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Let k/Q be a number field and Zk its ring of integers. Let f ∈ Zk[X] be a monic squarefree
polynomial of degree n = 2g+2 or 2g+1 for some integer g > 1, and let Cf/k be the (smooth,
projective) hyperelliptic curve of genus g with affine equation

Cf : y2 = f(x),

and Jf its jacobian.
In [Ha], C. Hall shows that the image of the Galois representation

ρf,` : Gal(k̄/k)→ Aut(Jf [`](k̄)) ' GL2g(F`)

on the `-torsion points of Jf is as big as possible for almost all primes `, if the following two
(sufficient) conditions hold:

(1) the endomorphism ring of Jf is Z;
(2) for some prime ideal p ⊂ Zk, the fiber over p of the Néron model of Cf is a smooth

curve except for a single ordinary double point.
These conditions can be translated concretely in terms of the polynomial f , and are implied

by:
(1’) the Galois group of the splitting field of f is the full symmetric group Sn (this is due

to a result of Zarhin [Z], which shows that this condition implies (1));
(2’) for some prime ideal p ⊂ Zk, f factors in Fp = Zk/pZk as f = f1f2 where fi ∈ Fp[X]

are relatively prime polynomials such that f1 = (X−α)2 for some α ∈ Fp and f2 is squarefree
of degree n− 2; indeed, this implies (2).

In this note, we show that, in some sense, “most” polynomials f satisfy these two condi-
tions, hence “most” jacobians of hyperelliptic curves have maximal monodromy modulo all
but finitely many primes (which may, a priori, depend on the polynomial, of course!).

More precisely, for k and Zk as above, let us denote

Fn = {f ∈ Zk[X] | f is monic of degree n},
and let the height be defined on Fn by

H(a0 + a1X + · · ·+ an−1X
n−1 +Xn) = max

06i6n−1
H(ai),

where H is any reasonable height function on k, e.g., choose a Z-basis (ωi)16i6d of Zk, where
d = [k : Q], and let

H(α1ω1 + · · ·+ αdωd) = max |αi|,
for all (αi) ∈ Zd.

Let Fn(T ) denote the finite set

(1) Fn(T ) = {f ∈ Fn | H(f) 6 T}.
We have |Fn(T )| = Nk(T )n, where

Nk(T ) = |{x ∈ Zk | H(x) 6 T}| � T d, where d = [k : Q].
1



Say that f has big monodromy if the Galois group of its splitting field is Sn. We will show:

Proposition 1. Let k and Zk be as above. Then

|{f ∈ Fn(T ) | f does not have big monodromy}| � Nk(T )n−1/2(logNk(T )),

for all T > 2, where the implied constant depends on k and n.

Say that f ∈ Fn has ordinary ramification if it satisfies condition (2’) above.

Proposition 2. Let k and Zk be as above, and assume n > 2. There exists a constant c > 0,
depending on n and k, such that we have

|{f ∈ Fn(T ) | f does not have ordinary ramification}| � Nk(T )n

(logNk(T ))c

for T > 3, where the implied constant depends on k and n.

Finally, say that Jf has big monodromy if the image of ρf,` is as big as possible for almost
all primes `.

Corollary 3. Assume that n > 2. Then we have

lim
T→+∞

1

|Fn(T )|
|{f ∈ Fn(T ) | Jf does not have big monodromy}| = 0.

Remark 4. Quantitatively, we have proved that the rate of decay of this probability is at
least a small power of power of logarithm, because of Proposition 2. With more work, one
should be able to get c equal or very close to 1, but it seems hard to do better with the
current ideas (the problem being in part that we must avoid f for which the discriminant
is a unit in Zk, which may well exist, and sieve can not detect them better than it does
discriminants which generate prime ideals, the density of which could be expected to be
about (logNk(T ))−1).

