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What are exponential sums?

Consider finite sums

S =
N∑

n=1

αn

where αn ∈ C satisfies |αn| ≤ 1.

Question: How large can |S | be?

In this generality, the only possible bound is

|S | ≤ N.

But in applications, this is not usually the case, and we can hope to prove

|S | ≤ N

θ(N)

where θ(N) > 1 is “large”.
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First example

For n ≥ 1, define
λ(n) = (−1)Ω(n)

where Ω(n) is the total number of prime divisors of n. (E.g., Ω(12) = 3).

Then
one knows that

1

N

∣∣∣ ∑
1≤n≤N

λ(n)
∣∣∣ −→ 0

as N → +∞. This is equivalent to the Prime Number Theorem.
One expects that, for some constant C ≥ 0 and all N ≥ 2, we have∣∣∣ ∑

1≤n≤N

λ(n)
∣∣∣ ≤ C

√
N(logN)2,

but this is equivalent to the Riemann Hypothesis for the Riemann zeta function.
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Digression: why is that so?

Using the Euler product ∑
n≥1

1

ns
=
∏

p prime

1

1− p−s

for Re(s) > 1,

one gets ∑
n≥1

λ(n)

ns
=
ζ(2s)

ζ(s)
.

Then by summation by parts, note that

ζ(2s)

ζ(s)
= s

∫ +∞

1

(∑
n≤x

λ(n)
)
x−s−1dx ,

and if ∣∣∣ ∑
1≤n≤N

λ(n)
∣∣∣ ≤ C

√
N(logN)2,

for all N ≥ 2, the right-hand side is holomorphic for Re(s) > 1/2. So ζ(s) 6= 0
for Re(s) > 1/2.
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Next examples

Let p be a prime number. For integers a, b, not divisible by p, define

K(a, b; p) =
∑

1≤x≤p−1

e
(ax + bx̄

p

)
, B(a; p) =

∑
0≤x≤p−1

e
(ax + x3

p

)
,

where e(z) = e2iπz , and xx̄ ≡ 1 (mod p) if p does not divide x . (E.g., for
p = 11, 3̄ = 4).

These are called Kloosterman sums and Birch sums respectively. They are
classical examples of exponential sums over finite fields.

Question: How large can |K(a, b; p)| or |B(a; p)| be, in terms of p?
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Digression: why “geometry” and “probability”?

Geometry:

I Many properties of sums like K(a, b; p) and B(a; p) turn out to be best
studied using methods from algebraic geometry;

I And they have applications to problems of arithmetic geometry (finding
rational points on algebraic varieties), and hyperbolic geometry (spectral
gap for the Laplace operator on arithmetic hyperbolic surfaces).

Probability:

I Heuristic reasoning about these sums is often phrased in probabilistic
terms;

I And they satisfy probabilistic limit theorems that justify these heuristics.
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History

Kloosterman sums were first written down by Poincaré around 1911 as
coefficients in Fourier expansions of Poincaré series. They are discrete
analogues of Bessel functions.



Kloosterman re-defined them in 1925 and used them to establish the solubility
of equations

a1x
2
1 + a2x

2
2 + a3x

2
3 + a4x

2
4 = n

for fixed positive integers (a1, . . . , a4) and xi ∈ Z and suitable n ≥ 1.



“Square-root cancellation” philosophy

The standard heuristic for guessing the size of a sum

S =
∑
n≤N

αn, |αn| ≤ 1,

is that if the arguments of the complex numbers αn vary “randomly”, then the
sum should have size about

√
N.

This is certainly true if “randomly” is interpreted in a rigorous probabilistic
sense. If (αn)n≥1 are independent uniformly distributed on the unit circle, for
instance, then the Central Limit Theorem implies that

P
(∣∣∣∑

n≤N

αn

∣∣∣ ≥ t
√
N
)
−→ e−t2

for t ≥ 0 fixed.
The problem is to show that this heuristic applies to deterministic sums, like
Kloosterman sums, or to the Möbius function.
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First bounds

The trivial bound |K(a, b; p)| ≤ p − 1 was already improved by Kloosterman
using an elementary method.

He proved that∑
1≤a≤p−1

|K(a, b; p)|4 = 2p3 − 3p2 − p − 1

and deduced by dropping all but one term that

|K(a, b; p)| ≤ 2p3/4,

and that some Kloosterman sum modulo p has modulus at least
√
p.

H. Weyl introduced a general technique for exponential sums that leads to

|B(a; p)| ≤ Cεp
7/8+ε

for any ε > 0.
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The Weil bounds

As an application of the Riemann Hypothesis for curves over finite fields, Weil
proved in the 1940’s quite general bounds for one-variable exponential sums
that show that they behave according to the square-root cancellation
philosophy.

Particular cases:

I For all primes p and 1 ≤ a, b ≤ p − 1, we have

|K(a, b; p)| ≤ 2
√
p,

I For all primes p and 0 ≤ a ≤ p − 1, we have

|B(a; p)| ≤ 2
√
p.
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The geometric idea is to relate the Kloosterman sums to the algebraic curve
with equation

Ca : yp − y = ax +
b

x

where (x , y) belong to an algebraic closure of the finite field Fp = Z/pZ.

