MOST HYPERELLIPTIC CURVES HAVE BIG MONODROMY

EMMANUEL KOWALSKI

Let k / \mathbf{Q} be a number field and \mathbf{Z}_{k} its ring of integers. Let $f \in \mathbf{Z}_{k}[X]$ be a monic squarefree polynomial of degree $n=2 g+2$ or $2 g+1$ for some integer $g \geqslant 1$, and let C_{f} / k be the (smooth, projective) hyperelliptic curve of genus g with affine equation

$$
C_{f}: y^{2}=f(x),
$$

and J_{f} its jacobian.
In [Ha], C. Hall shows that the image of the Galois representation

$$
\rho_{f, \ell}: \operatorname{Gal}(\bar{k} / k) \rightarrow \operatorname{Aut}\left(J_{f}[\ell](\bar{k})\right) \simeq \mathrm{GL}_{2 g}\left(\mathbf{F}_{\ell}\right)
$$

on the ℓ-torsion points of J_{f} is as big as possible for almost all primes ℓ, if the following two (sufficient) conditions hold:
(1) the endomorphism ring of J_{f} is \mathbf{Z};
(2) for some prime ideal $\mathfrak{p} \subset \mathbf{Z}_{k}$, the fiber over \mathfrak{p} of the Néron model of C_{f} is a smooth curve except for a single ordinary double point.

These conditions can be translated concretely in terms of the polynomial f, and are implied by:
(1') the Galois group of the splitting field of f is the full symmetric group \mathfrak{S}_{n} (this is due to a result of Zarhin $[\mathrm{Z}]$, which shows that this condition implies (1));
(2') for some prime ideal $\mathfrak{p} \subset \mathbf{Z}_{k}, f$ factors in $\mathbf{F}_{\mathfrak{p}}=\mathbf{Z}_{k} / \mathfrak{p} \mathbf{Z}_{k}$ as $f=f_{1} f_{2}$ where $f_{i} \in \mathbf{F}_{\mathfrak{p}}[X]$ are relatively prime polynomials such that $f_{1}=(X-\alpha)^{2}$ for some $\alpha \in \mathbf{F}_{\mathfrak{p}}$ and f_{2} is squarefree of degree $n-2$; indeed, this implies (2).

In this note, we show that, in some sense, "most" polynomials f satisfy these two conditions, hence "most" jacobians of hyperelliptic curves have maximal monodromy modulo all but finitely many primes (which may, a priori, depend on the polynomial, of course!).

More precisely, for k and \mathbf{Z}_{k} as above, let us denote

$$
\mathcal{F}_{n}=\left\{f \in \mathbf{Z}_{k}[X] \mid f \text { is monic of degree } n\right\},
$$

and let the height be defined on \mathcal{F}_{n} by

$$
H\left(a_{0}+a_{1} X+\cdots+a_{n-1} X^{n-1}+X^{n}\right)=\max _{0 \leqslant i \leqslant n-1} H\left(a_{i}\right),
$$

where H is any reasonable height function on k, e.g., choose a \mathbf{Z}-basis $\left(\omega_{i}\right)_{1 \leqslant i \leqslant d}$ of \mathbf{Z}_{k}, where $d=[k: \mathbf{Q}]$, and let

$$
H\left(\alpha_{1} \omega_{1}+\cdots+\alpha_{d} \omega_{d}\right)=\max \left|\alpha_{i}\right|
$$

for all $\left(\alpha_{i}\right) \in \mathbf{Z}^{d}$.
Let $\mathcal{F}_{n}(T)$ denote the finite set

$$
\begin{equation*}
\mathcal{F}_{n}(T)=\left\{f \in \mathcal{F}_{n} \mid H(f) \leqslant T\right\} . \tag{1}
\end{equation*}
$$

We have $\left|\mathcal{F}_{n}(T)\right|=N_{k}(T)^{n}$, where

$$
N_{k}(T)=\left|\left\{x \in \mathbf{Z}_{k} \mid H(x) \leqslant T\right\}\right| \asymp T^{d}, \text { where } d=[k: \mathbf{Q}]
$$

Say that f has big monodromy if the Galois group of its splitting field is \mathfrak{S}_{n}. We will show:
Proposition 1. Let k and \mathbf{Z}_{k} be as above. Then

$$
\mid\left\{f \in \mathcal{F}_{n}(T) \mid f \text { does not have big monodromy }\right\} \mid \ll N_{k}(T)^{n-1 / 2}\left(\log N_{k}(T)\right) \text {, }
$$

for all $T \geqslant 2$, where the implied constant depends on k and n.
Say that $f \in \mathcal{F}_{n}$ has ordinary ramification if it satisfies condition (2') above.
Proposition 2. Let k and \mathbf{Z}_{k} be as above, and assume $n \geqslant 2$. There exists a constant $c>0$, depending on n and k, such that we have

$$
\mid\left\{f \in \mathcal{F}_{n}(T) \mid f \text { does not have ordinary ramification }\right\} \left\lvert\, \ll \frac{N_{k}(T)^{n}}{\left(\log N_{k}(T)\right)^{c}}\right.
$$

for $T \geqslant 3$, where the implied constant depends on k and n.
Finally, say that J_{f} has big monodromy if the image of $\rho_{f, \ell}$ is as big as possible for almost all primes ℓ.

