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Preface

These are lecture notes for an introduction to additive combinatorics and to some of
its applications. It focuses on a few specific topics, chosen partly for their importance
in the development of the subject, and partly from a definite bias concerning subjects of
interest to the author (this bias is not necessarily positive – there will very little discussion

of arithmetic aspects of additive combinatorics,1 for instance).

Zürich, January 8, 2024

Acknowledgments. The first draft of these notes was prepared for a course “Intro-
duction to additive combinatorics” that I taught at ETH Zürich during the Fall Semester
2023. Thanks to the students of the course for their interest and corrections, and to C.
Bortolotto for organizing and preparing the exercise sessions. Thanks also to J. Fresán
for his comments, and to B. Green for sending me his own notes for a similar course and
his write-up of Schoen’s argument for the Balog–Szemerédi–Gowers Theorem.

1 Such as the use of Schnirelman’s ideas to study sums of primes.
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CHAPTER 1

Introduction

1.1. What is additive combinatorics?

Like many mathematical terminology, “additive combinatorics” is both perfectly ac-
curate and deeply misleading.1 It is accurate because its meaning is clear to the math-
ematical community, and reflects well the early history of the subject; it is misleading
because it hides the breadth and importance this topic has acquired in recent years.
For instance, the adjective “additive” hints at abelian groups, whereas some of the most
striking applications of “additive” combinatorics lie squarely in fundamental problems
related to non-abelian groups (including simple finite groups).

The best known early result of additive combinatorics, proven well before the name
was introduced, is van der Waerden’s Theorem [86].2 This has been an extraordinarily
influential statement.

Theorem 1.1.1 (Van der Waerden, 1928). For every positive integers l and k, there
exists an integer n, such if the set [n] = {1, . . . , n} is partitioned in k disjoint subsets,
then one at least of these subsets contains l integers in arithmetic progression.

In other words, if

{1, . . . , n} = C1 ∪ · · · ∪ Ck

with Ci ∩ Cj = ∅ for i ̸= j, then there exists an integer i ∈ {1, . . . , k}, a ⩾ 1 and q ⩾ 1
such that

a, a+ q, a+ 2q, . . . , a+ (l − 1)q

all belong to Ci.

This statement immediately conveys the flavor of additive combinatorics: finite par-
titions of finite sets are clearly natural objects of combinatorics,3 but the notion of arith-
metic progressions involves the algebraic operation of addition on integers, and does not
make sense in an arbitrary finite set.

One can move the birth date of additive combinatorics significantly; for instance,
another prototypical result that fully belongs to the subject was already proved by
Cauchy [16, Th. VII], before being rediscovered independently by Davenport [19]:

Theorem 1.1.2 (Cauchy, 1813). Let p be a prime number. If A ⊂ Z/pZ and B ⊂
Z/pZ are arbitrary non-empty sets, then we have

|A + B| ⩾ min(p, |A| + |B| − 1),

where A + B is the set of all elements of the form a+ b with (a, b) ∈ A × B.

1Another example of this phenomenon is the “large sieve”.
2 The mathematician P. Baudet, who formulated the corresponding conjecture (in the case k = 2)

died young in 1921, and never knew the importance of his question.
3 Although defining “combinatorics” concisely and precisely is certainly a very difficult endeavour.

2



Figure 1.1. Cauchy’s Theorem.

And finally, here is a third basic example: the “sum-product phenomenon”, in the
first version of Erdős and Szemerédi [28]. This has been the motivation for many of the
developments in additive combinatorics.

Theorem 1.1.3 (Erdős–Szemerédi, 1983). There exists real numbers δ > 0 and c > 0
such that for any finite set A of positive integers, we have

max(|A + A|, |A · A|) ⩾ c|A|1+δ,

where A + A and A · A are the sets of sums a + b or products ab, respectively, with
(a, b) ∈ A2.

In more intuitive words, this states that one cannot find a large finite set of integers
which behave “as if it were a ring”, i.e., as if it were both “almost” stable by addition
and by multiplication. We will discuss this in Chapter 3.

1.2. What is special with additive combinatorics?

What one thinks of the theorems stated above is partly a question of taste, certainly.
In Khintchine’s account of van der Waerden’s Theorem (see [55, Ch. I]), he mentions that
he heard of the problem just when it had been solved, and4 that “Nearly all mathemati-
cians whom I met told me about it with enthusiasm”. Since Göttingen was, at that time,
most likely the leading mathematicial center in the world, this proves how immediately
appealing the result was. Khintchine adds: “All to whom this question was put regarded
the problem at first sight as quite simple; its solution in the affirmative appeared to be
almost self-evident. The first attempts to solve it, however, led to nought”, and concludes
the introduction with: “The task turned out to be deep, the appearance of simplicity was
deceptive”.

Nevertheless, it seems fair to state that for a long time, the type of results that
now are parts of additive combinatorics were not in the forefront of the mainstream of
mathematics. Even in number theory, which is a closely related subject, much of the focus
lies on “more structured” questions (for instance, in algebraic number theory, arithmetic
geometry, and the theory of automorphic forms). From this point of view, the problems
and the phenomena of additive combinatorics are viewed as being (maybe) cute and
attractive, but not really “deep”.

4 In translation from the Russian.
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Figure 1.2. The logical structure of Szemerédi’s proof.

Judgements of this type have now mostly disappeared. They were already challenged
by any serious look at some of the works expanding, say, on van der Waerden’s Theorem.
For instance, among its direct “descendants”, one find Szemerédi’s Theorem [80], which
strengthens Theorem 1.1.1 by finding arithmetic progressions in any “sufficiently dense”
subset:

Theorem 1.2.1 (Szemerédi). Let k ⩾ 1 be an integer and let α > 0 be a real number.
There exists an integer Nk ⩾ 1 such that for any integer N ⩾ Nk and any subset A of
[N], the condition |A| ⩾ αN implies that A contains a k-term arithmetic progression.

The proof of this result is an extraordinary achievement, as the graph (included in
Szemerédi’s paper) displaying its logical structure already suggests.

Moreover, through a number of remarkable works, it has turned out that these types of
results could be used in apparently completely unrelated areas of mathematics, and that
ideas from additive combinatorics could both solve important open problems which didn’t
seem to have anything to do with it, as well as bring new light and insight apparently far
from their simple-looking statements.

To give some examples:

(1) Furstenberg [37] realized early the connection between generalizations of van der
Waerden’s Theorem, especially Szeremédi’s Theorem, and ergodic theory.

(2) Green [44] (for 3-term progressions) and then Green–Tao, in their celebrated
work [45] proving the existence of arbitrarily long arithmetic progressions in the
primes, showed how additive combinatorics led to various breakthroughs in the
study of prime numbers.

(3) Bourgain, in a variety of contexts, exploited various aspects of additive com-
binatorics in different areas of analysis (Kakeya sets, applications to harmonic
analysis, etc...)
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(4) Building on the deep Inverse Theorem for Gowers norms of Green, Tao and
Ziegler [46], a number of researchers have made significant progress in various
problems of arithmetic geometry related to point-counting on algebraic varieties
(see for instance the paper [14] of Browning, Matthiesen and Skorobogatov).

(5) Starting from a sensational contribution of Helfgott [49], combined with ideas of
Bourgain and Gamburd [9], completely new phenomena related to quantitative
properties of finite simple groups have been discovered since the mid 2000’s,
leading to close connections with geometric group theory, the theory of expander
graphs, and to extremely surprising applications, including in number theory (see
for instance the book [59]).

1.3. A soft beginning

We begin the formal mathematical part of these notes by discussing Cauchy’s Theorem
and giving some applications. We first recall the statement:

Theorem 1.3.1. For any two non-empty subsets A and B of the group Z/pZ, where p
is a prime number, we have |A + B| ⩾ min(p, |A| + |B| − 1).

We begin with some remarks to show the result in some context. The first is that the
question of estimating the size of the sumset A + B of two finite sets can be asked in any
abelian group (in fact, in any group, but the addition is taken to refer to a commutative
operation; examples of this question with non-abelian will appear later).

It is natural then to look first at the case of Z, which intuitively might be simpler
than the case of Z/pZ (because “wrap-around” does not happen in the addition process).
In fact, for (non-empty) finite subsets of Z or R, we easily obtain

|A + B| ⩾ |A| + |B| − 1,

and we also easily see that this cannot be improved (without extra assumptions or infor-
mation on A and B).

Indeed, for the former, it suffices to enumerate the elements of A and B in order, say

a1 < a2 < · · · < a|A|, b1 < b2 < · · · < b|B|.

Then note that A + B contains the following ordered sequence

a1 + b1 < a2 + b1 < · · · < a|A| + b1 < a|A| + b2 < · · · < a|A| + b|B|

of |A| + |B| − 1 elements. Because the ordering is strict, this gives the result. The
optimality of the bound is demonstrated by the simple example A = B = [n], for which
we have A + B = {2, 3, . . . , 2n}, with size 2n− 1.

These simple remarks put Cauchy’s Theorem in context. Indeed, it leads us to think
that |A| + |B| − 1 is a natural quantity, and a reasonable goal to ask about (while the
fact that |A + B| ⩽ p is an obvious upper-bound for subsets of Z/pZ). Moreover, it also
gives the optimality: although we cannot order Z/pZ in a way which respects addition
in general, we can do so for subsets that are not too large if we perform “not too many”
additions. Precisely, the example A = B = [n] in Z can be transplanted to Z/pZ for any
prime such that p > 2n: if we take for A and B the set of residue classes modulo p of
the integers from 1 to n, then the subset A + B of Z/pZ coincides with the set of residue
classes of integers from 2 to 2n, and in particular contains 2n − 1 elements. (Soon,
we will formalize such a property as the fact the reduction modulo p defines “Freiman
homomorphisms” on suitable subsets of Z.)
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Moreover, thinking in general terms, it is immediately apparent that there must be
some interplay between the group structure and the behavior of sumsets: for instance,
if A and B are both contained in a proper subgroup H ⊂ G, then A + B is also contained
in H, and this gives an a-priori upper-bound for |A + B| which might be smaller than the
“expected” quantity |A|+|B|−1. Indeed, if A = B = H, then we have |A+B| = |H| = |A|.
Note that |A + B| ⩾ max(|A|, |B|) in all cases (because A and B are not empty, so we
can fix some element of B, say b, and then A + B contains A + b).

The case of Cauchy’s Theorem (and of Z or R) are therefore simplified by the fact
that Z/pZ is a simple abelian group: it has no proper subgroup except for {0} (and if
A = B = {0} then |A| + |B| − 1 = |A|...)

But now let us finally prove the result... (The reader is encouraged, before going on,
to devote some time to try to find a proof.)

Proof of Cauchy’s Theorem. It is natural to argue by induction on the size of
one of the two sets, say B, since the nature of the desired lower-bound (the size of B plus
some quantity independent of B) is such that one only needs to get one more element at
each stage of the induction.

We therefore proceed this way. If |B| = 1, then A + B is just an additive translate
of A, so |A + B| = |A| = |A| + |B| − 1, which gives the desired result.

Suppose now that |B| ⩾ 2 and that the result holds for |A + B′| for any set B′ with
1 ⩽ |B′| < |B|.

It is somewhat convenient to replace B by a translate to ensure that 0 ∈ B, so that
A ⊂ A + B. We can moreover assume of course that A is not the whole group Z/pZ.

We then first observe (this may be considered as trying to first handle the case where
|B| = 2) that for any fixed b0 ∈ B {0}, there exists some a0 ∈ A such that a0 + b0 /∈ A.
Indeed, otherwise the set A would be invariant by a non-trivial translation, which is
impossible since A is neither empty nor the whole group (concretely, for a given a0 ∈ A,
note that this implies that a0 + kb0 ∈ A for all k ∈ Z, but the set of values a0 + kb0 is all
of Z/pZ when b0 ̸= 0, so this is impossible; abstractly, we would have A + b0 = A, so the
stabilizer of A is non-trivial, hence is equal to Z/pZ since this is a simple group, and we
would again have Z/pZ = A).

Now here comes the trick. Given b0 ∈ B {0} and an element a0 ∈ A with a0+b0 /∈ A,
define

B′ = {b ∈ B | a0 + b ∈ A}, B′′ = B B′ = {b ∈ B | a0 + b /∈ A}.

Since b0 ∈ B′′, this set is not empty, and hence |B′| < |B|. Moreover, 0 ∈ B′, so B′ is
also not empty. Furthermore, let A′ = A ∪ (a0 + B′′).

The key point of these definitions is that A + B contains A′ + B′. Indeed, the only
issue is whether a0 + b′′ + b′ ∈ A + B for b′ ∈ B′ and b′′ ∈ B′′, but this is so because
a0 + b′′ + b′ = (a0 + b′) + b′′, and a0 + b′ ∈ A by definition of B′.

Using the induction hypothesis for the sets A′ (which is not empty since it contains A)
and B′, we conclude that

|A + B| ⩾ |A′ + B′| ⩾ min(p, |A′| + |B′| − 1),

and finally, we note that |A′| = |A| + |B′′| (because a + B′′ and A are disjoint) so that
|A′| + |B′| = |A| + |B′′| + |B′| = |A| + |B|. □

Here is a simple but useful corollary of Cauchy’s Theorem.
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Corollary 1.3.2. Let p be a prime number and α ⩾ 2/p a real number. Let A be
a subset of Fp such that |A| ⩾ αp. There exists an integer k ⩽ ⌈2α−1⌉ such that every
element of Fp is the sum of at most k elements of A.

Proof. Let j ⩾ 1 be an integer and Aj the set of elements which can be represented
as the sum of j elements of A, so that A2 = A + A. We deduce by induction from the
Cauchy–Davenport inequality that

|Aj| ⩾ min(p, j|A| − j + 1)) = min(p, jαp− j + 1),

and hence Aj must be equal to all of Fp when j(αp − 1) ⩾ p. This inequality holds if
j ⩾ 2α−1 (because of the assumption α ⩾ 2/p), hence the result. □

Remark 1.3.3. This study of finite sumsets might have reminded those readers fa-
miliar with integration theory of a well-known result which is often presented as an
elementary surprising application of the convolution operation on integrable functions
on R: if A and B are two measurable subsets of R with positive measure, then the
sumset A + B contains a non-empty open interval. (This is because, if we denote by φA

and φB the characteristic functions of A and B, respectively, and assume, as we may, that
A and B have finite measure, then the convolution f = φA ∗ φB defined by

f(x) =

∫
R

φA(y)φB(x− y)dy

is known to be a continuous function on R; it is not identically zero, because its integral
is equal to the product of the integrals of A and B, i.e., of the measures of the two sets,
which are positive by assumption; and if f(x0) > 0 for some x0, then by continuity we
get f(x) > 0 for all x in some non-empty open interval containing x0, and for any such x,
we must have x ∈ A + B since otherwise the integral definition would give f(x) = 0.)

Here is a first “concrete” application of Cauchy’s Theorem (which indeed is closely
related to his motivation; such results had been proved earlier by Lagrange, using more
algebraic methods).

Corollary 1.3.4. Let p be a prime number. Let α and β be non-zero elements of
Z/pZ. For any x ∈ Z/pZ, there exist y and z in Z/pZ such that x = αy2 + βz2.

Proof. We apply Cauchy’s Theorem with

A = α · Q, B = β · Q,

where Q is the set of squares in Z/pZ. We have |Q| = 2 if p = 2, and if p is odd,
then it is elementary that |Q| = (p + 1)/2 (this can be proved elementarily, but alge-
braically, this comes from the fact that the set of non-zero squares is the image of the
group homomorphism f : x 7→ x2 from (Z/pZ)× to itself, and since the kernel of this
homomorphism is {−1, 1}, of size 2, the image has size (p − 1)/2 by the isomorphism
Im(f) ≃ (Z/pZ)×/ ker(f); adding the element 0 ∈ Q, we find |Q| = (p + 1)/2). Since α
and β are non-zero, this implies that |A| = |B| = |Q|, and then |A| + |B| − 1 is either
equal to 3 (if p = 2) or to p if p is odd. In any case, Cauchy’s Theorem gives |A + B| ⩾ p,
and the result follows. □

Exercise 1.3.5. Prove directly the case of Cauchy’s Theorem when |A|+ |B| ⩾ p+1.

Exercise 1.3.6. (1) Show by example that Cauchy’s Theorem does not hold for
subsets of Z/qZ in general, if q ⩾ 1 is arbitrary.
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(2) Show that if q ⩾ 1 is an arbitrary positive integer, if A ⊂ Z/qZ is arbitrary and
if B ⊂ Z/qZ is such that 0 ∈ B then

|A + B| ⩾ min(q, |A| + |B×| − 1),

where B× is the set of elements of B which are invertible in Z/qZ (i.e., those
b ∈ B which are residue classes of integers coprime to q).

There are (at least) three important lessons that can be learnt by considering the
most elementary properties of sumsets.

An inverse theorem. We go back to the case of sumsets in Z (or R). Since we
exhibited easily |A|+ |B| − 1 distinct elements of A + B, it seems tempting to think that
one could understand in which cases exactly the bound is sharp. This is indeed possible,
and is the first instance of a frequent phenomenon in (additive) combinatorics, where
“extremal” examples for certain problems can be characterized quite precisely.

Proposition 1.3.7. Let A and B be non-empty finite subsets of R. We have |A+B| =
|A| + |B| − 1 if and only if one of the following conditions is valid:

(1) We have |A| = 1.

(2) We have |B| = 1.

(3) The sets A and B are arithmetic progressions with the same common difference.

Proof. We denote k = |A| and l = |B|. If either k or l is equal to 1, then there is
equality |A + B| = |A| + |B| − 1. If A and B are arithmetic progressions with the same
common difference h ̸= 0, so

A = {a, a+ h, . . . , a+ (k − 1)h}, B = {b, b+ h, . . . , b+ (l − 1)h}
for some real numbers a and b, then we see easily that

A + B = {a+ b, a+ b+ h, . . . , a+ b+ (k + l − 2)h},
which has k + l − 1 elements.

The question is therefore to prove the converse. For this, we assume that A and B
have at least two elements, and we then prove that they are arithmetic progressions with
the same common difference.

We enumerate the elements of A and B in order, as before:

a1 < · · · < ak, b1 < · · · < bl.

Note that l ⩾ 2, so that b2 exists. The assumption |A + B| = k + l − 1 implies that
A + B, in order, consists of the elements

a1 + b1 < a2 + b1 < · · · < ak + b1 < ak + b2 < · · · < ak + bl.

Observe now that

a1 + b1 < a1 + b2 < · · · < ak−1 + b2 < ak + b2,

which, by comparing, means that the k − 1 tuples of ordered integers

a2 + b1 < · · · < ak + b1

a1 + b2 < · · · < ak−1 + b2

have to be identical. This means that aj + b1 = aj−1 + b2 for all 2 ⩽ j ⩽ k. Thus A is
an arithmetic progression with common difference b2 − b1. By exchanging the role of A
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and B, it follows that B is also an arithmetic progression, with common difference a2−a1.
But since the above (with j = 2) shows that

a2 + b1 = a1 + b2,

these arithmetic progressions have the same common difference. □

As we will see later in this book, the real depth of such questions arises rather when
one attempts to classify examples which are “almost” extremal – in that case, examples
where |A + B| is just a bit larger than |A| + |B| − 1.

