1 , B •

8α // B1 ,

and

A1 • α1
•B−11

where α1 = 223α9.

This is not entirely spelled out in [3], but only the last two or three inequalities in the proof
need to be made explicit to obtain this value of α1.

Theorem 2.7 (Tao, Th. 5.4; (i) implies (iv)). Let A and B with

A •
α •B .

Then there exist a β-approximate subgroup H and x, y ∈ G, such that

H •
β2 // A , A •

β1 // A ∩ xH , B •
β1 // B ∩Hy ,

where

β 6 21861α720, β1 6 22424α937, β2 6 2325α126.

Moreover, one can ensure that

H(3) •
β3 // H

where β3 = 2930α360.

Proof. By the Balog-Gowers-Szemerédi Theorem, we get A1, B1 with

A1
// // A , B1

// // B ,

as well as

A •
8
√
2α // A1 , B •

8α // B1 ,

and

A1 • α1
•B−11

where α1 = 223α9. Applying Theorem 2.5 to A1 and B1, we get a β-approximate subgroup H
and a set X with

H •
8α14

1 // A1 •
1 // A

and

X •
γ // 1 , A1

// // XH , B1
// // HX ,

where

β = 221α80
1 = 21861α720, γ = 228α104

1 = 22420α936,

and moreover

H(3) •
β3 // H

where β3 = 210α40
1 = 2930α360.

Applying the pigeonhole principle, we find x such that

A •
8
√
2α // A1 •

γ // A1 ∩ xH // // A ∩ xH
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and y with

B •
8α // B1 •

γ // B1 ∩Hy // // B ∩Hy .
This gives what we want with

β1 6 8
√

2αγ 6 22424α937, β2 = 8α14
1 = 2325α126.
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