Corollary 3. Assume that $n \geqslant 2$. Then we have

$$
\left.\left.\lim _{T \rightarrow+\infty} \frac{1}{\left|\mathcal{F}_{n}(T)\right|} \right\rvert\,\left\{f \in \mathcal{F}_{n}(T) \mid J_{f} \text { does not have big monodromy }\right\} \right\rvert\,=0 \text {. }
$$

Remark 4. Quantitatively, we have proved that the rate of decay of this probability is at least a small power of power of logarithm, because of Proposition 2. With more work, one should be able to get c equal or very close to 1 , but it seems hard to do better with the current ideas (the problem being in part that we must avoid f for which the discriminant is a unit in \mathbf{Z}_{k}, which may well exist, and sieve can not detect them better than it does discriminants which generate prime ideals, the density of which could be expected to be about $\left.\left(\log N_{k}(T)\right)^{-1}\right)$.

For both propositions, in the language of [K1], we consider a sieve with data
$\left(\mathcal{F}_{n},\left\{\right.\right.$ prime ideals in $\left.\mathbf{Z}_{k}\right\},\{$ reduction modulo $\left.\mathfrak{p}\}\right), \quad\left(\mathcal{F}_{n}(T)\right.$, counting measure $)$, and we claim that the "large sieve constant" Δ for the sifting range

$$
\mathcal{L}^{*}=\left\{\mathfrak{p} \subset \mathbf{Z}_{k} \mid N \mathfrak{p} \leqslant L\right\}
$$

satisfies

$$
\Delta \ll N_{k}(T)^{n}+L^{2 n},
$$

where the implied constant depends only on k. Indeed, this follows from the work of Huxley $[\mathrm{Hu}]$, by combining in an obvious manner his Theorem 2 (which is the case $n=1, k$ arbitrary) with his Theorem 1 (which is the case $k=\mathbf{Q}, n$ arbitrary).

Concretely, this implies that for arbitrary subsets $\Omega_{\mathfrak{p}}$ in the image of \mathcal{F}_{n} under reduction modulo \mathfrak{p} - the latter is simply the set of monic polynomials of degree n in $\mathbf{F}_{\mathfrak{p}}[X]$, and has cardinality $(N \mathfrak{p})^{n}$ - we have

$$
\begin{equation*}
\mid\left\{f \in \mathcal{F}(T) \mid f(\bmod \mathfrak{p}) \notin \Omega_{\mathfrak{p}} \text { for } N \mathfrak{p} \leqslant L\right\} \left\lvert\, \ll\left(N_{k}(T)^{n}+L^{2 n}\right)\left(\sum_{N \mathfrak{a} \leqslant L}^{b} \prod_{\mathfrak{p} \mid \mathfrak{a}} \frac{\left|\Omega_{\mathfrak{p}}\right|}{(N \mathfrak{p})^{n}-\left|\Omega_{\mathfrak{p}}\right|}\right)^{-1}\right. \tag{2}
\end{equation*}
$$

where the sum is over squarefree ideals in \mathbf{Z}_{k} with norm at most L, and therefore also

$$
\begin{equation*}
\left\lvert\,\left\{f \in \mathcal{F}(T) \mid f(\bmod \mathfrak{p}) \notin \Omega_{\mathfrak{p}} \text { for } N \mathfrak{p} \leqslant L\right\} \ll\left(N_{k}(T)^{n}+L^{2 n}\right)\left(\sum_{N \mathfrak{p} \leqslant L} \frac{\left|\Omega_{\mathfrak{p}}\right|}{(N \mathfrak{p})^{n}}\right)^{-1}\right. \tag{3}
\end{equation*}
$$

Proposition 1 is a result of S.D. Cohen [C]; it is also a simple application of the methods of Gallagher [G] (one only needs (3) here), the basic idea being that elements of the Galois group of the splitting field of a polynomial f are detected using the factorization of f modulo prime ideals. We recall that the first quantitative result of this type (for $k=\mathbf{Q}$) is due to van der Waerden [vdW], whose weaker result would be sufficient here (though the proof is not simpler than Gallagher's).