Remark 1.3.8. This proof used the order structure of the real numbers. In view of
Cauchy’s Theorem, it is natural to ask whether a similar statement holds for subsets of
Z/pZ. This is indeed the case, and is due to Vosper (see, e.g., [84, Th. 5.9]). Precisely,
if p is a prime number, A and B are subsets of Z/pZ with |A + B| = |A| + |B| − 1, and
in addition if |A| + |B| ⩽ p− 2, then A and B are arithmetic progressions with the same
common difference.

Randomness helps. The inverse theorem above should only confirm a definite
intuition that the Cauchy–Davenport lower bound, even if is true that it sometimes
cannot be improved, is “usually” far from the truth. In other words, if one takes A and
B among “typical” subsets of Z/pZ, the sumset A + B should be quite a bit bigger than
|A| + |B| − 1 (assuming the sets are not so big that the sumset is all of Z/pZ). There
are many different ways to try to make this precise, and these can be very useful in
applications. One of the simplest statements exploits the fact that we can also multiply
elements of Z/pZ, which is a finite field; it turns out that if we are allowed to replace one
of the sets by a dilate, then we get a much stronger lower bound.

Proposition 1.3.9. Let p be a prime number and let A and B be non-empty subsets
of Z/pZ. There exists x ∈ (Z/pZ)× such that

|A + xB| ⩾ min
( |A||B|

2
,
p

6

)
,

where here xB = {xb | b ∈ B}.

Note that the constant 1/6 here is not particularly important, and arises when dealing
with large sets. One should think of a set of size p/6 as simply “a good chunk” of Z/pZ.

Proof. We may assume that min(|A|, |B|) ⩽ p/6, since otherwise just taking x = 1
gives |A + B| ⩾ p/6.

The idea is to take x “at random”, and in this case, this means uniformly among
elements of (Z/pZ)×: we look at the function f from (Z/pZ)× to R which sends x to
|A + xB|, and show that its average is quite large – since some value of f is at least as
large as the average, the result will follow.5

We claim that

(1.1) f(x) ⩾ |A||B| − 1

2
g(x)

where g(x) is the number of (a1, a2, b1, b2) ∈ A2 × B2 such that x = (a1 − a2)/(b2 − b1).
To see this, we write A + xB as the union of the set a + xB for a ∈ A; this union is of

5 In other cases, for instance in the proof of Theorem 2.7.1, it may be better to select an element
“at random” with a different distribution.
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course not disjoint in general, but a truncated form of the inclusion exclusion formula
(see Example A.3.3) implies that

|A + xB| =
∣∣∣⋃
a∈A

(a+ xB)
∣∣∣ ⩾ ∑

a∈A

|a+ xB| − 1

2

∑
a1,a2∈A
a1 ̸=a2

|(a1 + xB) ∩ (a2 + xB)|.

The first term on the right-hand side is |A||B|. As for the other term, for given a1 ̸= a2
in A, there is a bijection between (a1 + xB)∩ (a2 + xB) and the set of (b1, b2) ∈ B2, with
b1 ̸= b2, such that x = (a1−a2)/(b2−b1), defined by mapping y to ((y−a1)/x, (y−a2)/x),
with reciprocal bijection mapping (b1, b2) to a1 +xb1 = a2 +xb2. Hence the two sets have
the same size, and we find that∑

a1,a2∈A
a1 ̸=a2

|(a1 + xB) ∩ (a2 + xB)| = g(x),

by definition of g, which concludes the proof of (1.1).
This lower bound implies that

1

p− 1

∑
x∈(Z/pZ)×

f(x) ⩾ |A||B| − 1

2(p− 1)

∑
x∈(Z/pZ)×

g(x) = |A||B| − |A|2|B|2

2(p− 1)
,

since the sum of g(x) over all x is just the number of quadruples (a1, a2, b1, b2) ∈ A2×B2.
If |A||B| ⩽ p/2, then it follows that

1

p− 1

∑
x∈(Z/pZ)×

f(x) ⩾
|A||B|

2
,

from which the existence of a suitable x follows.
The remaining case where |A||B| > p/2 is handled by a simple trick: we observe that

we can find subsets A′ ⊂ A and B′ ⊂ B such that p/3 ⩽ |A′||B′| ⩽ p/2; by the first case,
we then find some x ∈ (Z/pZ)× for which the lower bound

|A + xB| ⩾ |A′ + xB′| ⩾ |A′||B′|
2

⩾
p

6

holds. To check that A′ and B′ exist, we may assume that |A| ⩽ |B| (up to exchanging
the two sets). Recall that we assumed that |A| ⩽ p/6; it follows that there exists an
integer j such that 0 ⩽ j < |B| and

p
(1

2
− 1

6

)
⩽ j|A| ⩽ p

2
,

and we can then take A′ = A and define B′ to be any subset of B with j elements. □

Harmonic analysis. The concrete application of the Cauchy–Davenport inequality
that we have discussed has an arithmetic flavor, and gives a first idea of the links between
number theory and additive combinatorics. There is one particular type of methods in
(analytic) number theory that is extremely powerful in many counting problems, and
which is related to the ideas of harmonic analysis. It is natural to look back at Cauchy’s
Theorem from this point of view, as this allows us to get some intuition on the differences
between these two circles of ideas (and their respective strengths and weaknesses).
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Quite generally, starting from an abelian group G and subsets A and B of G, we want
to study A + B by looking at the representation function r : G → R which sends x ∈ G
to the number of representations of x as a sum x = a+ b with (a, b) ∈ A × B: formally,

r(x) =
∑
a,b

a+b=x

1 ⩾ 0.

The sumset A + B is then recovered as the support of r, i.e., the set of x ∈ G such
that r(x) ̸= 0, but the function r contains more information – it can distinguish between
elements which are sums in A + B in just one way, and those which are in many ways.
Also, r gives us, for instance, access to the “average” number of representations: this is

(1.2)
1

|G|
∑
x∈G

r(x) =
1

|G|
∑
x∈G

∑
(a,b)∈A×B
a+b=x

1 =
1

|G|
∑
a∈A

∑
b∈B

∑
x∈G

a+b=x

1 =
|A||B|
|G|

.

The harmonic analysis approach to the function r then consists in representing this
function in a well-chosen basis of the space C(G) of functions from G to C, so that this
average appears naturally in the decomposition. The last requirement amounts to asking
that the constant function appears in the chosen basis, but there remain many potential
choices of bases. A hint of a useful approach is given by interpreting the average of a
function as the inner product of this function with the constant function; thus one should
make use of the natural inner product

⟨f, g⟩ =
1

|G|
∑
x∈G

f(x)g(x)

on the complex vector space C(G), and one should look for an orthonormal basis for this
inner product, which contains the constant function 1 (which is normalized: it satisfies
∥1∥ = 1).

There are still many choices of bases, but now we use the fact that G is a group, and
not just a finite set. There is then a distinguished orthonormal basis, namely that of
characters of G. These are the functions χ : G → C which are in fact group morphisms
from G to C×. The basic properties of these are summarized (with proofs) in Section A.7,
and this precise fact is Theorem A.7.3. This allows to write

r(x) =
|A||B|
|G|

+
∑
χ ̸=1

⟨r, χ⟩χ(x)

for any x ∈ G, where the coefficients are

⟨r, χ⟩ =
1

|G|
∑
x∈G

r(x)χ(x).

In fact, using the definition of r, these coefficients can be transformed into

⟨r, χ⟩ =
1

|G|
∑
x∈G

( ∑
(a,b)∈A×B
a+b=x

1
)
χ(x) =

1

|G|
∑
a∈A

∑
b∈B

χ(a+ b) =
1

|G|

(∑
a∈A

χ(a)
)(∑

b∈B

χ(b)
)
.

We note here that is a special case of the interaction of the discrete Fourier transform
with the convolution: indeed, we are using the fact that r = φA ∗ φB, and that, up
to normalizing constants, the Fourier transform of a convolution is the product of the
Fourier transforms of the factors (see Proposition A.7.7 and the remarks following).
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If we specialize further (to gain concreteness) to G = Z/pZ, then the characters are
parameterized by an element h ∈ Z/pZ, and are given by x 7→ exp(2iπhx/p) (which is
well-defined because the function on R given by sending t to exp(2iπt/p) is periodic with
period p; see Example A.7.2), which we denote more concisely by e(hx/p). Then we get,
for this case, the formula

r(x) =
|A||B|
p

+
1

p

∑
h∈Z/pZ
h̸=0

(∑
a∈A

e
(
−ha
p

))(∑
b∈B

e
(
−hb
p

))
e
(hx
p

)
.

At least if |A||B| is large, one can hope to show that the first term dominates (so that
r(x) is “close” to its average) by exploiting the fact that for each h ̸= 0, the corresponding
expression on the right-hand side involves oscillating sums∑

a∈A

e
(
−ha
p

)
,

∑
b∈B

e
(
−hb
p

)
,

of complex numbers of modulus 1, which should therefore have smaller modulus than the
number of terms, due to “cancellations” arising from summing complex numbers with
varying arguments.

Even without any “fine” control on these sums, there are in fact other fairly elementary
ways to exploit this basic idea of Fourier analysis, which turn out to be quite powerful –
instances include Bogolyubov’s Lemma (see Proposition 2.9.2), and (in the slightly more
sophisticated setting of non-abelian groups) Gowers’s product theorem (see 2.8.4).

Exercise 1.3.10. Let q ⩾ 1 and k ⩾ 1 be integers. Let A ⊂ Z/qZ be a non-empty
set, and let A(k) = A + · · · + A (with k-summands) be the set of elements of the form
a1 + · · · + ak with ai ∈ A. For x ∈ Z/qZ, define

rk(x) = |{(a1, . . . , ak) ∈ Ak | a1 + · · · + ak = x}|.
(1) Show that

rk(x) =
|A|k

q
+

1

q

∑
1⩽h<q

WA(h)ke
(hx
q

)
where

WA(h) =
∑
a∈A

e
(
−ah
q

)
.

(2) For k ⩾ 2, deduce that

rk(x) ⩾
|A|k

q
− |A| sup

h̸=0
|WA(h)|k−2.

(3) Let δ > 0 be such that |WA(h)| ⩽ q1−δ for all h. Assuming k ⩾ 2, show that
A(k) = Z/qZ if

|A| > qδ+(1−δ)/(k−1).

Exercise 1.3.11. The goal of this exercise is to show that there are natural subsets
of Z/pZ, for p prime, which satisfy the assumption of the last question of the previous
exercise, with δ = 1/2.

Let p be an odd prime number, and let Q be the set of non-zero squares in Z/pZ. It
has (p− 1)/2 elements.

(1) If p ≡ 3 mod 4, show that Q + Q ̸= Z/pZ.

12



For h ∈ Z/pZ, denote

W(h) =
∑
x∈Q

e
(hx
p

)
.

(2) Show that

W(h) =
1

2

∑
x∈Z/pZ

e
(hx2
p

)
− 1

2
.

(3) Show that ∣∣∣ ∑
x∈Z/pZ

e
(hx2
p

)∣∣∣2 =
∑

u∈Z/pZ

∑
v∈Z/pZ

e
(huv
p

)
.

(4) Deduce that

|W(h)| ⩽ 1

2
(
√
p+ 1) ⩽

√
p

for all h ̸= 0.

Exercise 1.3.12. Let q ⩾ 1 be an integer and let α ∈]0, 1[ be a real numnber. We
define a random subset A of Z/qZ by the condition that each x ∈ Z/qZ (independently)
belongs to A with probability α.

(1) For any subset X ⊂ Z/pZ, show that

P(A = X) = α|X|(1 − α)q−|X|.

(2) Show that the average of the size of A is equal to αq, or in other words

E(|A|) = αq.

(3) For any non-zero h ∈ Z/qZ, show that

E
(∣∣∣∑

x∈A

e
(hx
q

)∣∣∣2) = α(1 − α)q.

Concretely, this result indicates that for a “random” subset of Z/qZ of size propor-
tional to q, the coefficients WA(h) appearing in Exercise 1.3.10 are usually of size

√
q.

1.4. Outline of the book

Here is now a quick outline of the main topics that will appear in the text. For
detailed statements, we refer to the introductory sections of the corresponding chapters.

(1) Approximate subgroups, Sidon sets, and other types of structured (or non-
structured) sets in groups (see Chapter 2).

(2) Quasi-randomness in the sense of Gowers and applications to product-free subsets
of finite groups (Section 2.8).

(3) The sum-product phenomenon and its generalizations (Chapter 3).

(4) Discussion of arithmetic progressions in subsets of abelian groups, including
Roth’s Theorem concerning existence and density of 3-term arithmetic progres-
sions in Z (Chapter 4).

(5) The “structure vs randomness” dichotomy, and the theory of Gowers norms for
arithmetic progressions of length 4 and more (also in Chapter 4).
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Finally, an Appendix at the end of the notes summarizes some of the background
material that is used at some point in the text, e.g. concerning harmonic analysis on
finite abelian groups.

It is obvious from this list that this book is just an introduction; it will also be clear
from the way we discuss them that we do not intend or attempt in any way to cover any
subject in real depth.

For further and deeper information, besides the original papers, the standard reference
is the book of Tao and Vu [84].

1.5. Some general remarks

We collect here some notes about certain aspects of additive combinatorics, and how
we handle them.

(1) There is a “hard analysis” aspect to many ideas and proofs, in the sense of
finitary, quantitative assumptions and conclusions. This often means that either
the statements or the proofs (often both) involve a number of parameters with
quantitative restrictions on them (often in relation between each other). These
can be sometimes hard to digest at first, and moreover there are often unspecified
constants arising in various inequalities which are in principle “effective”, in the
sense that one could write an explicit upper-bound in terms of the parameters,
but which are very rarely specified this way.

In this text, we try to be as specific as possible when this is doable without
much work, but we also try to point out which finicky part of certain steps of
certain proofs are just there to handle this type of goal (see, e.g,, the proof
of the sum-product theorem over finite fields due to Bourgain, Katz and Tao,
Theorem 3.2.1).

(2) We often go back to the original papers for the proofs, when these are accessible
enough; even if slicker arguments sometimes exist, the fact is that the lessons of
(additive) combinatorics – like those of analytic number theory – are often best
thought of as a collection of methods and techniques with wide applicability, and
from this point a view, even a proof that has been superseded in certain respects
may still be very important.

1.6. Some basic facts

The arguments in additive combinatorics repeatedly make use of a number of simple
techniques and inequalities. These are often simple enough to invoke without reference or
to re-implement in each argument (avoiding the necessity to compare notation between a
general lemma and a specific application), and we will do this also in this book. However,
especially when learning the material, it helps to be aware of the general nature of these
steps.

One of the most basic tools is the Cauchy–Schwarz inequality. In its simplest form,
it is an upper-bound

∣∣∣ N∑
n=1

αnβn

∣∣∣ ⩽ ( N∑
n=1

|αn|2
)1/2( N∑

n=1

|βn|2
)1/2

,
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or a “weighted” upper-bound∣∣∣ N∑
n=1

rnαnβn

∣∣∣ ⩽ ( N∑
n=1

rn|αn|2
)1/2( N∑

n=1

rn|βn|2
)1/2

,

both for arbitrary complex numbers αn and βn, and the second with rn ⩾ 0. But it is
also used frequently in “reversed” forms, to prove lower-bounds, such as

N∑
n=1

αn ⩾
1

N

( N∑
n=1

α1/2
n

)2

,

N∑
n=1

α2
n ⩾

( N∑
n=1

rnαn

)2

N∑
n=1

r2n

,

assuming that αn ∈ R. Moreover, the focus can be on the set of n where αn ̸= 0, in
which case we have another pair of variants, namely

∑
1⩽n⩽N
αn ̸=0

1 ⩾

( N∑
n=1

αn

)2

N∑
n=1

α2
n

,
∑

1⩽n⩽N
αn ̸=0

rn ⩾

( N∑
n=1

rnαn

)2

N∑
n=1

rnα
2
n

.

Another basic tool is a lemma concerning the evaluation of “bilinear forms”, which
occur very frequently in analytic number theory, analysis and combinatorics.

Lemma 1.6.1. Let N ⩾ 1 be an integer, and let (αm,n)m,n∈[N] be complex numbers. For
any complex numbers (βm)m∈[N] and (γn)n∈[N], we have∣∣∣ ∑

1⩽m,n⩽N

αm,nβmγn

∣∣∣2 ⩽ ∑
m⩽N

|βm|2 ×
∑

n1,n2⩽N

γn1γn2∆(n1, n2),

where

∆(n1, n2) =
∑

1⩽m⩽N

αm,n1αm,n2 .

In particular, we have∣∣∣ ∑
1⩽m,n⩽N

αm,nβmγn

∣∣∣2 ⩽ ∑
m⩽N

|βm|2 ×
∑
n⩽N

|γn|2 × max
1⩽n1⩽N

∑
n2⩽N

|∆(n1, n2)|.

Proof. We write ∑
1⩽m,n⩽N

αm,nβmγn =
∑
m⩽N

βm
∑
n⩽N

αm,nγn,

and apply the Cauchy–Schwarz inequality to get∣∣∣ ∑
1⩽m,n⩽N

αm,nβmγn

∣∣∣2 ⩽ (∑
m⩽N

|βm|2
)
×
( ∑
n1,n2⩽N

γn1γn2

∑
m⩽N

αm,n1αm,n2

)
=

(∑
m⩽N

|βm|2
)
×
( ∑
n1,n2⩽N

γn1γn2∆(n1, n2)
)
,

which is the first part of the lemma.
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For the second, note that∣∣∣ ∑
n1,n2⩽N

γn1γn2∆(n1, n2)
∣∣∣ ⩽ ∑

n1,n2⩽N

|γn1γn2||∆(n1, n2)|

⩽
1

2

∑
n1,n2⩽N

(|γn1|2 + |γn2|2)|∆(n1, n2)|

⩽
∑
n1

|γn1|2
∑
n2⩽N

|∆(n1, n2)|,

which gives the second inequality. □

Remark 1.6.2. A key interest of this lemma is that it “splits” the problem of esti-
mating the sums involving the various quantities αm,n, βm and γn in different problems,
namely that of computing the norms of the β’s and γ’s, and that of understanding the
“correlations” in ∆(n1, n2). (In terms of matrices, note that ∆(n1, n2) is the standard
inner-product of two of the columns of the matrix (αm,n)).
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Prerequisites and notation

The basic requirements for most of this text are standard introductory graduate
courses in algebra and real analysis. Some knowledge of other topics (especially Lebesgue
integration, probability theory and the basic theory of finite fields) is useful, but most of
what is needed is very elementary and will be described from scratch.

Our conventions for discrete Fourier analysis are described in Section A.7; in partic-
ular, we note that the Fourier transform will always be normalized so that it is a unitary
operator, and that we use the normalized convolution, defined by

(f ∗ g)(x) =
1

|G|
∑
y∈G

f(y)g(y−1x)

for two complex-valued functions f and g on a finite group G.

We will use the following notation:

(1) For any integer n ⩾ 0, we denote [n] = {1, . . . , n}; if n = 0, this is the empty
set. More generally, we write [n;m] = {n, n + 1, . . . ,m} for any integers n ⩽ m
in Z.

(2) For subsets Y1 and Y2 of an arbitrary set X, we denote by Y1 Y2 the difference
set, i.e., the set of elements x ∈ Y1 such that x /∈ Y2.

(3) For a set X, |X| ∈ [0,+∞] denotes its cardinal, with |X| = ∞ if X is infinite.
There is no distinction in this text between the various infinite cardinals.