The
geometry of algebraic curves is key to the proof. Later, Stepanov found a proof
which is elementary; as interpreted by Bombieri, the key point is the
Riemann-Roch theorem.
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Equidistribution

So, for some deep geometric reason, the summands e((ax + bx̄)/p) behave
extremely randomly as x varies over the interval 1 ≤ x ≤ p − 1.

But randomly
in a subtle way that leads to K(a, b; p)/

√
p lying always in [−2, 2], instead of

being (rarely) unbounded, as the Central Limit Theorem suggests.

Deligne proved in the 1980’s a general equidistribution theorem that gives some
hint of the probabilistic nature of these exponential sums.

Theorem (Deligne; Katz)

As p → +∞, the normalized Kloosterman sums K(a, b; p)/p1/2 for
1 ≤ a, b ≤ p − 1 become equidistributed with respect to the measure

µST =
1

π

√
1− x2

4
dx

on [−2, 2]. The same holds for Birch sums B(a; p)/p1/2.
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What does this mean?

(1) For any continuous function f : [−2, 2] −→ C, we have

lim
p→+∞

1

(p − 1)2

∑
1≤a,b≤p−1

f
(K(a, b; p)

√
p

)
=

∫ 2

−2

f (x)dµST (x).

(2) Or equivalently: the sequences of random variables

(a, b) 7→ K(a, b; p)
√
p

on {1 ≤ a, b ≤ p − 1} with uniform probability measure converges weakly to
µST .
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The shape of exponential sums

Out of curiosity, one can play the following game.

Given a prime p and
parameters 1 ≤ a, b ≤ p − 1, plot in the complex plane the successive partial
sums ∑

1≤x≤j

e
(ax + bx̄

p

)
for 0 ≤ j ≤ p − 1,

5 10 15 20
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10
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and join these points by line segments, to obtain a polygonal curve in the plane.
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History

D.H. Lehmer and J.H. Loxton (1970’s–1980’s) looked at and studied similar
graphs for more regular exponential sums, especially quadratic Gauss sums∑

0≤x≤j

e
(x2

p

)
.

These behave more regularly, staying close to Cornu spirals∫ j

0

e2iπx2/pdx

up to j about p/2.
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“Absolutely chaotic”

Loxton mentions in a paper the case of Kloosterman sums:

Is he right, or wrong?
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A probabilistic limit theorem

For p prime and 1 ≤ a, b ≤ p − 1, we define a continuous map

K`p(a, b) : [0, 1] −→ C

by linear interpolation between the normalized partial sums

1
√
p

∑
1≤x≤j

e
(ax + bx̄

p

)
.

For each p, we view (K`p(·, ·)(t))t∈[0,1] as a stochastic process, defined on the
finite probability space

Ωp = {1 ≤ a, b ≤ p − 1}

with uniform probability.
We can also view this as a C([0, 1])-valued random variable on this space.
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Theorem (K.–Sawin, 2014)

I The sequence (K`p) converges in law, as random variables with values in
C([0, 1]), to a limiting process V .

I This limiting process is the random Fourier series

V (t) =
∑
h∈Z

e2iπht − 1

2iπh
Xh,

where (Xh) is a sequence of independent random variables, identically
distributed according to µST .

(Note: the term h = 0 should be interpreted as tX0).

-1.5 -1.0 -0.5

-0.1

0.1

0.2

0.3

0.4

0.5

-0.2 0.2 0.4

-0.3

-0.2

-0.1

0.1

0.2

0.3



Theorem (K.–Sawin, 2014)

I The sequence (K`p) converges in law, as random variables with values in
C([0, 1]), to a limiting process V .

I This limiting process is the random Fourier series

V (t) =
∑
h∈Z

e2iπht − 1

2iπh
Xh,

where (Xh) is a sequence of independent random variables, identically
distributed according to µST .

(Note: the term h = 0 should be interpreted as tX0).

-1.5 -1.0 -0.5

-0.1

0.1

0.2

0.3

0.4

0.5

-0.2 0.2 0.4

-0.3

-0.2

-0.1

0.1

0.2

0.3



Theorem (K.–Sawin, 2014)

I The sequence (K`p) converges in law, as random variables with values in
C([0, 1]), to a limiting process V .

I This limiting process is the random Fourier series

V (t) =
∑
h∈Z

e2iπht − 1

2iπh
Xh,

where (Xh) is a sequence of independent random variables, identically
distributed according to µST .

(Note: the term h = 0 should be interpreted as tX0).

-1.5 -1.0 -0.5

-0.1

0.1

0.2

0.3

0.4

0.5

-0.2 0.2 0.4

-0.3

-0.2

-0.1

0.1

0.2

0.3



Different look...
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Limit for Birch sums

Theorem (K.–Sawin, 2014)

Define C([0, 1])-valued random variables Bp from normalized partial sums of
Birch sums on {1 ≤ a ≤ p − 1}.

The sequence (Bp) converges in law, as random variables with values in
C([0, 1]), to the same limiting process V .