Proof of Proposition 2. Let $\mathfrak{p} \subset \mathbf{Z}_{k}$ be a prime ideal, and let $\Omega_{\mathfrak{p}}$ be the set of polynomials $f \in \mathbf{F}_{\mathfrak{p}}[X]$ which are monic of degree n and factor as described in Condition (2'). We claim that, for some constant $c>0, c \leqslant 1$ (depending on k and n), we have

$$
\begin{equation*}
\frac{\left|\Omega_{\mathfrak{p}}\right|}{(N \mathfrak{p})^{n}} \geqslant \frac{c}{N \mathfrak{p}} \tag{4}
\end{equation*}
$$

for all prime ideals with norm $N \mathfrak{p} \geqslant P_{0}$, for some P_{0} depending on k and n.
Indeed, for $n \geqslant 4$, we have clearly

$$
\left|\Omega_{\mathfrak{p}}\right| \geqslant(N \mathfrak{p}) \times \mid\left\{f \in \mathbf{F}_{\mathfrak{p}}[X] \mid \operatorname{deg}(f)=n-2, f \text { monic irreducible }\right\} \mid ;
$$

for $n=2$, this holds with the convention that 1 is irreducible of degree 0 , and for $n=3$, we must subtract 1 from the second factor on the right. If $n=2$, we are done, otherwise it is well-known that

$$
\mid\left\{f \in \mathbf{F}_{q}[X] \mid \operatorname{deg}(f)=n-2, f \text { monic irreducible }\right\} \left\lvert\, \sim \frac{q^{n-2}}{n-2}\right.
$$

as $q \rightarrow+\infty$, hence the lower bound (4) follows by combining these two facts (showing we can take for c any constant $<(n-2)^{-1}$ if P_{0} is chosen large enough; using more complicated factorizations of the squarefree factor of degree $n-2$, one could get c arbitrarily close to 1).

Now we apply (3) with this choice of subsets for \mathfrak{p} with norm $>P_{0}$, and with $\Omega_{\mathfrak{p}}=\emptyset$ for other \mathfrak{p}. We take $L=N_{k}(T)^{1 / 2}$, assuming that $L>P_{0}$, i.e., that T is large enough. Since, if $f \in \mathcal{F}_{n}(T)$ does not have ordinary ramification, we have by definition $f(\bmod \mathfrak{p}) \notin \Omega_{\mathfrak{p}}$ for any \mathfrak{p}, it follows by simple computations that

$$
\mid\left\{f \in \mathcal{F}_{n}(T) \mid f \text { does not have ordinary ramification }\right\} \mid \ll N_{k}(T)^{n} H^{-1}
$$

where the implied constant depends on k and

$$
H=\sum_{N \mathfrak{a} \leqslant L}^{\mathfrak{b}} c^{\omega(\mathfrak{a})}(N \mathfrak{a})^{-1}
$$

where now \sum^{b} restricts the sum to squarefree ideals not divisible by a prime ideal of norm $\leqslant P_{0}$, and where $\omega(\mathfrak{a})$ is the number of prime ideals dividing \mathfrak{a}.

Writing

$$
H=\sum_{\substack{n \leqslant L \\ 3}} \beta(n) n^{-1}
$$

where

$$
\beta(n)=\sum_{N a=n}^{b} c^{\omega(\mathfrak{a})}
$$

it follows then from standard estimates about sums of multiplicative functions that

$$
H \gg(\log L)^{c}
$$

for L large enough, depending on P_{0}; recall that $0<c \leqslant 1$. (E.g., one can easily check that Wirsing's Theorem cited in [K1, Th. G.1] is applicable to β with $\kappa=c$, by applying the Chebotarev density theorem to check the assumption of that result, and this leads even to an asymptotic formula; the idea is that the partial sum is comparable with that of the coefficients of $\zeta_{k}(s)^{c}$, where ζ_{k} is the Dedekind zeta function). This leads to the proposition, since L and $N_{k}(T)$ are comparable in logarithmic scale.

References

[C] S.D. Cohen: The distribution of the Galois groups of integral polynomials, Illinois J. Math. 23 (1979), 135-152.
[G] P.X. Gallagher: The large sieve and probabilistic Galois theory, in Proc. Sympos. Pure Math., Vol. XXIV, Amer. Math. Soc. (1973), 91-101.
[Ha] C.J. Hall: Transvections and ℓ-torsion of abelian varieties, preprint (2009).
[Hu] M.N. Huxley: The large sieve inequality for algebraic number fields, Mathematika 15 (1968) 178-187.
[K1] E. Kowalski: The large sieve and its applications: arithmetic geometry, random walks, discrete groups, Cambridge Univ. Tracts 175, C. U. P., 2008.
[vdW] B.L. van der Waerden: Die Seltenheit der reduziblen Gleichungen und der Gleichungen mit Affekt, Monath. Math. Phys. 43 (1936), 133-147.
[Z] Y.G. Zarhin: Hyperelliptic Jacobians without complex multiplication, Math. Res. Lett. 7 (2000), no. 1, 123-132.

ETH Zürich - DMATH, Rämistrasse 101, 8092 ZÜrich, Switzerland
E-mail address: kowalski@math.ethz.ch