(4) If X is a set and f , g two complex-valued functions on X, then we write synony-
mously f = O(g) or f ≪ g to say that there exists a constant C ⩾ 0 (sometimes
called an “implied constant”) such that |f(x)| ⩽ Cg(x) for all x ∈ X. Note that
this implies that in fact g ⩾ 0. We also write f ≍ g to indicate that f ≪ g and
g ≪ f .

(5) We write a | b for the divisibility relation “a divides b”; we denote by (a, b) the
gcd of two integers a and b, and by [a, b] their lcm.

(6) We denote by Fp the finite field Z/pZ, for p prime, and more generally by Fq

a finite field with q elements, where q = pn, n ⩾ 1, is a power of p. The basic
theory is reviewed in Section A.6 in the Appendix.

(7) For a complex number z, we write e(z) = e2iπz. If q ⩾ 1 and x ∈ Z/qZ, then
e(x/q) is then well-defined by taking any representative of x in Z to compute
the exponential.

(8) If q ⩾ 1 and x ∈ Z (or x ∈ Z/qZ) is an integer which is coprime to q (or a residue
class invertible modulo q), we sometimes denote by q̄ the inverse class such that
xx̄ = 1 in Z/qZ. This will always be done in such a way that the modulus q is
clear from context, in the case where x is an integer.
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(9) Given a probability space (Ω,Σ,P), we denote by E(·) (resp. V(·)) the expecta-
tion (resp. the variance) computed with respect to P. If X is a non-empty finite
set, it is often viewed as a probability space with the uniform measure without
this being specifically mentioned; we then sometimes write for instance

E
x∈X

f(x) =
1

|X|
∑
x∈X

f(x)

for the corresponding averages, or even Ex f(x) if the set X is clear in context.

(10) Given a measure space (Ω,Σ, µ) (not necessarily a probability space), a set Y
with a σ-algebra Σ′ and a measurable map f : Ω −→ Y, we denote by f∗(µ)
(or sometimes f(µ)) the image measure on Y; in the case of a probability space,
so that f is seen as a random variable on Ω, this is the probability law of f
seen as a “random Y-valued element”. If the set Y is given without specifiying a
σ-algebra, we will view it usually as given with the σ-algebra generated by sets
Z ⊂ Y such that f−1(Z) belongs to Σ.

(11) Let G be an abelian group, with additive notation. An arithmetic progression
A ⊂ G is a set of the form

A = a0 + Ia = {a0 + ka | k ∈ I}
for some elements a0 and a of G and some interval I of Z. The element a is
called the common difference of A; it is unique if A is not empty. If A is finite,
then the size of A is also often called the length of the arithmetic progression.

Let further d ⩾ 1 be an integer. A d-dimensional generalized arithmetic
progression is a set of the form

A = {a0 + k1a1 + · · · + kdad | ki ∈ Ii}
where ai ∈ G and Ii are intervals in Z. This is called a proper generalized
arithmetic progression if the equation

a0 + k1a1 + · · · + kdad = a0 +m1a1 + · · · +mdad

with (ki) and (li) in I1 × · · · × Id implies ki = li for all i; if A is finite, this is
equivalent to the fact that |A| = |I1| · · · |Id|.
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CHAPTER 2

Product sets

2.1. Definition and notation

This chapter is devoted to the basic theory of “sumsets”, which we will rather call
“product sets”, since we consider general groups, and not only commutative ones. The
focus is to a large extent on sets with extremal behavior. There are two very different
aspects: (1) sets with very large (even maximal) product sets, which are called Sidon
sets ; (2) sets with small subsets. The latter are more interesting: they appear in many
applications, and moreover some classification can be attempted in very general groups,
with important consequences. Sidon sets, by contrast, are extremely elusive.

We first introduce some basic definitions and notation.

Definition 2.1.1 (Product sets). Let G be a group, with group law written multi-
plicatively.

(1) For any subsets A and B of G, we denote by A · B or by AB the product set

A · B = {x ∈ G | there exist (a, b) ∈ A × B such that ab = x}.

If A contains a single element a, then we write a · B or aB for {a} · B.
(2) For any subset A of G and integers k ∈ Z, we denote A(k) the k-fold product set,

defined inductively by A(0) = {1}, A(1) = A, and

A(k+1) = A(k) · A

for k ⩾ 0, while A(−1) = {a ∈ G | a−1 ∈ A} and

A(−k−1) = A(−k) · A(−1)

for k ⩾ 0.
We also write A−1 for A(−1), since there is then no ambiguity.
If G is commutative, we sometimes write kA instead of A(k) and −A instead of A−1.

Remark 2.1.2. In the context of an abelian group G with additive notation, and a
subset A of G, one must be careful to distinguish between two potential meanings of 2A:
it may denote either A + A, or the set of elements of the form 2a for a ∈ A.

The definitions and the associativity of the group operation give the basic relations

A · (B · C) = (A · B) · C

for arbitary subsets of G. If m and n are both non-negative or both non-positive, then
we also have

A(m+n) = A(m) · A(n),

but this is false in general if m and n have different signs. For instance, note that

A(1) · A(−1) = {ab−1 | (a, b) ∈ A × A},

and this is almost never the same as A(0) = {1}.
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If G is commutative, we have furthermore

A · B = B · A.

There are other completely elementary properties of these definitions which we just
state, and usually use later on without specific mention:

(1) If A ⊂ A1, then A · B ⊂ A1 · B, and similarly if B ⊂ B1, then A · B ⊂ A · B1.

(2) For x and y ∈ G, we have x ∈ y · A if and only if y ∈ x · A−1.

Remark 2.1.3. If the group G is non-commutative, there are certain elementary facts,
valid for abelian groups, which fail. One of the simplest is that it is not true then that
A ·B and B ·A have the same size. Indeed, this will hold, in any group G, for sets of the
form

A = {a, b}, B = {1, a−1b},
provided a2 ̸= b2 (in particular a ̸= b) and ab ̸= ba: indeed, we have

A · B = {a, b, ba−1b}, B · A = {a, b, a−1ba, a−1b2},

and it is elementary that the last set has four elements under the stated conditions.
For example, in the smallest non-abelian group, symmetric group S3: for instance, we

can take

A = {(1, 3), (1, 2, 3)}, B = {1, (1, 3) ◦ (1, 2, 3)} = {1, (1, 2)}.

In the study of product sets, the following extra conditions on A tend to simplify the
arguments.

Definition 2.1.4 (Symmetric, neutral sets). Let G be a group. A subset A ⊂ G is
symmetric if it is stable under inversion, i.e., if A = A−1. It is called neutral1 if 1 ∈ A.

If A is symmetric, then A(k) = A(−k) for all integers k. If A is neutral, then

A(k) ⊂ A(k+1)

for all integers k ⩾ 0.
It is often neutral symmetric subsets which are the best behaved. Note that A has

this property if and only if

A = A(−1) ∪ A(0) ∪ A(1).

One can sometimes reduce problems to this situation by replacing A by A(−1)∪A(0)∪
A(1) (i.e., adding all inverses of elements of A, and the neutral element). However, another
natural neutral symmetric set related to A is the product set A · A−1 (assuming that A
is not empty).

Remark 2.1.5. Let ⟨A⟩ denote the subgroup generated by a subset A ⊂ G. We have
the equality ⋃

k∈Z

(A ∪ A−1)(k) = ⟨A⟩

essentially by definition. In particular, a symmetric set A generates G if and only if any
x ∈ G belongs to some product set A(k) with k ⩾ 0.

1 This is not a standard notation.
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As suggested by the discussion at the end of Section 1.3, it is also useful to take into
account the multiplicity of representations of an element as a product in a product set.
For this, we assume that the sets A and B are finite, and then define the representation
function for A · B by

rA,B(x) = |{(a, b) ∈ A × B | ab = x}|,
which is a function G → R which is non-zero exactly on A · B. On occasion, we also
argue with the set of representations itself, i.e, with the set

RA,B(x) = {(a, b) ∈ A × B | ab = x},
which we call the representation set for A · B.

If the group G itself is finite, then if we denote by φA and φB the characteristic
functions of A and B, respectively, we see that the formula

rA,B(x) =
∑

(a,b)∈G2

ab=x

φA(a)φB(b) = |G|φA ∗ φB,

holds, where the right-hand side involves the convolution of the characteristic functions
of A and B (see Definition A.7.8).

As a consequence, or by direct computation, we have

(2.1)
1

|G|
∑
x∈G

rA,B(x) =
|A||B|
|G|

,

generalizing (1.2).

Remark 2.1.6. Depending on the situation, it may be convenient to consider r̃A,B =
φA ∗ φB instead of rA,B. Adjusting the constants, this satisfies

1

|G|
∑
x∈G

r̃A,B(x) =
|A||B|
|G|2

,

which is interpreted as the product of the “densities” of A and B in G.

If G is abelian, then the properties of the convolution imply that the Fourier transform
of rA,B is proportional to the (pointwise) product of the Fourier transforms of φA and φB

(see Proposition A.7.7). Similar formulas (with repeated convolutions) apply to sets like
A(k) for k ∈ Z.

Coming back to an arbitrary group G, we note also that if A and B are not empty,
then we have an inequality

|A · B| ⩾ |A||B|
maxx∈G |rA,B(x)|

,

which can sometimes be useful; this follows from the computation

|A||B| =
∑
x∈G

rA,B(x) =
∑
x∈A·B

rA,B(x) ⩽ |A · B|max
x∈G

rA,B(x),

and the fact that rA,B is not identically zero.

Remark 2.1.7. (1) There are important links between iterated product sets A(k) and
properties (especially connectedness) of the Cayley graph associated to G and A. More or
less equivalently, there are links with the random walks on G defined with steps given by
random variables with values in A. We will discuss briefly some of these in Section 2.6.

21



(2) The definition of the product set A·B does not require any property of the product
on a group, simply that it exists (as a map G × G → G). We will sometimes use the
notation in this more general context, as it already appeared for instance (in the case of
the multiplication on Z) in the statement of Theorem 1.1.3.

There are a few “obvious” statements which hold for the sizes of product sets. The
fact that |a · B| = |B| for any set B and any element a ∈ G is used constantly (note that
it reflects the fact that we work with subsets of a group, so that multiplication by a fixed
element is a bijection; in the case of multiplication in Z, or any other ring, this property
fails when a = 0). The other general bounds are the following:

(1) If A and B are non-empty, then we have

|A · B| ⩾ max(|A|, |B|),
since |a · B| = |B| and a · B ⊂ A · B for any a ∈ A, and similarly for the bound
|A · B| ⩾ |A|.

(2) We have, for A, B arbitrary, the bound

|A · B| ⩽ |A||B|.
(3) If G is commutative and A = B, then we have the better bound

|A(2)| ⩽ |A|(|A| + 1)

2
,

since the matrix (a1 + a2)(a1,a2)∈A×A is then symmetric.

None of these bounds can be improved in general. The basic theory of product sets
can then be described as attempts to classify first the extremal cases, and then “almost”
extremal cases. This leads to completely different outcomes for the upper and the lower
bounds. We will first discuss sets where A(2) is maximal in Section 2.3, simply because
this is more straightforward (partly in the absence of really definitive results, or even
conjectural statements), but the reader can very well skip immediately to Section 2.4 for
the discussion of the “approximate subgroups”, which are related to the extrema of the
lower bounds.

2.2. Freiman homomorphisms

In general, if we want to compare the algebraic properties of two groups G and H,
then we use group homomorphisms from G to H (or from H to G). In particular, two
groups are considered to be identical when there is an isomorphism between them, and
then any group-theoretical property of one of these groups has a perfect translation in a
property of the other.

When dealing with product sets, which involve often relatively small subsets of the
ambient groups, Freiman realized that some weaker notion could be used to go back and
forth between non-isomorphic groups.

Definition 2.2.1. Let G and H be arbitrary groups and let A ⊂ G and B ⊂ H be
subsets of these. Let k ⩾ 0 be an integer.

A map f : A → B is a Freiman k-morphism if and only if, for any tuple (a1, . . . , a2k)
of elements of A, the condition

(2.2) a1 · · · ak = ak+1 · · · a2k
implies

(2.3) f(a1) · · · f(ak) = f(ak+1) · · · f(a2k).
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If f is bijective and its inverse is a Freiman k-morphism from B to A, then f is said
to be a Freiman k-isomorphism.

Note that any homomorphism f : G → H induces by restriction a Freiman k-morphism
A → B for any k ⩾ 0 and any subsets A ⊂ G and B ⊃ f(A). If f is an isomorphism,
then it defines a Freiman k-isomorphism from A to f(A) for any k. In particular, the
identity map from a set to itself is always a Freiman k-isomorphism.

It is also straightforward that if f : A → B and g : B → C are Freiman k-morphisms,
then g ◦ f is also one, and similarly for k-isomorphisms.

Any Freiman k-morphism from A to B is also an l-morphism for any l ⩽ k: indeed,
this is trivial if A is empty (in which case the unique map A → B is a k-morphism for
any k), and otherwise given a relation

a1 · · · al = al+1 · · · a2l,
we obtain an equation between k-tuples by multiplying by k − l elements equal to some
fixed element α0 of A on both sides, and then we cancel out the corresponding factors
f(α0) after applying f and the Freiman property for k factors.

Although the definition of a Freiman k-morphism only involves sums, it does have
good properties also for differences. Indeed, suppose f : A → B is a Freiman 2-morphism.
If a1, . . . , a4 in A satisfy a1 − a2 = a3 − a4, then we get a1 + a4 = a3 + a2, hence
f(a1) + f(a4) = f(a3) + f(a2), and then f(a1) − f(a2) = f(a3) − f(a4).

Suppose furthermore that A ⊂ G is symmetric and that f(1G) = 1H. We then have
f(a−1) = f(a)−1 for all a ∈ A (indeed, from a · a−1 = 1G · 1G we deduce f(a)f(a−1) = 1H

from the assumption). Note that this is not true without some condition: for instance,
if f : A → B is a Freiman k-morphism and b ∈ B, then f + b : x 7→ f(x) + b is also a
Freiman k-morphism.

The following proposition is elementary but quite useful.

Proposition 2.2.2. Let f : A → B be a Freiman k-morphism for some k ⩾ 1. Then f
is a k-isomorphism if and only if f is surjective and if the equations

a1 · · · ak = ak+1 · · · a2k
and

f(a1) · · · f(ak) = f(ak+1) · · · f(a2k)

are equivalent for all (a1, . . . , a2k) ∈ A2k.

Proof. Taking k = 1 (as we can by the remarks above), we see that f(a1) = f(a2)
if and only if a1 = a2, so that f is injective, hence bijective by the assumptions. Then it
follows also that the inverse f−1 is a Freiman k-morphism. □

Corollary 2.2.3. Let G and H be arbitrary groups and let f : G → H be a group
morphism. Let k ⩾ 1 be an integer. If A ⊂ G is any subset such that the restriction
of f to A(k) is injective, then f defines by restriction a Freiman k-isomorphism from A
to f(A).

Proof. Let B = f(A). Then we have by restriction a map f : A → B which is sur-
jective and is a Freiman k-morphism. Since f is morphism of groups, the condition (2.2)
implies (2.3). Conversely, suppose that (ai) ∈ A2k is such that

f(a1) · · · f(ak) = f(ak+1) · · · f(a2k).

The elements
x = a1 · · · ak, y = ak+1 · · · a2k
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of A(k) then satisfy f(x) = f(y), and hence x = y by assumption, which proves that the
criterion of Proposition 2.2.2 is satisfied. □

The basic property of Freiman morphisms is the following lemma:

Lemma 2.2.4. Let k ⩾ 2 and let f : A → B be a Freiman k-morphism. For any
subsets A1 and A2 of A, we have

|f(A1) · f(A2)| ⩽ |A1 · A2|

with equality if f is a 2-isomorphism. In particular, we have |f(A)(2)| ⩽ |A(2)|.

Proof. Partition the cartesian product set A1 × A2 into sets formed with elements
(a1, a2) such that the product a1 · a2 is the same, and similarly for f(A1) × f(A2); call X
and Y the sets of the resulting subsets, and observe that the set X has cardinality |A1 ·
A2|, while Y has cardinality |f(A1) · f(A2)| (in other words, the elements of X are the
equivalence classes for the equivalence relation on A1 × A2 defined by (a1, a2) ∼ (b1, b2)
if and only if a1a2 = b1b2).

Observe now that the assumption that f is a Freiman 2-morphism means that there

is a well-defined map f̃ : X → Y which maps the set of elements with a1a2 equal to a
given value to the set in Y with the common value of f(a1)f(a2). By construction, this

map f̃ is surjective, and therefore |Y| ⩽ |X|, which gives the stated inequality. Applying
it also to f−1 if f is a 2-isomorphism, we get equality in that case. □

Example 2.2.5. (1) Suppose that H is commutative. If f : A → B is a Freiman

k-morphism, then for any h0 ∈ H, the map f̃ : A → h0B defined by f̃(x) = h0f(x) is a
Freiman k-morphism (and is a k-isomorphism if f is one). Indeed, from (2.2) and (2.3),
and from the commutativity of H, we deduce

f̃(a1) · · · f̃(ak) = hk0f(ak+1) · · · f(a2k) = hk0f(ak+1) · · · f(a2k) = f̃(ak+1) · · · f̃(a2k).

(2) The following two examples give possibly the two most important examples of
Freiman isomorphism which do not arise from a group isomorphism.

Let q ⩾ 1 be an integer and let f : Z → Z/qZ be the reduction map. This is a group
morphism, hence a Freiman k-morphism for all k ⩾ 0. Suppose that k ⩾ 2 is fixed, and
that n is an integer such that 0 ⩽ kn ⩽ q. We claim that the map induced from f by
restriction to the interval A = {0, . . . , n − 1} and to B = f(A) ⊂ Z/qZ, is a Freiman
k-isomorphism.

Indeed, the map f : A → B induced by restriction is of course surjective. Moreover,
we have the inclusion

A(k) ⊂ {0, . . . , k(n− 1)},
and since k(n− 1) < kn ⩽ q, it follows that the restriction of f to A(k) is injective. Thus
the result follows directly from Corollary 2.2.3.

This example demonstrates the essential fact that, from the point of view of Freiman
k-isomorphisms, two subsets of very different groups can “look the same” (in particular,
we can pass from an infinite torsion-free group like Z to a finite cyclic group). From
Lemma 2.2.4, it follows that one can often study product sets by moving to a different
group. In particular, one can move some questions from Z to finite abelian groups, one
advantage of which is that Fourier analysis is often much simpler in that context.

(3) The other fundametnal standard example shows that Freiman isomorphisms can
“alter the apparent dimension” of a set. Let d ⩾ 1 be an integer and let I1, . . . , Id be
finite intervals in Z, of length |Ii| = ni ⩾ 1. Consider the subset A = I1 × · · · × Id of Zd.
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Now pick an integer k ⩾ 1 and an integer m > kmax(ni) ⩾ 2. Define f : Zd → Z by

f(x1, . . . , xd) = y1 +my2 +m2y3 + · · · +md−1yd, yi = xi − min(Ii).

The map f is a (surjective) affine map (i.e., a group homomorphism composed with
a translation), hence is a Freiman k-isomorphism for any k. We claim that it is injective
on A(k); by Corollary 2.2.3 (adapted to affine maps), this implies that A is Freiman k-
isomorphic to f(A). Thus, a seemingly d-dimensional parallelepided is “the same” as a
certain subset of “line” Z.