For both propositions, in the language of [K1], we consider a sieve with data

(Fn, {prime ideals in Zk}, {reduction modulo p}), (Fn(T ), counting measure),

and we claim that the “large sieve constant” ∆ for the sifting range

L∗ = {p ⊂ Zk | Np 6 L}

satisfies

∆� Nk(T )n + L2n,

where the implied constant depends only on k. Indeed, this follows from the work of Hux-
ley [Hu], by combining in an obvious manner his Theorem 2 (which is the case n = 1, k
arbitrary) with his Theorem 1 (which is the case k = Q, n arbitrary).

Concretely, this implies that for arbitrary subsets Ωp in the image of Fn under reduction
modulo p — the latter is simply the set of monic polynomials of degree n in Fp[X], and has
cardinality (Np)n — we have
(2)

|{f ∈ F(T ) | f (mod p) /∈ Ωp for Np 6 L}| � (Nk(T )n + L2n)
(∑[

Na6L

∏
p|a

|Ωp|
(Np)n − |Ωp|

)−1
,
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where the sum is over squarefree ideals in Zk with norm at most L, and therefore also

(3) |{f ∈ F(T ) | f (mod p) /∈ Ωp for Np 6 L} � (Nk(T )n + L2n)
(∑
Np6L

|Ωp|
(Np)n

)−1
.

Proposition 1 is a result of S.D. Cohen [C]; it is also a simple application of the methods
of Gallagher [G] (one only needs (3) here), the basic idea being that elements of the Galois
group of the splitting field of a polynomial f are detected using the factorization of f modulo
prime ideals. We recall that the first quantitative result of this type (for k = Q) is due to
van der Waerden [vdW], whose weaker result would be sufficient here (though the proof is
not simpler than Gallagher’s).

Proof of Proposition 2. Let p ⊂ Zk be a prime ideal, and let Ωp be the set of polynomials
f ∈ Fp[X] which are monic of degree n and factor as described in Condition (2’). We claim
that, for some constant c > 0, c 6 1 (depending on k and n), we have

(4)
|Ωp|

(Np)n
>

c

Np

for all prime ideals with norm Np > P0, for some P0 depending on k and n.
Indeed, for n > 4, we have clearly

|Ωp| > (Np)× |{f ∈ Fp[X] | deg(f) = n− 2, f monic irreducible}|;

for n = 2, this holds with the convention that 1 is irreducible of degree 0, and for n = 3, we
must subtract 1 from the second factor on the right. If n = 2, we are done, otherwise it is
well-known that

|{f ∈ Fq[X] | deg(f) = n− 2, f monic irreducible}| ∼ qn−2

n− 2

as q → +∞, hence the lower bound (4) follows by combining these two facts (showing we
can take for c any constant < (n−2)−1 if P0 is chosen large enough; using more complicated
factorizations of the squarefree factor of degree n− 2, one could get c arbitrarily close to 1).

Now we apply (3) with this choice of subsets for p with norm > P0, and with Ωp = ∅ for
other p. We take L = Nk(T )1/2, assuming that L > P0, i.e., that T is large enough. Since,
if f ∈ Fn(T ) does not have ordinary ramification, we have by definition f (mod p) /∈ Ωp for
any p, it follows by simple computations that

|{f ∈ Fn(T ) | f does not have ordinary ramification}| � Nk(T )nH−1

where the implied constant depends on k and

H =
∑[

Na6L

cω(a)(Na)−1,

where now
∑[

restricts the sum to squarefree ideals not divisible by a prime ideal of norm

6 P0, and where ω(a) is the number of prime ideals dividing a.
Writing

H =
∑
n6L

β(n)n−1
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where

β(n) =
∑[

Na=n

cω(a),

it follows then from standard estimates about sums of multiplicative functions that

H � (logL)c

for L large enough, depending on P0; recall that 0 < c 6 1. (E.g., one can easily check
that Wirsing’s Theorem cited in [K1, Th. G.1] is applicable to β with κ = c, by applying
the Chebotarev density theorem to check the assumption of that result, and this leads even
to an asymptotic formula; the idea is that the partial sum is comparable with that of the
coefficients of ζk(s)c, where ζk is the Dedekind zeta function). This leads to the proposition,
since L and Nk(T ) are comparable in logarithmic scale. �
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