The different appearance between these graphs and those of Kloosterman sums
is only at smaller scales than those that are retained in the limit.
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Ideas of the proof

There are two parts, following Prokhorov’s Theorem:

I Step 1: convergence of finite distributions:

for any k ≥ 1, and

0 ≤ t1 < t2 < · · · < tk ≤ 1,

the vectors
(K`p(t1), . . . ,K`p(tk))

converge in law to (V (t1), . . . ,V (tk)).

I Step 2: tightness / weak-compactness in C([0, 1]): by Kolmogorov’s
criterion, it is enough to prove that

E(|K`p(t)−K`p(s)|α) ≤ C |t − s|1+δ

for 0 ≤ s, t ≤ 1 and C ≥ 0, α > 0 and δ > 0 independent of (p, t, s).
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Finite distributions

I One can deal with the actual partial sums (no linear interpolation);

I Properties of V (t) show that one can use the method of moments;

I Discrete Fourier expansion:

1
√
p

∑
1≤x≤j

e
(ax + bx̄

p

)
=

1

p

∑
−p/2<h<p/2

αp(h, j)K(a + h, b; p)

I Compute moments and get sums like

S =
1

(p − 1)2

∑
1≤a,b≤p−1

K(a + h1, b; p) · · ·K(a + hk , b; p)

pk/2

I Deligne’s Riemann Hypothesis in very strong form gives asymptotic
formulas for S :

S = E(Xh1 · · ·Xhk ) + O(p−1/2)

I Then unwind...
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Tightness

The goal is
E(|K`p(t)−K`p(s)|α) ≤ C |t − s|1+δ.

Write |t − s| = p−γ where γ ≥ 0.

Then

I If γ ≥ 1: the linear interpolation gives the result;

I If 1/2 + ε1 ≤ γ ≤ 1 (where ε1 > 0): use trivial bound by number of terms;

I If 0 ≤ γ ≤ 1/2− ε1: use equidistribution as for Step 1;

I If γ is close to 1/2: take α = 4, and apply Kloosterman’s method!



Tightness

The goal is
E(|K`p(t)−K`p(s)|α) ≤ C |t − s|1+δ.

Write |t − s| = p−γ where γ ≥ 0. Then

I If γ ≥ 1: the linear interpolation gives the result;

I If 1/2 + ε1 ≤ γ ≤ 1 (where ε1 > 0): use trivial bound by number of terms;

I If 0 ≤ γ ≤ 1/2− ε1: use equidistribution as for Step 1;

I If γ is close to 1/2: take α = 4, and apply Kloosterman’s method!



Tightness

The goal is
E(|K`p(t)−K`p(s)|α) ≤ C |t − s|1+δ.

Write |t − s| = p−γ where γ ≥ 0. Then

I If γ ≥ 1: the linear interpolation gives the result;

I If 1/2 + ε1 ≤ γ ≤ 1 (where ε1 > 0): use trivial bound by number of terms;

I If 0 ≤ γ ≤ 1/2− ε1: use equidistribution as for Step 1;

I If γ is close to 1/2: take α = 4, and apply Kloosterman’s method!



Tightness

The goal is
E(|K`p(t)−K`p(s)|α) ≤ C |t − s|1+δ.

Write |t − s| = p−γ where γ ≥ 0. Then

I If γ ≥ 1: the linear interpolation gives the result;

I If 1/2 + ε1 ≤ γ ≤ 1 (where ε1 > 0): use trivial bound by number of terms;

I If 0 ≤ γ ≤ 1/2− ε1: use equidistribution as for Step 1;

I If γ is close to 1/2: take α = 4, and apply Kloosterman’s method!



Tightness

The goal is
E(|K`p(t)−K`p(s)|α) ≤ C |t − s|1+δ.

Write |t − s| = p−γ where γ ≥ 0. Then

I If γ ≥ 1: the linear interpolation gives the result;

I If 1/2 + ε1 ≤ γ ≤ 1 (where ε1 > 0): use trivial bound by number of terms;

I If 0 ≤ γ ≤ 1/2− ε1: use equidistribution as for Step 1;

I If γ is close to 1/2: take α = 4, and apply Kloosterman’s method!



First application

Using some relatively basic probability in Banach spaces, we get a limiting
distribution µ for

max
1≤j≤p−1

1
√
p

∣∣∣ ∑
1≤x≤j

e
(ax + bx̄

p

)∣∣∣
and doubly-exponential tail bounds

c−1 exp(− exp(ct)) ≤ µ([t,+∞[) ≤ c exp(− exp(c−1t)).



Similar results

I Bober, Goldmakher, Granville, Koukoulopoulos, Soundararajan: “classical”
character sums (functional limit theorem in progress, with very different
limiting random Fourier series, much work on tail bounds);

I Jurkat and van Horne; Marklof, Akarsu, Cellarosi: quadratic Gauss sums
with arbitrary real coefficients (functional limit theorem in progress, again
different limiting process);

I Others?
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Questions

I Has anyone already encountered the random series V (t)?

I What are further properties of V (t) that would have nice consequences for
Kloosterman sums?
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