The injectivity assertion is a consequence of the fact that any x = (xi) ∈ A(k) satisfies
0 ⩽ xi < kni ⩽ n, hence f(x) is an integer whose expansion in base n has “digits”
precisely given by x1, . . . , xd. This means we can recover x from f(x), proving the
desired injectivity.

For later purposes, as it can be important in applications, we note also that this
construction gives a good control of the size of an interval containing the image of f :
indeed, suppose for simplicity that ni = n for all i, so that we can take m = kn+ 1. We
then get f(A) ⊂ [N] with N ⩽ md = (kn+ 1)d.

(4) Freiman morphisms can be used to characterize certain additive structures. For
instance, let G be an abelian group, and let a0 and a be elements of G and I an interval
in Z. The map f : I → G defined by f(i) = a0 + ia is then a Freiman k-morphism for any
k ⩾ 1, with image equal to the arithmetic progression a0 + [I]a. Now, conversely, suppose
g : I → G is a Freiman 2-morphism; we claim that g(I) is an arithmetic progression, so
that arithmetic progressions are characterized as images of Freiman 2-morphisms defined
on intervals in Z.

To check the claim, notice that we may assume that I has at least two elements,
since otherwise the result is clear. Pick then some fixed j ∈ I such that j + 1 ∈ I, and
define b = g(j + 1) − g(j) ∈ G. Whenever i ∈ I is such that i + 1 ∈ I, the equation
(i + 1) − i = (j + 1) − j implies that g(i + 1) − g(i) = b. By induction on i ∈ I, we
conclude that g(i) = g(j) + (j − i)b (the induction is done separately over i ⩾ j in I and
over i ⩽ j in I; if I has a minimum or a maximum, one of these inductions can be avoided
by picking j to be the minimum or maximum of I).

2.3. Sidon sets

If G is non-commutative, then the upper-bound |A·B| = |A||B| is relatively frequently
an equality. For a group like GLn(R) or GLn(Z), there is no hope at all of saying anything
new or interesting about sets which achieve this bound.

However, for abelian groups, there is definitely some interest in the study of sets with
A(2) as large as possible.

Throughout this section, all groups are assumed to be commutative unless other-
wise specified. We use additive notation unless we deal with subgroups of multiplicative
groups.

Definition 2.3.1. Let G be an abelian group. A subset A ⊂ G is called a Sidon set
if the Sidon equation

a+ b = c+ d

with (a, b, c, d) ∈ A4 implies a ∈ {c, d}. Equivalently, the equation

a− b = c− d

with (a, b, c, d) ∈ A4 such that a ̸= b implies that a = c and b = d.
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Remark 2.3.2. (1) If A ⊂ G is finite, then A is a Sidon set if and only if |A(2)| =
|A|(|A| + 1)/2, but as we will see, there are some fairly interesting infinite examples.

(2) If A ⊂ G is a Sidon set and B ⊂ H is a subset of another abelian group, and
if f : A → B is a Freiman 2-morphism, then the image f(A) ⊂ B is also a Sidon set, by
Lemma 2.2.4.

There is a slightly different but slightly stronger statement: if f : G → H is a group
homomorphism, and if A ⊂ G is a subset such that the restriction of f to A is injective,
and such that f(A) is a Sidon set in H, then A is a Sidon set. Indeed, if (a, b, c, d) ∈ A4

satisfy a + b = c + d, then we get f(a) + f(b) = f(c) + f(d), an equation with all terms
in f(A), so that f(a) ∈ {f(c), f(d)}, which means that a ∈ {c, d} by injectivity of f
on A.

(3) An equivalent form of the definition (for A finite) is that rA,A(x) ⩽ 2 for all x.
(4) Certain authors (see, e.g., the paper [1] of Babai and Sós) define a Sidon set

A ⊂ G to be a subset such that whenever (a, b, c, d) are elements of A with three at least
of them distinct, we have a + b ̸= c + d. This coincides with the definition above if G
has no 2-torsion, but otherwise it allows A to contains elements a ̸= b such that 2a = 2b,
which Definition 2.3.1 excludes in a Sidon set.

In particular, if G is an abelian group where 2x = 0 for all x, then G contains no
Sidon set of size ⩾ 2, since we have equations x+ x = y + y with x ̸= y.

Example 2.3.3. To say that A ⊂ G is a Sidon set is a form of restricted “linear
independance” of the elements of A. Thus there are immediate “tautological” examples:
for any set X, we obtain a Sidon set A in bijection with X in the free abelian group
G = Z(X) by taking A to be the canonical basis of G, since the exact linear independance
of the elements of A imply a fortiori what is required to have a Sidon set.

Furthermore (and this maybe explains why there is no real “theory” of Sidon sets,
but only examples and applications of the defining property) all Sidon sets of a given
(finite) size n ⩾ 1 are Freiman 2-isomorphic to the canonical basis of Zn.

Indeed, given an abelian group G and a Sidon set A ⊂ G with |A| = n, there exists
(by the “universal property” of free abelian groups) a group morphism f : ZA → G such
that f(ea) = a for any a ∈ A, where (ea)a∈A is the canonical basis of ZA (concretely, we
have

f
(∑
a∈A

naea

)
=

∑
a∈A

naa

for any integers na ∈ Z, with the right-hand sum computed in G). This morphism is
of course injective on the set B = {ea} of the elements of the canonical basis, so that it
defines by restriction a Freiman 2-isomorphism from B to f(B) = A by Corollary 2.2.3.
Since ZA is isomorphic (as a group) to Zn, this gives the claim.

Example 2.3.4. The set of prime numbers is a Sidon set in the group Q× of invertible
rational numbers; equivalently, the set of numbers log p, for p prime, is a Sidon set in R.

Example 2.3.5. Let r ⩾ 2 be a real number. Any geometric progression with common
ratio r is a Sidon set in Z, since the equation ri + rj = rk + rl with i, j, k, l non-negative
integers has only the solutions (i, j) = (k, l) and (i, j) = (l, k).

More generally, let A ⊂ R×
+ be any set of positive real numbers such that, whenever

a < b are elements of A, we have b ⩾ ra. Then A is a Sidon set in the additive group R.
Indeed, assume that (a, b, c, d) ∈ A4 satisfy a + b = c + d. If a is the largest of the four,
then we have

a+ b > a ⩾ 2 max(c, d) ⩾ c+ d,
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hence the result.
This result does not always hold for geometric progressions whose common ratio is

not a real number ⩾ 2. For instance, one checks easily that the equation

1 + r4 = r2 + r3

has a solution r = 1.32471... > 1. But note that if r ∈ C is transcendental, the set of its
powers is a Sidon set in C.

Example 2.3.6. There are many (often “folklore”) conjectures concerning the fact
that “concrete” sets should be Sidon sets. Here are two:

– Is the set of fifth powers of positive integers a Sidon set in Z?

– Is the set of positive ordinates of zeros of the Riemann zeta function a Sidon set
in R?

Note that the first question involves the smallest degree where the answer could be
Yes: the formulas

12 + 72 = 52 + 52 = 50,

103 + 93 = 13 + 123 = 1729,

15844 + 5944 = 13444 + 13344 = 635318657 (Euler)

show that the sets of squares, cubes or fourth powers of positive integers are not Sidon
sets in Z.

Although we motivated the definition of Sidon sets using their extremal sumset prop-
erty, the main applications of Sidon set belong to harmonic analysis and related areas, and
can be quite surprising. The key fact in the original study by Sidon [75] is the following
simple property of trigonometric polynomials supported on a Sidon subset of Z.

Proposition 2.3.7. Let A ⊂ Z be a finite Sidon set. For any family of complex
coefficients (λa)a∈A, we have∫ 1

0

∣∣∣∑
a∈A

λae(at)
∣∣∣4dt = 2

(∑
a∈A

|λa|2
)2

−
∑
a∈A

|λa|4

= 2
(∫ 1

0

∣∣∣∑
a∈A

λae(at)
∣∣∣2dt)2

−
∑
a∈A

|λa|4.

In particular, we have∫ 1

0

∣∣∣∑
a∈A

λae(at)
∣∣∣4dt ⩽ 2

(∫ 1

0

∣∣∣∑
a∈A

λae(at)
∣∣∣2dt)2

.

The point is that, in general, the left-hand side (often called the fourth moment of
the trigonometric polynomial) only satisfies much weaker bounds in terms of the second
moment. Sidon used this fact (among other tools) to prove a result concerning the
Fourier coefficients of continuous periodic functions (roughly speaking, if A ⊂ Z is an
infinite Sidon set, and if (λa)a∈A are complex numbers such that∑

a∈A

|λa|2 < +∞,

then there exists a 1-periodic continuous function φ : R → C such that

λa =

∫ 1

0

φ(t)e(−at)dt
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for all a ∈ A, i.e., the λa’s are the Fourier coefficients of φ for these frequencies).

Proof. By writing |z|4 = z · z · z̄ · z̄ and expanding the resulting sum when z is the
value at t of the trigonometric polynomial, we get∣∣∣∑

a∈A

λae(at)
∣∣∣4 =

∑
a,b,c,d∈A

λaλbλcλd e
(
(a+ b− c− d)t

)
for t ∈ R. Integrating over t using the orthogonality relation∫ 1

0

e(ht)dt =

{
1 if h = 0,

0 if h ̸= 0,

for h ∈ Z, we deduce ∫ 1

0

∣∣∣∑
a∈A

λae(at)
∣∣∣4dt =

∑
a,b,c,d∈A
a+b=c+d

λaλbλcλd.

The usefulness of the Sidon condition is now obvious, as it allows us to fully param-
eterize the solutions of the equation a + b = c + d. One must simply be a bit careful
of possible multiplicity. Precisely, we will sum over the possible values of (c, d) for each
value of (a, b) ∈ A2.

If a = b, the equation for (c, d) is a + a = c + d, which admits the unique solution
c = d = a by the Sidon condition. Hence the corresponding contribution is∑

a∈A

λaλaλaλa =
∑
a∈A

|λa|4.

If a ̸= b, the equation a + b = c + d admits the two solutions (c, d) = (a, b) and
(c, d) = (b, a) by the Sidon condition, and the corresponding contribution is∑

a,b∈A
a̸=b

(
λaλbλaλb + λaλbλbλa

)
= 2

∑
a,b∈A
a̸=b

|λa|2|λb|2.

Adding these two contributions, we obtain∫ 1

0

∣∣∣∑
a∈A

λae(at)
∣∣∣4dt = 2

∑
a,b∈A
a̸=b

|λa|2|λb|2 +
∑
a∈A

|λa|4.

Noting the relation∑
a,b∈A
a̸=b

|λa|2|λb|2 +
∑
a∈A

|λa|4 =
∑
a,b∈A

|λa|2|λb|2 =
(∑
a∈A

|λa|2
)2

,

we see that this gives the first stated formula. The second just follows from the Parseval
identity ∑

a∈A

|λa|2 =

∫ 1

0

∣∣∣∑
a∈A

λae(at)
∣∣∣2dt

(which is straightforward here since A is finite). □

The proposition above admits the following immediate variant for any finite abelian
group (the proof is left as an exercise; there is another variant for any compact abelian
group, the case of Fourier series corresponding to R/Z).
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Proposition 2.3.8. Let G be a finite abelian group with dual group Ĝ. Let A ⊂ Ĝ
be a Sidon set. For any family of complex coefficients (λχ)χ∈A, we have

E
x∈G

(∣∣∣∑
χ∈A

λχχ(x)
∣∣∣4) = 2

(∑
χ∈A

|λχ|2
)2

−
∑
χ∈A

|λχ|4.

We refer to the work of Forey, Fresán and Kowalski [32, § 8.4] for a discussion of
applications of certain Sidon sets in arithmetic geometry.

The most natural questions about Sidon sets (both from the point of view of intellec-
tual curiosity as from that of the type of applications discussed by Sidon) are then about
constructing Sidon sets in a given abelian group G which are “as large as possible”. This
can be expressed in different variants, among which the following are the most popular:

– How “dense” can a Sidon set A ⊂ Z, in the sense of “maximizing” the function

N 7→ 1

N
|A ∩ {−N, . . . , 0, . . . ,N},

(which can take different meanings, depending on how we want to compare
functions) and similarly for a Sidon set among the non-negative integers?

– Given an integer N ⩾ 1, how dense can a finite Sidon set A ⊂ [N] be? Of course,
any infinite Sidon set in Z gives one in [N] by intersection, but it could be that
there are “better” sets for a finite integer N that do not extend to very large
infinite Sidon sets.

– Given a finite abelian group G, how large can a Sidon set A ⊂ G be?

We will give some of the basic results concerning all of these questions. First, we
present what are essentially all the “densest” known Sidon sets in finite abelian groups:
these are five infinite families, indexed by powers of prime numbers (or equivalently by
finite fields), of pairs (A,G) where |A| is very close to |G|1/2. Note that |G|1/2 is the
best possible one can hope for: if A ⊂ G is a Sidon subset of a finite group, then the
differences a− b for a ̸= b are all distinct in G, so that |A|(|A| − 1) ⩽ |G|.

We present these dense Sidon sets twice: first, as separate examples, as they arose
historically (sometimes being discovered independently more than once), then through
a recent uniform construction of Eberhard and Manners [24] (there is another, very
different, uniform construction due to Forey, Fresán and Kowalski [33], but we won’t
discuss it).

Example 2.3.9. (1) Let E be a field (possibly infinite). Consider the abelian group
G = E × E×. Define then

A = {(x, x) ∈ G | x ∈ E×},
the “diagonal” in G.

The set A is a Sidon set. Indeed, given elements a, b, c, d in E×, the equation

(a, a) · (b, b) = (c, c) · (d, d)

in the group G is equivalent to the system of equations

(2.4)

{
a+ b = c+ d

ab = cd

in E. Since these equations imply that {a, b} and {c, d} are both the solution sets to the
quadratic equation

X2 − (a+ b)X + ab = X2 − (c+ d)X + cd = 0,
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we have {a, b} = {c, d}, hence a ∈ {c, d}.
If we want to have a finite Sidon set, we take E to be a finite field, of size q say (for

instance, E = Z/pZ with p prime); then G has size q(q−1) and A has size q−1, which is

extremely close to
√

|G|. The structure of G can in fact be determined exactly: if q = pν

for p prime and ν ⩾ 1, then it is well-known that E is isomorphic to (Z/pZ)ν as abelian
group, whereas E× is cyclic of order q−1, so G is isomorphic to (Z/pZ)ν×Z/(q−1)Z. In
the case where E = Z/pZ (namely, when ν = 1), the Chinese Remainder Theorem shows
that G is isomorphic to the cyclic group Z/p(p− 1)Z, since p and p− 1 are coprime.

This example is due independently to Spence (cited by Ganley in [38, p. 328]) and to
Rusza [70, Th. 4.4].

(2) Again, let E be an arbitrary field. Let G = E× × E×, and define

A = {(x, 1 − x) ∈ G | x ∈ E× {1}}.
This is again a Sidon set, and the reason is very similar to the first example: for a, b,

c, d in E× {1}, the equation

(a, 1 − a) · (b, 1 − b) = (c, 1 − c) · (d, 1 − d)

in the group G is equivalent to the system of equations{
ab = cd

(1 − a)(1 − b) = (1 − c)(1 − d)
or

{
ab = cd

1 − (a+ b) + ab = 1 − (c+ d) + cd

in E, which is equivalent to the system (2.4) above, hence has only the solutions where
a ∈ {c, d}.

When E is finite of size q, then G has size (q − 1)2 (more precisely, the group G is

isomorphic to (Z/(q − 1)Z)2) and A has size q − 2 =
√

|G| − 1; this example is due to
Hughes [52] and Cilleruelo [17, Ex. 3].

(3) Let now E be a field of characteristic different from 2. Take G = E × E, and
consider

A = {(x, x2) ∈ G | x ∈ E}
(in other words, the “parabola” which is the graph of the squaring function). It is again
a Sidon set, for pretty much the same reasons as before: if (a, b, c, d) are in E then

(a, a2) + (b, b2) = (c, c2) + (d, d2)

if and only if {
a+ b = c+ d

a2 + b2 = c2 + d2.

The standard identities

ab =
(a+ b)2 − a2 − b2

2
, a2 + b2 = (a+ b)2 − 2ab,

valid since E has characteristic different from 2, show that the system is also equivalent
to (2.4), so that the solutions satisfy a ∈ {c, d}.

When E is finite of size q = pν with p prime, then G has size q2 and is isomorphic
to (Z/pZ)2ν , while A has size q =

√
|G|. This example was in fact the first of those

discussed above, and is due to Erdős and Turán [30].
(4) The next two examples seem to be based on slightly different principles, but in

fact turn out to be again ultimately similar. Here E is again a field, but we now also
consider an extension F/E of degree 2. We fix an element ε ∈ F which is not in E (so
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that F = E(α) necessarily). We consider the group G = F× and set A = α + E ⊂ F.
Note that A ⊂ G; we claim that this is again a Sidon set.

Suppose indeed that a, b, c, d are elements of E and that

(α + a)(α + b) = (α + c)(α + d).

This means that (a + b)α + ab = (c + d)α + cd, and since (1, α) is basis of F as an
E-vector space, we obtain once more the system (2.4), so that a ∈ {c, d} as before.

When E is finite of size q = pν with p prime, then there is a unique choice of F (up
to isomorphism of fields); the group G has size q2 − 1 and is isomorphic to Z/(q2 − 1)Z,
while A has size q. This example is due to Bose [7].

(5) Finally, for the last of the classical examples, we take a field E and an extension
F/E of degree 3. Pick α ∈ F such that F = K(α), so that (1, α, α2) is a basis of F as an E
vector space. Now let G = F×/E×, and let A = ((E + αE) {0})/K×, which is a subset
of G. This is the fifth Sidon set.

Indeed, note that any element of A has a unique representative in F which is either
α or of the form 1 + αa for some a ∈ E. Suppose then that (a, b, c, d) are elements of E
of E such that

(1 + αa)(1 + αb) = (1 + αc)(1 + αd)

in G. Since (1, α, α2) is a basis of E, this relation is once more equivalent to the sys-
tem (2.4). This already shows that A {αE×} is a Sidon set. It is then elementary to
check that adding α preserves the Sidon property (for instance, no equation

α(1 + bα) = (1 + cα)(1 + dα)

holds, etc).
When E is finite of size q = pν with p prime, then there is a unique choice of F (up

to isomorphism of fields); the group G has size (q3 − 1)/(q− 1) = q2 + q+ 1 and is cyclic
(since it is a quotient of a cyclic group), while A has size (q2 − 1)/(q − 1) = q + 1. This
example is due to Singer [76]; it is interesting to note that it is in fact chronologically
the first of those we have described, although it might look more complicated than the
previous ones.

These examples have clearly a similar flavor, but it’s not obvious at first if one can
describe them as special cases of a uniform construction. This is however possible, as
shown by Eberhard and Manners. Abstractly, they construct Sidon sets out of plane
projective geometry over a field. To state their result, we recall some basic notation from
projective geometry.

For a field E and an integer d ⩾ 1, the d-dimensional projective space over E is the set
Pd(E) of lines in the vector space Ed+1; it can (and will) be identified with the quotient
set

(Ed+1 {0})/E×,

where the group E× acts on Ed+1 by scalar multiplication, i.e., we have t ·(x1, . . . , xd+1) =
(tx1, . . . , txd+1).

The group GLd+1(E) acts on Ed+1 by the usual multiplication of matrices and vectors,
and this respects the action by scalar multiplication, so we obtain an action on the
projective space Pd(E) (by homogenenous linear change of variable). The group of scalar
matrices (isomorphic to E×) acts trivially, hence we obtain an action of the quotient
group PGLd+1(E) = GLd+1(E)/E× on the projective space.

A line in Pd(E) is defined to be the image by the canonical projection (Ed+1 {0}) →
Pd(E) of the set of non-zero elements in a two-dimensional vector subspace contained
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in Ed+1. The usual action of GLd+1(E) on two-dimensional subspaces induces an action
of PGLd+1(E) on the set of lines in Pd(E). This is compatible with the action on points,
in the sense that if x ∈ Pd(E) and if ℓ ⊂ Pd(E) is a line, then for all g ∈ PGLd+1(E), we
have x ∈ ℓ if and only if g · x ∈ g · ℓ.

Theorem 2.3.10 (Eberhard–Manners). Let E be a field. Let G be an abelian subgroup
of the group PGL3(E). Fix a point p ∈ P2(E) and a line ℓ ⊂ P2(E). Assume that the
stabilizers of p and ℓ in G are trivial, i.e., that

{g ∈ G | g · p = p} = {g ∈ G | g · ℓ = ℓ} = {1}.
Then the set

A = {g ∈ G | g · p ∈ ℓ}
is a Sidon set in G.

Proof. Let (a, b, c, d) ∈ A4 be elements such that a ̸= b and ab−1 = cd−1. We need
to prove that a = c. Let r = ab−1 · p, which is also equal to cd−1 · p.

We observe that the points p and r both belong to the intersection of the lines b−1·ℓ and
d−1 ·ℓ. Indeed, this holds by definition for p, and for r, we have b ·r = b(ab−1) ·p = a ·p ∈ ℓ
(using the commutativity of G) and similarly d · r = c · p ∈ ℓ.

In the projective plane P2(E), two lines are either equal or intersect in a single point
(which may be “at infinity” from the perspective of affine geometry). Hence we have
either b−1 · ℓ = d−1 · ℓ or p = r. The first possibility implies that b = d by the assumption
on the stabilizer of ℓ is trivial, and the second is excluded from the assumption that the
stabilizer of p is trivial, since r = ab−1 · p and a ̸= b. □

Using the classification of (maximal) commutative subgroups of PGL3(E), Eberhard
and Manners recover the classical constructions of Sidon sets. We illustrate this in one
case.

Example 2.3.11. Let G be the subgroup of diagonal matrices, modulo scalars:

G =
{x 0 0

0 y 0
0 0 z

 | x, y, z ∈ E×
}
/E× ⊂ PGL3(E).

This is a commutative subgroup of PGL3(E), which is isomorphic to (E×)2 by mapping
a diagonal matrix as above to (x/z, y/z).

Define p ∈ P2(E) to be the class of (1, 1, 1); sincex 0 0
0 y 0
0 0 z

 ·

1
1
1

 =

xy
z

 ,

we see that the elements of the stabilizer of p in G must satisfy x = y = z, i.e., are classes
of scalar matrices, hence the stabilizer of p in G is trivial.

Now let ℓ ⊂ P2(E) be the line defined to be the image in P2(E) of the non-zero
elements of the plane L ⊂ E3 defined by the equation

a+ b = c

for (a, b, c) ∈ E3.
For g ∈ G with diagonal coefficients x, y, z, the image g · ℓ is the line defined similarly

from the equation

x−1a+ y−1b− z−1c = 0,
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and this coincides with ℓ if and only if the corresponding planes are the same, which
means that the matrix (

1 1 −1
x−1 y−1 −z−1

)
must have rank 1. This only occurs if x = y = z, so we deduce that the stabilizer of ℓ
in G is also trivial.

We can therefore apply Theorem 2.3.10. The corresponding Sidon set is the set of
(classes modulo E× of) matrices

g =

x 0 0
0 y 0
0 0 z


such that x 0 0

0 y 0
0 0 z

 ·

1
1
1

 ∈ L,

which translates to
x+ y = z.

Using the isomorphism G → E× ×E× described above, a matrix of this type maps to
(x/z, y/z) with x/z + y/z = 1. The image in E× ×E× of A is then the set of elements of
the form (t, 1 − t) with t ∈ E× {1}, which is precisely Example 2.3.9, (2) above.

Exercise 2.3.12. Let Z ≃ E× denote the subgroup of diagonal matrices in GL3(E).

(1) Show that the following are commutative subgroups of PGL3(E), and that the
Sidon set they define can recover two of the four other classical examples for
suitable choices of points and lines:

G =
{x y 0

0 x 0
0 0 1

 | x ∈ E×, y ∈ E
}

Z/Z,

G =
{1 x y

0 1 x
0 0 1

 | x, y ∈ E
}

Z/Z.

(2) Let E3 (resp. E2) be a cubic (resp. quadratic extension of) E. Show that there
exists a subgroup G3 (resp. G2) of GL3(E) isomorphic to E×

3 (resp. to E×
2 ×E×)

so that the subgroup G3Z/Z (resp. G2Z/Z) can be used to recover the last two
constructions.

We now address the question of the density of Sidon sets in Z. Of course, in order to
count these, we either look at finite sets, or consider the intersection with finite intervals.
The simplest bound follows by noting that if A is a Sidon set contained in an interval of
length N, then the differences b− a for {a, b} ⊂ A are pairwise distinct, and all lie in [N],
so that

|A|(|A| − 1)

2
⩽ N,

which gives |A| ⩽
√

2N + o(N1/2).
The simplest general results are due to Erdős and Turán. We summarize them as

follows.

Theorem 2.3.13 (Erdős; Turán). The following statements hold:
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(1) Any interval of Z of length N ⩾ 1 contains a Sidon set of size ⩾ 1
2
|N|1/2.

(2) There exists a Sidon set A ⊂ Z such that

|A ∩ [N]| ⩾ N1/3

for all integers N ⩾ 1.

(3) There exists a constant c > 0 sucht that, for any infinite Sidon set A of positive
integers, we have

(2.5) lim inf
N→+∞

(log N)1/2

N1/2
|A ∩ [N]| ⩽ c,

or equivalently, such that

|A ∩ [N]| ⩽ cN1/2

(log N)1/2

for arbitrarily large values of N.

(4) For any Sidon subset A ⊂ [N], we have

(2.6) |A| ⩽ N1/2 + N1/4 + 6.

Among these, the contrast between the first and third results might be the most
surprising: it shows that although the first N integers always contain pretty big Sidon
sets, these are not “compatible” as N varies, and any attempt to construct an infinite
Sidon set will lead to a set which has rather smaller density in a subsequence of intervals.

Proof of (1). This follows from the existence of dense Sidon subsets in suitable
finite abelian groups (as given by any of the “classical” examples), with some added
basic information on the distribution of primes.

To be precise, we first observe that if N = p2 − 1 for some prime number p, then
we have the Sidon set Ā of Bose in Z/(p2 − 1)Z (Example 2.3.9, (4)), that the set A of
integers n in [p2] such that n mod p ∈ Ā is again a Sidon set (see Remark 2.3.2, (2)) of

size p ⩾ 1
2

√
p2 − 1.

Now let N ⩾ 4 be arbitrary. By the so-called Bertrand Postulate (proved by Cheby-
chev; see, e.g. [78, § 2.2] for a very accessible account), there exists a prime number p
such that

1
2

√
N ⩽ p ⩽

√
N

hence 1
4
N ⩽ p2 ⩽ N. A Sidon set A of size p in [p2 − 1] is also a Sidon set in [N], and we

have

|A| = p ⩾ 1
2

√
N,

To conclude, we observe that any interval of length N in Z is of the form j + [N], and
contains the Sidon set j + A. □

Proof of (2). The idea here is to use a “greedy” construction: starting with a1 = 1,
we construct by induction a strictly increasing sequence of integers by defining inductively
ak+1 to be the smallest positive integer, distinct from a1, . . . , ak, such that the set
{a1, . . . , ak+1} is a Sidon set.

The existence of this sequence is elementary: when a1, . . . , ak have been defined, any
integer which is not among the integers a+ b− c, with a, b, c taken among {a1, . . . , ak},
is such that {a1, . . . , ak, a} is a Sidon set, and this a is not one of the ai’s with i ⩽ k
(since ai = ai + ai − ai). Thus the set of possible integers a to chose from is infinite, and
we take the smallest possible to get ak+1.
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Now observe more precisely that, given k, there are ⩽ k3 integers of the form a+ b− c
with a, b, c in {a1, . . . , ak}, and thus the smallest positive integer which is not of this
form is ⩽ k3 + 1. Thus ak+1 ⩽ k3 + 1, and it follows that the interval [N] always contains
at least N1/3 elements of this sequence. □

Remark 2.3.14. The sequence (ak) used above is known as the Mian–Chowla se-
quence. It appears as sequence A005282 in the Online Encyclopedia of Integer Sequences
(oeis.org), and its first few terms are:

1, 2, 4, 8, 13, 21, 31, 45, 66, 81, 97, 123, 148, 182, 204, 252, 290, 361, 401, 475, 565, 593,

662, 775, 822, 916, 970, 1016, 1159, 1312, 1395, 1523, 1572, 1821, 1896, 2029, 2254, 2379,

2510, 2780, 2925, 3155, 3354, 3591, 3797, 3998, 4297, 4433, 4779, 4851.

We now prove the statements (3) and (4). They are based on similar ideas, so we
begin with (3) and indicate the variant used in the proof of (4) later on. The key property
of Sidon sets used in (3) is the following, which was in fact already mentioned.

Lemma 2.3.15. Let A be a Sidon set of positive integers and let M ⩾ 1 be an integer.
The number of subsets {a, b} of elements of A of size 2 with |b−a| ⩽ M is at most M−1.

Proof. By assumption, we have a well-defined map

{a, b} 7→ max(a, b) − min(a, b) = |b− a|

from the set of pairs of elements in A∩ I to [M−1]. The fact that A is a Sidon set implies
that this map is injective, and hence the result follows. □

We will prove that if A is a set of positive integers which satisfies the condition of
Lemma 2.3.15, then it also satisfies the conclusion of the third part of Theorem 2.3.13.
In fact, we will show the following inequality, which turns out to imply the statement.

Proposition 2.3.16. Let A be a Sidon set of positive integers. For any integer N ⩾ 1,
define the intervals

Ij = (j − 1)N + [N] = {(j − 1)N + 1, . . . , jN}

for 1 ⩽ j ⩽ N. For any family (λj)1⩽j⩽N of complex numbers, the inequality∣∣∣ N∑
j=1

λj|A ∩ Ij|
∣∣∣ ⩽ 51/2N1/2

( N∑
j=1

|λj|2
)1/2

holds.

Proof. There is no choice here but to use the Cauchy–Schwarz inequality: we have

(2.7)
∣∣∣ N∑
j=1

λj|A ∩ Ij|
∣∣∣ ⩽ ( N∑

j=1

|A ∩ Ij|2
) N∑

j=1

|λj|2

for any family (λj). So the question is to bound the sum

N∑
j=1

|A ∩ Ij|2

from above (in fact, the proposition is equivalent to proving that this sum is ⩽ 5N). We
can do this because the problem is closely related to counting pairs of elements from
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A ∩ Ij. Precisely, noting the inequality x2 ⩽ 1 + 2x(x − 1) for x ∈ R, we obtain the
estimate

N∑
j=1

|A ∩ Ij|2 ⩽ N + 4
N∑

j=1

(
|A ∩ Ij|

2

)
.

But
(|A∩Ij |

2

)
is the number of pairs {a, b} in A ∩ Ij; any such pair, for any j, satisfies

1 ⩽ |b−a| ⩽ N−1, so the total number, allowing j to range over all integers, is at most N,
by Lemma 2.3.15. This means that

N∑
j=1

(
|A ∩ Ij|

2

)
⩽ N,

and hence
N∑

j=1

|A ∩ Ij|2 < 5N,

which gives the result when combined with (2.7). □

We apply the general inequality with λj = j−1/2 (we encourage the reader to try
other choices also to get a feeling for this inequality; for instance, check that λj = 1 only
recovers the “trivial” bound |A ∩ [N2]| ≪ N). We thus obtain

N∑
j=1

|A ∩ Ij|√
j

≪
√

N log N,

for all integers N ⩾ 2. We then transform the sum on the right-hand side using summation
by parts (see Lemma A.2.1 in the Appendix if this is not familiar). Noting that

k∑
j=1

|A ∩ Ij| = |A ∩ [kN]|

for any integer k ⩾ 1, we get

N∑
j=1

|A ∩ Ij|√
j

=
N−1∑
j=1

|A ∩ [jN]|
( 1√

j
− 1√

j + 1

)
+

|A ∩ [N2]|√
N

.

Since we want a lower bound, we can ignore the last term, and using elementary
estimates, we get

N−1∑
j=1

|A ∩ Ij|√
j

≫
N−1∑
j=1

|A ∩ [jN]|
j3/2

.

Combined with the previous result, this gives the estimate

N∑
j=1

|A ∩ [jN]|
j3/2

≪
√

N(log N)1/2

for all N ⩾ 2.
The

√
log N on the right hand side shows that it is not possible that |A∩ [jN]| ≫

√
N

for all j, since the left-hand side would then be of size
√

N log N. More precisely, to
deduce (2.5), we may define

e(N) = inf
n⩾N

|A ∩ [n]|
(log n/n)1/2
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for N ⩾ 2. Then the left-hand side of the last inequality is at least

⩾ e(N)
N∑

j=1

√
jN

log jN

1

j3/2
≫ e(N)

√
N(log N)

and hence we deduce that the function e(N) is bounded for N ⩾ 2. This amounts to
proving (2.5).

We now explain how to prove the bound for Sidon sets contained in [N]. We pick
a parameter M ⩾ 1, to be determined later, with M < N. We consider the intervals
Jj = j + [M] for j ∈ Z. As in Proposition 2.3.16, we use Cauchy’s inequality to obtain
the bound

(2.8)
∣∣∣∑
j∈Z

λj|A ∩ Jj|
∣∣∣2 ⩽ (∑

j∈Z

|A ∩ Jj|2
) ( N∑

j∈Z

|λj|2
)

for any sequence (λj), say with finite support so that the last sum is finite. We now
simply take λj = 1 if [N] ∩ Jj ̸= ∅, and λj = 0 otherwise. Then it follows that

N∑
j∈Z

|λj|2 = |{j ∈ Z | [N] ∩ (j + [M]) ̸= ∅}| = N + M − 1.

On the other hand, the sum of |A ∩ Jj| is easily determined:∑
j∈Z

|A ∩ Jj| =
∑
j∈Z

∑
a∈A∩Jj

1 =
∑
a∈A

∑
j∈Z

a∈j+[M]

1 = M|A|.

Finally, the sum of |A ∩ Jj|2 is handled using the Sidon property: first, note that∑
j∈Z

|A ∩ Jj|2 =
∑
a,b∈A

∑
j∈Z

{a,b}⊂Jj

1.

For a = b, we have the same sum equal to M|A| as before. On the other hand,
when a ̸= b, the Sidon property implies that {a, b} is determined by the value of δ = |b−a|,
which is an integer in [M − 1]. Moreover, for any given δ, there are M − δ intervals Jj

in which the pair {a, b} is contained (namely, assuming a < b, those of the form j + [M]
with b− M ⩽ j < a). Thus∑

a,b∈A

∑
j∈Z

{a,b}⊂Jj

1 ⩽ 2
M−1∑
δ=1

(M − δ) = M(M − 1),

and altogether ∑
j∈Z

|A ∩ Jj|2 ⩽ M|A| + M(M − 1) = M(|A| + M − 1).

Using (2.8) and dividing by M, Cauchy’s inequality therefore gives

(2.9) M|A|2 ⩽ (N + M − 1)(M + |A| − 1).

The final bound results from some optimization of the parameter M. For instance,
note that we can assume that N ⩾ 2. If |A| < N1/2 + N1/4, then we are done. Otherwise,
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let M = ⌈N3/4⌉; we then get

N + M − 1

|A|
⩽

N + N3/4

N1/2 + N1/4
= N1/2,

and the inequality (2.9) implies

M|A| ⩽ N1/2(M + |A| − 1),

hence

|A| ⩽ N1/2(M − 1)

M − N1/2
⩽

N3/4

N1/4 − 1
= N1/2 + N1/4 + 1 +

1

N1/4 − 1
,

which concludes the proof since the last term is ⩽ 1/(21/4 − 1) ⩽ 6. (With more care,
one can show that the last term can in fact be omitted.)

Remark 2.3.17. The best known infinite Sidon sets in positive integers satisfy

|A ∩ [N]| ≫ N
√
2−1+ε

for all N, where ε > 0 is a fixed arbitrarily small number. The first examples were
constructed by Ruzsa [72], using a spectacular construction starting with the fact that
the numbers log p, for p prime, form a Sidon set in R. A different construction of
Cilleruelo [18] gives the same exponent.

On the other hand, the bound (2.6) has been improved recently by Balogh, Füredi
and Roy [3] to

|A| ⩽
√

N + 0.998N1/4,

for N large enough.

Exercise 2.3.18. Show that if A1 ⊂ G1 and A2 ⊂ G2 are Sidon sets with |Ai| ⩾ 2,
then A1 × A2 is not a Sidon set in G1 × G2.

Exercise 2.3.19. Let G be a finite abelian group. Let α ∈ G be a fixed element. A
subset A ⊂ G is called a symmetric Sidon set with center α if A = α− A (i.e., for any x
in A, the element α− x is also in A) and if the equation

a+ b = c+ d

with (a, b, c, d) ∈ A4 implies that a ∈ {c, d} or a+ b = α.

(1) Let E be a field with characteristic different from 3. Prove that the set

A = {(x, x3) | x ∈ E} ⊂ E × E

is a symmetric Sidon set with center 0.

(2) Prove that if G is a finite group without 2-torsion (so that 2x = 0 if and only
if x = 0), then any symmetric Sidon set A ⊂ G contains a subset A′ ⊂ A with
|A′| ⩾ (|A| − 1)/2 such that A′ is a Sidon set.

(3) Let G be a finite abelian group and A ⊂ Ĝ a finite set of characters of G. If A
is a symmetric Sidon set with center α, prove that

1

|G|
∑
x∈G

∣∣∣∑
χ∈A

λχχ(x)
∣∣∣4 ⩽ 3

(∑
χ∈A

|λχ|2
)2

.

Exercise 2.3.20. Let G be an abelian group, denoted additively. For a finite sub-
set A ⊂ G, we denote by E(A) the number of quadruples (a, b, c, d) ∈ A4 such that
a + b = c + d (this quantity occurs again later, and will be called the additive energy
of A).
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(1) Show that A is a Sidon set in G if and only if E(A) = 2|A|2 − |A|.
The goal of the remainder of the exercise shows that a finite set A may satisfy E(A) =

2|A|2 + O(|A|), but not contain any Sidon subset of size ∼ |A|.
We take G = Z.

(1) Show that for all large integers N, there exists a Sidon set A ⊂ {1, . . . ,N} ∩ 2Z
with |A| → +∞ as N → +∞.

(2) Consider a Sidon set A ⊂ {1, . . . ,N} ∩ 2Z. Define

A′ = A ∪ {a+ N2a+1 | a ∈ A} ∪ {a− N2a+1 | a ∈ A} ⊂ Z.

(3) Show that if A′′ ⊂ A′ is a Sidon set, we have |A′′| ⩽ 2
3
|A′|.

(4) Let

x1 + x2 = x3 + x4,

with

xi = ai + εiN2ai+1, ai ∈ A, εi ∈ {−1, 0, 1},
Show that a1 + a2 = a3 + a4.

(5) Suppose that a1 = a3, hence a2 = a4. Show that

(ε1 − ε3)2
a1 = (ε4 − ε2)2

a2 .

(6) Deduce that x1 = x3 if ε1 = ε3 or ε2 = ε4.

(7) Suppose further that ε1 ̸= ε3 and ε2 ̸= ε4. Show that a1 = a2 = a3 = a4 and
ε1 + ε2 = ε3 + ε4.

(8) Conclude that if x1 /∈ {x3, x4}, then (x1, x2, x3, x4) has one of the forms

(a+ N2a+1, a− N2a+1, a, a), (a− N2a+1, a+ N2a+1, a, a),

(a, a, a− N2a+1, a+ N2a+1), (a, a, a+ N2a+1, a− N2a+1),

for some a ∈ A. (Hint: consider the various possibilities for (ε1, . . . , ε4) for given
(ε3, ε4).)

(9) Deduce that

E(A′′) = 2|A′′|2 + O(|A′′|).

Exercise 2.3.21. Let G be a finite abelian group, with additive notation.

(1) With the usual notation for representation functions, show that for any subsets
A and B of G, we have∑

x∈G

rA,−B(x)2 =
∑
x∈G

rA,−A(x)rB,−B(x).

(2) We assume for the remainder of the exercise that A is a Sidon set in G. Prove
that ∑

x∈G

rA,−A(x)rB,−B(x) ⩽ |A||B| + |B|2 − |B|.

(3) Deduce from the previous questions that∑
x∈G

(
rA,−B(x) − |A||B|

|G|

)2

⩽ |B|(|A| − 1) +
|B|2(|G| − |A|2

|G|
.
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(4) Let also C be a subset of G and define

N = |{(b, c) ∈ B × C | b+ c ∈ A}|.

Show that

N − |A||B||C|
|G|

=
∑
c∈C

(
rA,−B(c) − |A||B|

|G|

)
.

(5) Deduce that

N − |A||B||C|
|G|

⩽ |C|1/2
(
|B|(|A| − 1) +

|B|2(|G| − |A|2

|G|

)1/2

.

(6) Define δ ∈ Z by |A| = |G|1/2 − δ. Show that

N =
|A||B||C|

|G|
+ θ(|B||C|

√
|G|)1/2,

where

θ ⩽ 1 +
|B|
|G|

max(0, δ), θ ⩽ 1 +
|C|
|G|

max(0, δ).

(7) Show that

|C| |A ∩ B| ⩽ |{(x, y) ∈ −C × (B + C) | x+ y ∈ A}|.
(8) Deduce that

|A ∩ B| ⩽ |B + C||A|
|G|

+ θ
( |B + C|

|C|

)1/2

|G|1/4,

with the same bounds as before for θ.

(The results of this exercise are due to Cilleruelo [17, Th. 2.1, Lemma 3.1].)

2.4. Approximate subgroups

The previous section was concerned with product sets of size very close to the maximal
value. The other extreme is that of sets A and B for which A ·B is closed to the minimal
value. In general, this minimum is max(|A|, |B|), assuming that A and B are not empty.
In constrast to Sidon sets, the extremal cases are here easily characterized, and it becomes
possible (and, it turns out, important) to investigate sets which are close to achieving
this – these will be called approximate subgroups.

We begin with looking at the smallest possible size of product sets, and obtain a
relatively nice algebraic characterization.

Proposition 2.4.1. Let G be a finite group, and let A, B be non-empty subsets of G
such that |A · B| = |B|. Define

H = {x ∈ G | xB = B},

the left stabilizer of B in G for the action of G on itself by left multiplication. This is a
subgroup of G, and for any a0 ∈ A, there exists a subset X ⊂ G such that we have

A ⊂ a0H, B = HX.

In particular, if |A · A| = |A| and A is neutral, the set A is equal to H and is a
subgroup of G.
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In other words, this states that the product set A ·B is minimal when one of the sets
is the union of left cosets of a certain subgroup, and the other is contained in one of its
right cosets.

Proof. Since |a−1
0 A · B| = |A · B| = |B|, and a−1

0 A is neutral, so that a−1
0 A · B

contains B, the assumption implies that

a−1
0 A · B = B.

For any a ∈ A, we have a−1
0 aB ⊂ a−1

0 A · B = B and |a−1
0 aB| = |B|, which means

that a−1
0 aB = B. This implies that a−1

0 A is contained in H, i.e., that A ⊂ a0H.
The fact that B is a union of right cosets of its left stabilizer is a completely general

fact: if b ∈ B, then by definition of H, we have Hb ⊂ B, so

B =
⋃
b∈B

Hb.

Finally, in the case where A = B and A is neutral, the fact that |A| = |B| implies
that A is a full coset of H, which must be equal to H since 1 ∈ A. □

This suggests to look at sets with |A · A| close to A as being close to subgroups. It
turns out however that this does not lead to a really successful theory, and this also has
the defect of being restricted to finite sets. As in the case of Sidon sets, there is a suitable
definition which does apply to the infinite case. Although it seems a bit stronger than
looking at sizes of product sets, the first key result will be that, up to manageable changes
of quantitative parameters, it is equivalent to such a quantitative condition, in the case
of finite groups.

Definition 2.4.2. Let G be an arbitrary group. Let α ⩾ 1 be a real number. A
subset H ⊂ G is called an α-approximate subgroup if H is neutral and symmetric and if
there exists a symmetric subset X of G with |X| ⩽ α such that

H · H ⊂ X · H.

Remark 2.4.3. (1) If α = 1, then we obtain |H ·H| = |H|, so H is an actual subgroup
of G by Proposition 2.4.1.

(2) If G is finite, note that one can always take G = X, so that any subset which is
neutral and symmetric is a |G|-approximate subgroup. In this context, this means that
the notion is only of interest if α is rather smaller than |G|. Usually, this translates to
the fact that we consider a sequence of finite groups Gn of increasing size and subsets
An which are α-approximate subgroups for some α independent of n, or growing slowler
than the size of An.

(3) Let H be an α-approximate subgroup and X a subset of size at most α satisfying
the property above. Let h1 and h2 be elements of H. Since H is symmetric, there exists
x ∈ X and h3 ∈ H such that h−1

2 h−1
1 = xh3; taking inverse, we obtain

h1h2 = h−1
3 x−1 ∈ H · X

(but there is no reason in general to expect that H ·X = X ·H, although both sets contain
H · H).

The following consequence of the definition is immediate by induction:

Lemma 2.4.4. Let G be a group, and let H ⊂ G be a finite α-approximate subgroup
for some α ⩾ 1. For any integer n ⩾ 0, we have

|A(n)| ⩽ αn−1|A|.
41



Example 2.4.5. Let G = Z (with additive notation). For any integer N ⩾ 1, the
subset

H = [−N; N]

is a 2-approximate subgroup of Z. Indeed, we have

H + H = [−2N; 2N] = (−N + H) ∪ (N + H),

so we can take X = {−N,N} in the definition.

We now begin to study the relationship between the notion of an approximate sub-
group and that of sizes of product sets. The first goal will be to prove the following quite
striking result:

Theorem 2.4.6. For any finite group G, for any real number α ⩾ 1 and for any
neutral symmetric subset A ⊂ G such that |A(3)| ⩽ α|A|, the set H = A(3) is a β-
approximate subgroup, with β ⩽ 2α5.

In this result, as well as in similar results later, the value 2α5 is not of essential
importance (and is unlikely to be sharp); it is however essential that it has “polynomial”
dependency on α: a choice of β with (say) β = 2α would usually be useless for applications.

In fact, we will also prove later another characterization of a similar “numerical” flavor
which is also important in some applications, and is significantly more involved.

Theorem 2.4.6 is based essentially on ideas of Ruzsa.

Definition 2.4.7 (Ruzsa distance). Let G be a group. For any two non-empty finite
subsets A and B of G, we define the Ruzsa distance between A and B to be

d(A,B) = log
( |A · B−1|√

|A||B|

)
.

Concretely, we often use d(A,B) in the estimate

|A · B−1| =
√
|A||B| exp(d(A.B)),

and in particular, for A symmetric, we get

(2.10) |A(2)| = |A| exp(d(A,A)).

The Ruzsa distance is not quite a distance in the usual sense of the word, since for
instance d(A,A) = log(|A · A−1|/|A|) is rarely equal to zero. However, it satisfies the
other two properties of distances.

Proposition 2.4.8. The Ruzsa distance is symmetric and satisfies the triangle in-
equality. In other words, for any non-empty finite subsets A, B and C in G, we have

d(A,B) = d(B,A)

d(A,B) ⩽ d(A,C) + d(C,B).

Proof. Since |A| = |A−1| for any subset of G, the symmetry amounts to the equality

|A · B−1| = |B · A−1|
for A and B non-empty subsets of G, and follows from the fact that x 7→ x−1 is a bijection
from A · B−1 to B · A−1.

The triangle inequality d(A,C) ⩽ d(A,B) + d(B,C), on the other hand, translates to
the inequality

|A · C−1| ⩽ |A · B−1||B · C−1|
|B|

,
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which we prove by exhibiting an injective map

f : B × (A · C−1) → (A · B−1) × (B × C−1),

in more or less the way that seems the most obvious: given x ∈ A ·C−1, we pick a(x) ∈ A
and c(x) ∈ C such that x = ab−1 (arbitrarily), and we define

f(b, x) = (a(x)b−1, bc(x)),

for b ∈ B and x ∈ A·C−1. To see that this map is injective, note that when composed with
the (restriction of the) multiplication map, we obtain the map (b, x) 7→ a(x)c(x) = x.
This shows that knowing f(b, x) = (y, z) allows us to recover uniquely x = yz, and then
we recover b uniquely by b = zc(x)−1. □

Remark 2.4.9. The relation (2.10) shows that if A is symmetric, then d(A,A) = 0
if and only if |A(2)| = |A|. If A is also neutral, then this is equivalent to saying that A is
a subgroup of G. Indeed, since A ⊂ A(2) in that case, the fact that |A| = |A(2)| implies
A = A(2), i.e., that A is stable by product.

This simple property has remarkable consequences, which show that the sizes of mul-
tiple product sets cannot grow in arbitrary fashion. The simplest version is the following:

Proposition 2.4.10 (Ruzsa’s Lemma). Let G be a group. Let A ⊂ G be a non-empty
finite subset which is neutral and symmetric. Defining

α =
|A(3)|
|A|

,

we have the inequality

|A(n)|
|A|

⩽ αn−2

for all integers n ⩾ 3.

Proof. We argue by induction on n ⩾ 3, with the case n = 3 being valid by def-
inition. Assume now that n ⩾ 4 and that the statement holds for A(n−1). We have
A(n+1) = A(n−1) · A(2), and hence

|A(n+1)|
|A|

=
|A(n−1) · A(2)|

|A|
=

√
|A(n−1)||A(2)|

|A|
exp(d(A(n−1),A(2))).

We apply the Ruzsa triangle inequality to deduce

|A(n+1)|
|A|

⩽

√
|A(n−1)||A(2)|

|A|
exp(d(A(n−1),A) + d(A,A(2)))

=

√
|A(n−1)||A(2)|

|A|
· |A(n)|√

|A(n−1)||A|
· |A(3)|√

|A||A(2)|
=

|A(n)|
|A|

· |A
(3)|

|A|
,

and this is ⩽ αn−2 ·α by the induction hypothesis and the definition of α. This concludes
the induction. □

Remark 2.4.11. There is no general analogue of Proposition 2.4.10 where α =
|A(3)|/|A| is replaced by β = |A(2)|/|A|. Indeed, let G = SL2(Fp) for a prime p (two
by two matrices with coefficients in Fp with determinant 1). This is a group of size
p(p− 1)(p+ 1), which is about p3 for large p.
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To construct a set for which β is small, we take a subgroup (which is stable by
product), and add a few extra elements (to “break” the stability). For instance, let

B =
{(

a b
0 d

)
∈ G

}
, w =

(
0 1
−1 0

)
and let

A = B ∪ {w,w−1}.
The set A is neutral and symmetric in G, and |A| = |B| + 2 = p(p − 1) + 2. Since

B is a subgroup of G and w2 = −Id ∈ B, the product set B · B is the union of the
cosets B, wB, w−1B, Bw and Bw−1, which implies that β ⩽ 5 (and, in fact, wB = w−1B
and Bw = Bw−1, since w−1 = −w and −Id ∈ B, so β ⩽ 3). On the other hand, the
computation (

a b
0 d

)
w

(
a′ b′

0 d′

)
=

(
−ba′ −bb′ + ac′

−da′ −db′
)

implies easily that BwB ⊂ A(3) contains all matrices

(
a b
c d

)
in G with c ̸= 0. The

number of these is |G| − |B| = p(p− 1)(p− 2), so we have

α =
|A(3)|
|A|

⩾
|BwB|
|A|

=
p(p− 1)(p− 2)

p(p− 1) + 2

which is of size approximately p. In particular, there is no fixed constant C ⩾ 0 such
that β ⩽ αC for all primes p.

It is clear that a key feature of this computation has been the non-commutativity of G,
which made BwB much bigger than Bw or wB. This may suggest the possibility of having
a statement like Ruzsa’s lemma using |A(2)|/|A| if G is assumed to be commutative, and
this is indeed possible. This was first established by Plünnecke [65], and we present one
version of such a result (due to Petridis [64]) in Theorem 2.4.13 below.

Before proving Theorem 2.4.6, we need one last lemma, again due to Ruzsa. It moves
from purely numerical constraints to more structural ones.

Lemma 2.4.12 (Ruzsa’s covering lemma). Let G be a group, let A and B be non-
empty finite subsets of G, and let α ⩾ 1 be such that |A · B| ⩽ α|A|. There exists a
subset X ⊂ B ⊂ G such that

|X| ⩽ α, B ⊂ A−1 · A · X.

Proof. We consider in B a set X of elements x such that the subsets Ax are disjoint
for x ∈ X, and which is maximal for inclusion (such a set exists, because any singleton
has the disjointness property, and we can then take a set having this property with the
largest size since B is finite). Since, by construction, we have

|A||X| = |A · X| ⩽ |A · B| ⩽ α|A|,

we must have |X| ⩽ α. Furthermore, for b ∈ B, we note that Ab and AX cannot be
disjoint: either b ∈ X and then Ab ⊂ AX, or otherwise the set X ∪ {b} would contradict
the maximality of X; thus there exist (a1, a2, x) ∈ A2×X such that a1b = a2x, and thence
b = a−1

1 a2x ∈ A−1 · A · X. □

We now prove Theorem 2.4.6.
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Proof. Let H = A(3). Since A is neutral and symmetric, Ruzsa’s Lemma gives
|A · H(2)| = |A(7)| ⩽ α5|A|. Ruzsa’s Covering Lemma applied to A and H(2) gives a
subset X0 of H(2), of size ⩽ α5, with the property that

H(2) ⊂ A(2) · X0.

A fortiori, the set H(2) is contained in A(3) ·X0, which is equal to H ·X0. This is almost
the conclusion we want: the only issue is that X0 might not be symmetric. However, if
we put X = X0 ∪X−1

0 , then have still H(2) ⊂ H ·X, and X is symmetric of size ⩽ 2α5. □

We conclude with the result of Plünnecke which, in particular, improves Proposi-
tion 2.4.10 for abelian groups.

Theorem 2.4.13 (Plünnecke). Let G be an abelian group, with additive notation.
Let A and B be non-empty finite subsets of G, and let α ⩾ 1 be such that

|A + B| ⩽ α|A|.
For any non-negative integers n and m, we have

|mB − nB| ⩽ αm+n|A|.

In particular, we get |nA − mA| ⩽ αm+n|A| for any n ⩾ 1 if |2A| ⩽ α|A|, which
strenghtens Ruzsa’s Lemma for commutative groups (and does not require A to be sym-
metric).

Proof. We give the proof of Petridis [64].
The key claim is the following: if we denote by β the minimum of |A′ + B|/|A′| for

A′ ⊂ A not empty, and by M a subset of A such that |M + B| = β|M|, then for any
non-empty subset C ⊂ G, we have

(2.11) |M + B + C| ⩽ β|M + C|.
Assuming this, we first deduce by induction that

|M + nB| ⩽ βn|M|
for any integer n ⩾ 0. Pick then non-negative integers m and n; we have

(2.12) |mB − nB| =
√
|mB||nB| exp(d(mB, nB)),

and Ruzsa’s triangle inequality gives

d(mB, nB) ⩽ d(mB,−M) + d(−M, nB).

Since

d(mB,−M) = log
( |mB + M|√

|mB||M|

)
, d(−M, nB) = log

( |nB + M|√
|nB||M|

)
,

we get

exp(d(mB, nB)) ⩽
|mB + M||nB + M|
|M|

√
|mB||nB|

⩽
βm+n|M|√
|mB||nB|

and this, combined with (2.12), gives

|mB − nB| ⩽ βm+n|M| ⩽ αm+n|A|,
since β ⩽ α by definition and M ⊂ A; this concludes the proof.

We now prove the key claim. This is done by induction on |C|. If C has a single
element, then |M + B + C| = |M + B| = β|M| = β|M + C|. We now assume that
C = C′ ∪ {x} with x /∈ C′, and that the statement holds for C′.
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We can express

M + B + C = (M + B + C′) ∪ ((M + B + x) (M0 + B + x)),

with

M0 = {a ∈ M | a+ B + x ⊂ M + B + C′}.
The key observation is then that |M + M0| ⩾ β|M0| by definition of M. Hence, using

induction for C′ and the fact that M0 + B + x ⊂ M + B + x, we get

(2.13) |M + B + C| ⩽ |M + B + C′| + |M + B| − |M0 + B| ⩽ β(|M + C′| + |M| − |M0|).

Furthermore, we have similarly

M + C = (M + C′) ∪ ((M + x) (M1 + x))

with M1 = {a ∈ M | a + x ∈ M + C′}, so that |M + C| = |M + C′| + |M| − |M1|. By
definition, M1 ⊂ M, hence

|M + C| = |M + C′| + |M| − |M1| ⩾ |M + C′| + |M| − |M0|,

and inputing this in (2.13) leads to the inequality

|M + B + C| ⩽ β|M + C|,

which establishes (2.11) for C. □

For later purposes, we reformulate some of the last results using a useful notation.

Definition 2.4.14 (Approximate inclusion). Let G be a group. For subsets A and B
of G, and α ⩾ 1, we say that A is α-contained in B, denoted A ⊏α B, if there exists a
subset Y ⊂ G with |Y| ⩽ α such that A ⊂ X · B.

Example 2.4.15. (1) In this language, an α-approximate subgroup of G is therefore
(essentially) a neutral symmetric set H such that H · H is α-contained in H.

(2) A is 1-contained in B if and only if A is contained in a (left) translate of B.

Remark 2.4.16. The following properties are formal consequences of the definition,
and of the upper-bound |Y · Z| ⩽ |Y||Z| for subsets of G:

(1) If A ⊏α B and B ⊏β C, then A ⊏αβ C.

(2) If G is abelian and if A ⊏α B and A′ ⊏β B′, then A · A′ ⊏αβ B · B′.

Furthermore, Ruzsa’s Covering Lemma means that for any non-empty finite subsets A
and B of a group G, the condition |A · B| ⩽ α|A| implies that B ⊏α A−1 · A. Similarly
|A · B−1| ⩽ α|A| implies that B ⊏α A−1 · A.

Plünnecke’s Theorem admits the following corollary.

Proposition 2.4.17. Let G be an abelian group. Let A ⊂ G be a non-empty finite
subset, and let α ⩾ 1 be such that |A − A| ⩽ αA. For any non-negative integers k and l,
we have

mA − nA ⊏αm+n+1 A − A.

Proof. By Plünnecke’s Theorem, we have

|A +mA − nA| ⩽ αm+n+1|A|,

so Ruzsa’s Covering Lemma implies mA − nA ⊏αm+n+1 A − A. □
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Exercise 2.4.18. (1) For any integer N ⩾ 1, find examples of sets A and B of
positive integers such that |A| = |B| = N and

|2A|
A

⩽ 2,
|2B|
|B|

⩽ 2,

but
|2(A ∪ B)|
|A ∪ B|

⩾
N

2
.

(2) For any integer N ⩾ 1, find examples of sets A and B of positive integers such
that |A| = |B| = N and

|2A|
A

⩽ 10,
|2B|
|B|

⩽ 10,

but
|2(A ∩ B)|
|A ∩ B|

⩾
N1/2

10
.

Exercise 2.4.19. Let A1, A2, A3 be non-empty finite subsets of some group G. If
α ⩾ 1 is such that

|Aj ∩ A3| ⩾
|Aj|
α
, |Aj · Aj| ⩽ α|Aj|

for 1 ⩽ j ⩽ 3, then show that
|A1 · A2| ⩽ α6|A3|.

(Hint: use the Ruzsa triangle inequality suitably)

Exercise 2.4.20. Let G be a finite abelian group and A, B non-empty subsets of G.
Let

r(x) =
∑

(a,b)∈A×B
a+b=x

1

be the representation function for A + B.

(1) Show that r(x) = |A ∩ (x− B)|.
(2) Show that

E(A,B) =
∑

x∈(A−A)∩(B−B)

|A ∩ (x+ A)| |B ∩ (x+ B)|.

Exercise 2.4.21. Let G be a finite group and A, B non-empty subsets of G.

(1) Let x0 ∈ A · B. Prove that

|{(a, b) ∈ A × B | ab = x0}| × (B · A)| ⩽ |B · A−1| |B−1 · A|.
(Hint: construct an injective map from the left-hand set to the cartesian product
B · A−1 × B−1 · A.)

(2) Deduce that if x ∈ A · B, then

|A ∩ xB−1| ⩽ |B · A−1||B−1 · A|
|B · A|

.

(3) If G is abelian, deduce that

|A ∩ xB−1| ⩽ |B · A−1|2

|A · B|
.
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Exercise 2.4.22. Let G be a finite abelian group.

(1) If H1 and H2 are subgroups of G, then show that the Ruzsa distance d(H1,H2)
satisfies

d(H1,H2) = log
(√|H1||H2|

|H1 ∩ H2

)
.

(2) Show that

d(H1,H2) = d(H1,H1 + H2) + d(H1 + H2,H2) = d(H1,H1 ∩ H2) + d(H1 ∩ H2,H2).

Exercise 2.4.23. Let G be a finite abelian group and A ⊂ G a non-empty subset
such that

|2A − 2A| < 2|A|.
(1) Show that there exists x0 ∈ G such that

A − 2A ⊂ A − A + x0.

(2) Deduce that A − A is a subgroup of G.

2.5. Multiplicative energy

A “dual” perspective on approximate subgroups arises from the following observation:
if H ⊂ G is a finite subgroup of a group, then the equation

ab = cd

with (a, b, c, d) ∈ H4 has the largest possible numbers of solutions, namely |H|3: for any
given choice of (a, b, c), the value of d is uniquely determined and belongs to H because it
is a subgroup. (This is a different way of saying that subgroups are “completely opposite”
to Sidon sets.) This fact, once again, has a simple exact inverse property. To state it, we
introduce formally the quantity that was just discussed for a subgroup.

Definition 2.5.1 (Multiplicative energy). Let G be a group and let A, B be finite
subsets of G. The multiplicative energy of (A,B) is the quantity

E(A,B) = |{(a1, a2, b1, b2) ∈ A2 × B2 | a1b1 = a2b2}|.

If A = B, we call E(A) = E(A,B) the multiplicative energy of A.
If A and B are not empty, then the normalized multiplicative energy is

e(A,B) =
E(A,B)

(|A| |B|)3/2
.

Remark 2.5.2. (1) Solutions of a1b1 = a2b2 are often called multiplicative quadruples,
or additive quadruples when G is abelian.

(2) Part of the reason the energy is extremely useful is that, by counting solutions
of equation, it takes into accoung multiplicity. This feature often means that a quantity
has a nice analytic interpretation. Here, if we denote

r(x) =
∑

(a,b)∈A×B
ab=x

1

the representation function for A · B, then we have

(2.14) E(A,B) =
∑
x∈G

r(x)2.
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Indeed, by expanding the square, we get∑
x∈G

r(x)2 =
∑
x∈G

(∑
ab=x

1
)2

=
∑

(a1,a2,b2,b2)∈A2×B2

∑
x∈G

a1b1=x=a2b2

1

=
∑

(a1,a2,b2,b2)∈A2×B2

a1b1=a2b2

1 = E(A,B).

As an example of application, we note that∑
x∈G

r(x) ⩽
√

|A · B|
(∑
x∈G

r(x)2
)1/2

by the Cauchy–Schwarz inequality, and therefore

(2.15) E(A,B) ⩾
|A|2|B|2

|A · B|
.

If G is finite and commutative, the discrete Plancherel formula (see (A.9), noting that
r ⩾ 0 so that r2 = |r|2) shows that we also have

E(A,B) =
∑
ξ∈Ĝ

|r̂(ξ)|2,

where

r̂(ξ) =
1√
|G|

∑
x∈G

r(x)ξ(x)

is the discrete Fourier transform of r.
Note in passing that the contribution of the trivial character to E(A,B) is |A|2|B|2/|G|;

this has a probabilistic interpretation: think that (a1, a2, b1, b2) ∈ A2 × B2 are picked at
random, and that their product is “uniformly distributed”, so that their is a chance about
1/|G| that a−1

2 a−1
1 b1b2 = 1, which is the condition to have a multiplicative quadruple.

(3) Various identities hold for the multiplicative energy. For instance, if G is abelian,
then the equation ab = cd is equivalent to ad−1 = cb−1, and therefore we get E(A,A) =
E(A,A−1).

Exercise 2.5.3. Let A be a non-empty finite subset of a group G. Prove that if α ⩾ 1
is such that |A(2)| ⩽ α|A|, then

e(A,A) ⩾
1

α
.

Before stating the inverse result for energy, we explain why the normalization of
e(A,B) is natural. The simplest upper-bound for E(A,B) in general is

E(A,B) ⩽ min(|A|2|B|, |A||B|2),
since fixing three of the variables in the equation a1b1 = a2b2 determines uniquely the
remaining one. We have

min(|A|2|B|, |A||B|2) = |A||B|min(|A|, |B|) ⩽ |A||B|
√
|A||B|,

(where the last step amounts to saying that the minimum of two numbers is at most their
geometric mean). This gives

E(A,B) ⩽
√

|A|3|B|3,
which means that the normalized energy e(A,B) is always at most 1.
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We can also deduce from this the following estimate: if α ⩾ 1 is such that e(A,B) ⩾
α−1, then

(2.16)
1

α2
|A| ⩽ |B| ⩽ α2|A|.

Indeed, assume for instance that |A| ⩽ |B|, the other case being similar. Then

|A||B|3/2

α
⩽ E(A,B) ⩽ min(|A||B|2, |A|2|B|) = |A|2|B|,

which gives
1

α2
|A| ⩽ |A| ⩽ |B| ⩽ α2|A|.

We now state the inverse result; note that it is a rather “cleaner” statement than
Proposition 2.4.1.

Proposition 2.5.4. Let G be a group and let A, B be non-empty finite subsets of G.
We have e(A,B) ⩽ 1, and e(A,B) = 1 if and only if there exist a subgroup H ⊂ G and
(x, y) ∈ G2 such that A = xH and B = Hy.

In fact, H is the stabilizer of A for the action of G on itself by right multiplication,
or equivalently the stabilizer of B for the action by left multiplication, and one can take
x and y to be any element of A or B, respectively.

In particular, this result says that |A| = |B| if e(A,B) = 1 (and A, B are not empty).

Proof. We have seen that e(A,B) ⩽ 1; moreover, checking how this was done, we see

that equality can only occur if min(|A|, |B|) =
√
|A||B|, which is only true (for non-empty

sets) if |A| = |B|.
Now define H as first indicated, namely H = {x ∈ G | Ax = A}.
Since |A| = |B|, the condition e(A,B) = 1 can be written E(A,B) = |A||B|2, and

implies that for any triple (a1, b1, b2) ∈ A×B2 the unique element a2 = a1b1b
−1
2 in G such

that a1b1 = a2b2 is in A. More concisely, this is equivalent to A · B · B−1 ⊂ A, and can
also be translated as the inclusion

B · B−1 ⊂ H.

It follows that |A| = |B| ⩽ |B · B−1| ⩽ |H|. However, taking any a0 ∈ A, we have
a0H ⊂ A, so that |H| ⩽ |A| (which can also be deduced from the observation, used in the
proof of Proposition 2.4.1, that A is a union of cosets of H). Hence |A| = |H|, and in fact
A = a0H.

Writing dually E(A,B) = |A|2|B|, we see also that for any (a1, a2, b1) ∈ A2 × B, the
element a−1

2 a1b1 is in B. This means that A−1·A·B ⊂ B; since A−1·A = H−1·a−1
0 a0·H = H,

it follows that H is contained in the stabilizer of B for the left multiplication action.
From |H| = |B|, we conclude as before that B must be a left coset of H, i.e., that B = Hb
for any b ∈ B. □

The following result is a version of this proposition for approximate subgroups. As we
will see, it is rather deeper than Ruzsa’s Theorem (but will use it in the proof); the first
version was proved by Balog and Szemerédi [2], and strong quantitative versions were
then given by Gowers [41], in the course of his proof of Szemerédi’s Theorem.

Theorem 2.5.5 (Balog–Szemerédi; Gowers). Let G be a finite group and let A and B
be non-empty finite subsets of G. Let α ⩾ 1 be a real number such that e(A,B) ⩾ α−1.
There exists a real number

β ⩽ 23000α1000,
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a β-approximate subgroup H ⊂ G and elements x, y in G, such that

|H| ⩽ β|A|, |A| ⩽ β|A ∩ xH|, |B| ⩽ β|B ∩ Hy|.
The possible value of β is only indicated to give an explicit result. It can be improved

(see for instance [59, Th. A.3.7] for one version), but in most applications, it is rather
irrelevant which numbers appear – what matters is that β ⩽ Cαd for some fixed real
numbers C ⩾ 0 and d ⩾ 0 (even any other dependency of β on α may be useful, as in the
original work of Balog and Szemerédi). In fact, we will only prove the theorem in this
form since it simplifies notation (and makes computational mistakes less likely).

Example 2.5.6. Suppose that A = B and is neutral and symmetric. One can wonder
if it would be possible to take simply H = A in Theorem 2.5.5, or in other words, if A
itself would have to be an approximate subgroup. This is not the case, and this fact
explains to some extent why the result is rather subtle.

Here is a very simple kind of example to illustrate what can happen. Consider a
finite abelian group G, a subgroup H of G and a Sidon set S ⊂ G. Assume that H
and S have approximately the same size (in particular, they are of size ≪ |G|1/2), e.g.
1
2
|S| ⩽ |H| ⩽ 2|S|. Define A = H ∪ S. Since H is a subgroup, we have E(A,A) ⩾ |H|3,

hence e(A,A) ⩾ 1
33
|A|3 under our assumption on the size of H. On the other hand, A+A

contains S + S, which has size ≫ |S|2 ≫ |A|2, so that |2A|/|A| is very large, and in
particular is not bounded independently of the size of A.

On the other hand, the conclusion of Theorem 2.5.5 clearly holds in this case, with H
itself a possible choice of approximate subgroup.

To apply the theorem, it is useful to have various criteria that imply lower bounds for
the multiplicative energy. Here are some “deterministic” versions; in Section 3.5, we will
see variants involving random variables.

Proposition 2.5.7. Let G be a finite group and let A and B be non-empty finite
subsets of G.

(1) For any subset C of A × B, we have

E(A,B) ⩾
|C|2

|A ×C B|
,

where
A ×C B = {x ∈ G | x = ab for some (a, b) ∈ C}.

(2) Let C ⊂ G and α ⩾ 1 be such that rA·B(x) ⩾ α−1|A| for all x ∈ C. We have

E(A,B) ⩾ α−2|A|2|C|.
Proof. For (1), we define the “relative” representation function rCA·B : G → R by

rCA·B(x) =
∑

(a,b)∈C
ab=x

1.

Since rCA·B ⩽ rA·B we have

E(A,B) =
∑
x∈G

rA·B(x)2 ⩾
∑
x∈G

rCA·B(x)2,

and noting that rCA·B(x) = 0 unless x ∈ A ×C B, the Cauchy–Schwarz inequality gives

E(A,B) ⩾
1

|A ×C B|

(∑
x∈G

rCA·B(x)
)2

.
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Thus the desired lower-bound follows from the formula∑
x∈G

rCA·B(x) =
∑
x∈G

∑
(a,b)∈C
ab=x

1 =
∑

(a,b)∈C

∑
x=ab

1 = |C|.

For (2), we just note that

E(A,B) =
∑
x∈G

rA·B(x)2 ⩾ α−2|A|2|C|

by assumption. □

Before embarking on the proof of Theorem 2.5.5, which is much more involved than
all those we have seen before, we will present a sketch of an application of this theorem,
which illustrates how approximate subgroups can arise in practice in apparently unrelated
problems.

2.6. Sketch of application

We will discuss parts of the ideas of Bourgain and Gamburd, which they used in [9]
to solve an important problem at the boundary of graph theory and geometric group
theory. Readers wishing to look immediately at the proof of Theorem 2.5.5 may safely
skip this section.

Theorem 2.6.1 (Bourgain–Gamburd). Let S be a finite symmetric subset of SL2(Z).
Let Γ be the subgroup generated by S. Assume that for all primes p large enough, the
reduction modulo p of Γ is equal to SL2(Fp). Then for all such primes, the Cayley graphs
of SL2(Fp) with respect to the reduction of S modulo p form an expander family.

We will not give a full proof, but only explain the link between this question and
Theorem 2.5.5. A complete account,2 using only elementary tools, can be found in [59,
Ch. 6]; this involves other deep tools, in particular the work of Helfgott [49], and Gowers’s
notion of quasirandom groups, both of which will be discussed later. And before starting,
let us mention that the assumption on S is no onerous, and is often valid, and often easy
to check in practice (abstractly, it is equivalent to asking that the group Γ is what is
known as “Zariski-dense” in the group SL2(C), which is a very mild condition).

Example 2.6.2. A good example to keep in mind is

(2.17) S =
{(

1 3
0 1

)
,

(
1 −3
0 1

)
,

(
1 0
3 1

)
,

(
1 0
−3 1

)}
.

In this case, it is quite elementary that Γ reduces to all of SL2(Fp) for all primes
p ̸= 3, because for such a prime we get(

1 1
0 1

)
∈ Γ mod p,

(
1 0
1 1

)
∈ Γ mod p,

by looking at the k-th power of the generators, where k is the inverse of 3 modulo p, and
it is an elementary fact that these two matrices generate SL2(Fp).

(It is also true that the integral matrices

(
1 1
0 1

)
,

(
1 0
1 1

)
generate the group SL2(Z),

but note that no power of the elements in S are equal to one of these; in fact, one can
show that the group Γ has infinite index in SL2(Z), see for instance [59, Prop. B.1.3].)

2 Up to the use of the so-called Tits alternative at some point, which can be avoided however in
many cases, including the example (2.17).
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To discuss the theorem of Bourgain and Gamburd, we first explain briefly what it
is meaning of the conclusion. The involves Cayley graphs and expander graphs, and we
first spell out our convention concerning graphs (see also Section A.5).

Definition 2.6.3 (Graph). A graph is a pair (V,E) of sets, called vertices and edges,
respectively, such that E is a set of subsets of V with |e| = 2 for any e ∈ E.

A graph is said to be finite if V is finite, in which case E is also finite.
Given a vertex x ∈ V, the neighbours of x are the y ∈ V such that {x, y} is an edge

of the graph.

Remark 2.6.4. For certain purposes, this definition is not the best, since it excludes
the possibility of having multiple edges between vertices or loops,3 and always codes edges
by subsets of size 2 of the set of vertices, which can be awkward.4 However, this will be
sufficient for us.

Cayley graphs are defined using a group G and a symmetric subset S of G: the
corresponding Cayley Graph C (G, S) has vertex set G and edges of the form {g, gs} for
g ∈ G and s ∈ S {1}. For instance, if G = Z2 and S = {(0, 1), (0,−1), (1, 0), (−1, 0)},
then C (G, S) can be viewed as an infinite square grid.

Expander graphs, on the other hand, are certain infinite families of finite graphs which
are simultaneously highly connected and rather sparse. To give the precise combinatorial
definition, we introduce the notation

∂X = {y ∈ V X | {x, y} ∈ E}
for the boundary of a set X of vertices of G: the set of edges with one vertex in X and
one outside X (figuratively speaking, the edges that join X to the rest of the graph).

Definition 2.6.5 (Expander graphs). For any finite non-empty graph γ = (V,E),
the quantity

h(γ) = min
X⊂V

|X|⩽|V|/2

|∂X|
min(|X|, |V X|)

,

is called the discrete Cheeger constant of the graph.
A sequence (γn)n⩾1 of finite non-empty graphs γn = (Vn,En) is called an expander

family if

(1) the size of Vn tends to infinity as n→ +∞;

(2) there exists a real number C ⩾ 0 such that for all n ⩾ 1 and all x ∈ Vn, the
number of neighbours of x is ⩽ C;

(3) there exists δ > 0, independent of n, such that h(γn) ⩾ δ for all n.

There is much to say about expander graphs (see, for instance, the survey [51] of
Hoory, Linial and Wigderson, or the book [59]), but for the present discussion, two points
are especially relevant: (1) these graphs have remarkable properties; (2) their existence is
not obvious at all, and checking if “explicit” families of graphs form an expander family
can be very difficult. These facts explain in part the interest of Theorem 2.6.1.

The proof of this theorem is quite involved. Here are the key steps.

Step 1. (Reduction to return probability) One of the basic properties of expander
graphs is that the combinatorial definition, for a family (γn), is equivalent to a spectral

3 Which means one cannot say, e.g., that an infinite regular tree is the universal covering of a bouquet
of loops.

4 It may require non-natural identifications.
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property of the discrete Laplace operator of the graphs (the existence of a uniform spectral
gap), and is implied by5 uniform exponential convergence to “equilibritum” of a lazy
random walk on γn. In the case of a family (C (Gn, Sn))n⩾1 of Cayley graphs, with Sn

a neutral symmetric set of size bounded independently of n and the size of Gn going to
infinity, this boils down to the following concrete statement: there exists a positive real
number δ < 1, independent of n, such that

max
g∈Gn

∣∣∣ 1

|Gn|
− 1

|Sn|k
|(s1, . . . , sk) ∈ Sk

n | s1 · · · sk = g}|
∣∣∣ ⩽ δk

for all k ⩾ 0 and n ⩾ 1. (In other words: a “long” product of elements of Sn, taken
arbitrarily, has about the same chance to be equal to any given element of Gn, and the
difference between the chances for different elements goes to 0 at an exponential rate
independent of n and of the element which is targeted.)

If the sets Sn generate Gn, a relatively elementary argument (which amounts to the
basic theory of finite Markov chains) shows that the property above at least holds with
δ replaced by some δn < 1, which may depend on n: for fixed n, there exists δn < 1 such
that ∣∣∣ 1

|Gn|
− 1

|Sn|k
|(s1, . . . , sk) ∈ Sk

n | s1 · · · sk = g}|
∣∣∣ ⩽ δkn

for all g ∈ Gn and k ⩾ 0.
In the case of interest, the sequence of groups are the groups SL2(Fp), indexed by the

primes, and Sp is the image of S modulo p, which by assumption generates SL2(Fp) for
all primes p large enough. Then, an argument related to the “quasirandomness” of these
groups (in the sense of Gowers, see Section 2.8), leads to a bound of the form

δn ⩽
(2| SL2(Fp)|

p− 1

1

|Sp|2k
∣∣∣{(s1, . . . , s2k) ∈ S2k

p | s1 · · · s2k = 1}
∣∣∣)1/(2k)

for any integer k ⩾ 1. A simple computation shows then that one will have a uniform
δ < 1 such that δn ⩽ δ for all n if one can show that there exists c > 0, independent
of p, such that

(2.18)
1

| SL2(Fp)|
|{(s1, . . . , s2k) ∈ S2k

p | s1 · · · s2k = 1}| ⩽ 1

| SL2(Fp)|5/6
,

(say), for some integer k with k ⩽ c log p. The left-hand side is a “return probability”:
intuitively, it is the probability of coming back to 1 if one multiples 2k matrices in Sp

chosen uniformly and independently at random.6

Remark 2.6.6. This reduction is reasonable because the basic properties of expander
graphs imply that this will be true if the Cayley graphs C (SL2(Fp), Sp) form an expander.

Step 2. (L2-flattening and approximate subgroups) For k ⩾ 0, let

ϱk =
1

| SL2(Fp)|
|{(s1, . . . , s2k) ∈ S2k

p | s1 · · · s2k = 1}|,

which we want to show is small for suitable k.
Extremely roughly, computing ϱ2k means counting products of length 4k of elements

of Sp that are equal to 1, i.e., counting solutions of

x1x2x3x4 = 1

5 But not quite equivalent with.
6 The exponent 5/6 is not crucial, but it must be > 2/3.
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where xi ∈ S
(k)
p . Since Sp = S−1

p , this suggests that ϱ2k can only be large if Sk has
“large” multiplicative energy, which means that some approximate subgroup contains a
significant part of a translate of Sk.

This already shows the relevance of approximate subgroups to the problem, but the
actual argument is more involved. Indeed, in order to compute ϱk, the multiplicative

energy of S
(k)
p must be combined with the number of ways to write, say, x1 = s1 . . . sk,

which is not the same for all x1 ∈ S
(k)
p .

The actual approach of Bourgain and Gamburd to the proof of (2.18) is through an
iterative process which demonstrates that ϱ2k is in fact significantly smaller than ϱk, in
the range of k of interest, unless certain conditions are met.

More precisely, they (essentially) prove that there exists a real number c > 0 (inde-
pendent of any data involved here, including p), such that we have

(2.19) ϱ2k ⩽ c
( 1

| SL2(Fp)|5/6
+ ϱke(A,B)

)
for some subsets A and B of S

(k)
p of controlled size, in particular with

max(|A|, |B|) ⩽ | SL2(Fp)|1−γ

for suitably small γ > 0. The idea (and this explains the name “L2-flattening lemma”
given to this argument) is that we have

ϱk =
∑

g∈SL2(Fp)

µk(g)2,

where

µk(g) =
1

| SL2(Fp)|
|{(s1, . . . , sk) ∈ Sk

p | s1 · · · sk = g}|,

and one combines this expression (in the case of ϱ2k) with various ingredients, such as
partitioning “dyadically” the sum over g ∈ SL2(Fp) according to the number of products
of k elements of Sp which are equal to g).

From (2.19), it is not difficult to deduce that the result will be reached if one can
show that there is a real number κ > 0, independent of p and k, such that the subsets
which occur in that inequality satisfy

(2.20) e(A,B) ⩽
1

pκ
.

Step 3. (Conclusion) By contraposition, the previous steps leads to the appearance of
some approximate subgroups of SL2(Fp), through the Balog–Szemerédi–Gowers Theorem:
if the goal (2.20) fails, this means that we have A, B with

e(A,B) ⩾
1

pκ
,

hence A and B are both related by Theorem 2.5.5 to a β-approximate subgroup with β
of size at most p1000κ.

This would be a dead-end if one didn’t have some knowledge about β-approximate
subgroups of SL2(Fp) for such values of β, namely a small but fixed positive power of p.
And indeed, the impetus for the work of Bourgain and Gamburd was precisely that, at
that time, Helfgott had proved an extremely strong statement concerning them. This
takes the following form:
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Theorem 2.6.7 (Helfgott). There exists a real number δ > 0 with the following
property: for any prime number p and for any neutral symmetric subset H of SL2(Fp),
we have

|H(3)| ⩾ min(| SL2(Fp)|, |H|1+δ),

unless A is contained in a proper subgroup of SL2(Fp).
In particular, any β-approximate subgroup H of SL2(Fp) such that β ⩽ |H|δ/2 is either

contained in a proper subgroup of SL2(Fp) or satisfies |H| ⩾ |G|/β2.

Bourgain and Gamburd proved that, in their situation, one could control the sizes of
the sets A and B sufficiently to ensure that |A| is not “too big”, in particular so that
the conclusion A(3) = SL2(Fp) can be excluded, and not “too small” (of size at least a
small positive power of A). Thus only approximate subgroups contained in a (relatively
large) proper subgroup could possibly thwart the implementation of the L2-flattening

strategy. But one knows that A ⊂ S
(k)
p and that Sp generates SL2(Fp), and it is relatively

easy (using the classification of proper subgroups of SL2(Fp)) to show that this can not
happen for k in the required range.7

Remark 2.6.8. (1) Helfgott did not compute a value of the constant δ in Theo-
rem 2.6.7, although this was clearly doable from his argument. It was proved in [57], by
following through the simplest case of the proof of Pyber and Szabó of a considerable gen-
eralization of the theorem (see the introduction of [66]), that δ = 1/3024 is possible. Rud-
nev and Shkredov [69] have improved this much further, obtaining the constant δ = 1/20,
up to an absolute multiplicative factor (i.e., they show that |A(3)| ⩾ c|A|1+1/20 for some
absolute constant c > 0).

(2) One can compare this statement with the Cauchy–Davenport Theorem, for a
subset A ⊂ Z/pZ, and we see that it is incredibly more powerful: instead of |2A| ⩾
min(p, 2|A| − 1), which only gives “growth” by a constant factor, we have growth by a
factor |A|δ.

The following exercise shows one of the easiest consequence of the expansion property.

Exercise 2.6.9. (1) Show that if (γn)n⩾1 is an expander family, then the diame-
ter of γn grows logarithmically: there exists c > 0 such that diam(γn) ⩽ c log |Vn|
for all n ⩾ 1, where Vn is the set of vertices of γn. (The diameter of a graph is
the supremum of the integers k such that for any two vertices x and y, there are
vertices

x0 = x, x1, . . . , xk−1, xk = y

such that {xi, xi+1} is an edge for 0 ⩽ i ⩽ k − 1.)
In particular, if γn = C (Gn, Sn) for some finite groups Gn and generating

sets Sn, there exists kn ⩽ c log |Gn| such that S
(kn)
n = Gn.

(2) For comparison, show that Theorem 2.6.7 implies that there exists real numbers
c1, c2 ⩾ 0 such that, for any symmetric generating set S of SL2(Fp), the Cayley
graph C (SL2(Fp), S) has diameter ⩽ c1(log p)c2 .

Here is however an open problem: given a “concrete” family of expanding Cayley
graphs (say those from Theorem 2.6.1), find an efficient algorithm which, given x ∈ Gn,

7 E.g., one can show that if p ⩾ 7, the set S
(3)
p must contain a matrix which is diagonalizable with

distinct eigenvalues.
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expresses it as a short product of the generators. Already if we take the case of (2.17),
the question is not fully solved for

x =

(
1 1

2
(p− 1) mod p

0 1

)
∈ SL2(Fp).

Exercise 2.6.10. Let G be a group and H a subgroup of G. Let x ∈ G, and define
I = H ∩ x−1Hx; this is a subgroup of H.

(1) For h1 and h2 ∈ H, show that

Hxh1 ∩ Hxh2 = ∅
unless if h−1

1 h2 ∈ I.

(2) If h−1
1 h2 ∈ I, on the other hand, show that

Hxh1 = Hxh2.

(3) Deduce that the product set HxH (known as a double coset of H) is the disjoint
union of Hxy for y running over a set of representatives of the cosets hI of I in
H. In particular, if H is finite, deduce that

|HxH| = [H : I] |H|.

Exercise 2.6.11. Let p be a prime number and let

U =
{(

1 t
0 1

)
| t ∈ Fp

}
, B =

{(
a b
0 d

)
| a, b, d ∈ Fp, ad = 1

}
.

Set U∗ = U {1}.

(1) Show that U and B are subgroups of SL2(Fp) with |U| = p and |B| = p(p− 1).

(2) Let x ∈ SL2(Fp) B. Show that the map{
U∗ × U∗ × U∗ → SL2(Fp)

(u, v, w) 7→ uxvx−1w

is injective.

(3) Let A be a symmetric subset of SL2(Fp). Show that either A ⊂ B or

|U∗ ∩ A|3 ⩽ |A(5)|.
(This is a very special case of what are called Larsen–Pink non-concentration
inequalities.)

(4) Let x ∈ SL2(Fp) B. Let A = U ∪ {x, x−1}. Show that there exists c > 0 and
δ > 0, independent of p and x, such that

|A(3)| ⩾ c|A|1+δ.

How large can you get δ to be?

Exercise 2.6.12. Let p be an odd prime number. With the same notation as in the
previous exercise, consider

x =

(
1 2
−1 −1

)
∈ SL2(Fp).

Let K be a subgroup of B such that x2 ∈ K. Let A = K ∪ {x, x−1}.

(1) Show that

A(3) = K ∪ KxK ∪ x−1Kx.
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(2) Deduce that

|A(3)| ⩽ (2 + c)|K|,
where c is the index of K ∩ x−1Kx in K. (Hint: use the first exercise.)

(3) Assume that −1 is a square modulo p (which means that p is congruent to 1
modulo 4). Let K be the subgroup of B of the form(

a b
0 d

)
where a is a square modulo p. Show that x2 ∈ K and

[K : K ∩ x−1Kx] = p.

(4) Under the same assumption, show that A(3) ̸= SL2(Fp), and

|A(3)| ⩽ c′|A|3/2

for some constant c′ ⩾ 0; you may use without proof the fact that | SL2(Fp)| =
p(p2 − 1) for all p odd.

(One can show that A is a generating set of SL2(Fp), so this example shows
that the best exponent in Theorem 2.6.7 cannot be larger than 1/2.)

2.7. Proof of Theorem 2.5.5

We first give the proof of a weaker statement, which is however sufficient for many
applications, and is both simpler and involves better constants.

Theorem 2.7.1. Let G be a group and A ⊂ G a non-empty finite subset. Let α ⩾ 1
be such that e(A) ⩾ α−1. There exists a subset B ⊂ A such that

(2.21) |B| ⩾ |A|
4α

, |B · B−1| ≪ α5|A| ≪ α6|B|,

where the implied constant is absolute. In particular, we have also

(2.22) exp d(B,B) ≪ α7.

Similarly, there exists a subset B′ ⊂ A such that

(2.23) |B′| ⩾ |A|
4α

, |B′ · B′| ≪ α6|A| ≪ α7|B′|,

where the implied constant is absolute.

The proof follows a write-up by B. Green of the original argument of Schoen [74].
The key step is to find a large subset X of A such that the elements of X ·X−1 have a large
number of representations as elements of A ·A−1. The precise statement is the following:

Proposition 2.7.2. Let G be a group and A ⊂ G a non-empty finite subset. Let α ⩾ 1
be such that e(A) ⩾ α−1. Fix a real number δ such that 0 < δ < 1.

There exists z ∈ G such that

(2.24) |A ∩ A · z| ⩾ |A|
2α

and

(2.25)
∣∣∣{(x, y) ∈ (A ∩ A · z)2 | r(xy−1) ⩾

δ|A|
2α2

}∣∣∣ ⩾ (1 − δ)|A ∩ A · z|2,

where r is the representation function for A · A−1.
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Note that this will be applied for a fixed δ (for instance, δ = 1/10), so the proof can
be read with such a value in mind.

Proof. The key idea of Schoen is to take z “at random”, but not according to the
uniform probability measure on G. Rather, we pick a given element z with probability
proportional to r(z). Since ∑

x∈G

r(x) = |A||A−1| = |A|2,

(see (2.1)), this means that we have

P(z = x) =
1

|A|2
r(x)

for any x ∈ G.
Thus z is a G-valued random variable with this distribution. We further denote

B = A ∩ A · z, which is a random subset of G (contained in A).
Let γ > 0 be a parameter, to be chosen later. We define

Y = {(a, b) ∈ A × A | r(ab−1) < γ|A|}.
We will show that for γ = δ/(2α2), the inequality

(2.26) E
(
|B|2 − δ−1|(B × B) ∩ Y|

)
⩾

|A|2

2α2

holds. It implies the existence of some element z ∈ G such that

|A ∩ A · z|2 − δ−1|(A ∩ A · z)2 ∩ Y| ⩾ |A|2

2α2
,

and from this we deduce, on the one hand, that |A ∩ A · z|2 ⩾ |A|2/(2α2), which im-
plies (2.24), and on the other hand that

|(A ∩ A · z)2 ∩ Y| ⩽ δ|A ∩ A · z|2,
which is equivalent to (2.25).

To prove (2.26), we first find a lower-bound for E(|B|2). By the Cauchy–Schwarz
inequality, we have

E(|B|2) ⩾ E(|B|)2,
and the expectation of the size of B is

E(|B|) =
∑
a∈A

P(a ∈ A · z) =
∑
a∈A

∑
b∈A

P(z = b−1a) =
1

|A|2
∑
a∈A

∑
b∈A

r(b−1a).

But, by replacing r(b−1a) by its definition, we compute

1

|A|2
∑
a∈A

∑
b∈A

r(b−1a) =
1

|A|2
∑
a∈A

∑
b∈A

∑
(x,y)∈A2

xy−1=b−1a

1 = |A|e(A).

Using the assumption, we get from this the lower bound

E(|B|2) ⩾ |A|2

α2
.

We now handle separately an upper bound for the expectation of (B × B) ∩ Y. We
simply write

E(|(B × B) ∩ Y|) ⩽ |A|2 max
(a,b)∈Y

P({a, b} ⊂ B),
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and estimate the probability that {a, b} ⊂ B for each (a, b) ∈ Y separately. Since Y ⊂ A2,
this is

P(a ∈ B and b ∈ B) = P(a ∈ A · z and b ∈ A · z) = P(z ∈ A−1 · a ∩ A−1 · b).
From the crude bound r(x) ⩽ |A|, it follows that P(z = x) ⩽ 1/|A| for any x ∈ G,

and we deduce that

P(z ∈ A−1 · a ∩ A−1 · b) ⩽ 1

|A|
|A−1 · a ∩ A−1 · b|.

Note that A−1 · a ∩ A−1 · b is in bijection with the set of pairs (x, y) ∈ A2 such that
xy−1 = ab−1, by means of the map f which sends an element w of the intersection to
(aw−1, bw−1), with inverse (x, y) 7→ a−1x = b−1y. Thus we get

P(a ∈ B and b ∈ B) ⩽
1

|A|
∑

(x,y)∈A2

xy−1=ab−1

1 =
r(ab−1)

|A|
,

and by definition of Y, this is < γ|A|. Thus we have

E
(
|B|2 − δ−1|(B × B) ∩ Y|

)
⩾

|A|2

α2
− γ|A|2

δ
,

and this is ⩾ |A|2/(2α2) if we take γ = δ/(2α2), as claimed. □

Proof of Theorem 2.7.1. We first observe that the last conclusion (2.22) follows
from (2.21) and the definition of the Ruzsa distance: we have

exp d(B,B) =
|B · B−1|

|B|
≪ α6|A|

|B|
≪ α7.

We will prove the existence of B, and leave the similar proof of the existence of the
set B′ to the reader.

We apply the proposition with δ = 1/10, and denote by C the set A ∩ A · z which it
provides, and by X the set of g ∈ G with r(g) ⩾ δ|A|/(2α2) = |A|/(20α2), where r is the
representation function for A ·A−1. We note that since the sum of r(g) over all g is equal
to |A|2, we have

(2.27) |X| ⩽ 20α2|A|.
Further, for any element a ∈ A, we let N(a) denote the set of b ∈ C such that ab−1 ∈ X.
We have 0 ⩽ |N(c)| ⩽ |C| for any c ∈ C; moreover, by (2.25), we have∑

c∈C

|N(c)| ⩾ (1 − δ)|C|2,

and this implies that N(c) must often be quite close to its maximal value. Precisely, for
any γ > 0, we have8

1

|C|
|{c ∈ C | |N(c)| < (1 − γ)|C|}| =

1

|C|
∑

|C|−|N(c)|>γ|C|

1

⩽
1

γ|C|
× 1

|C|
∑
c∈C

(|C| − |N(c)|) ⩽ δ

γ
,

and taking γ =
√
δ, we find that there are at least (1 −

√
δ)|C| elements of C such that

|N(c)| ⩾ (1 −
√
δ)|C|.

8 This is really the Chebychev inequality implemented “inline”.
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Let B be the subset of C (hence of A) defined by this condition on N(c); since the
proposition implies that |C| ⩾ |A|/(2α), we already get

|B| ⩾ (1 −
√
δ)|C| ⩾ |C|

2
⩾

|A|
4α

.

To conclude the proof, we claim that

(2.28) B · B−1 ⊂
{
x ∈ G | s(x) ⩾

|C|
3

}
,

where s is the representation function for X · X−1. Assuming this, we observe that the
right-hand set satisfies ∣∣∣{x ∈ G | s(x) ⩾

|C|
3

}∣∣∣ ⩽ 3|X|2

|C|
(as before, since the sum of all s(x) is |X|2). Using |C| ⩾ |A|/(2α) together with (2.27),
we deduce

|B · B−1| ⩽ 3|X|2

|C|
⩽ 6 · 202 · α5|A|,

which finishes the proof of the theorem.
To prove (2.28), pick any a and b in B; we need a lower bound for s(ab−1), or in other

words for the size of the set

{(u, v) ∈ X × X | uv−1 = ab−1}.
There is an injective map

N(a) ∩ N(b) → {(u, v) ∈ X × X | uv−1 = ab−1}
defined by f(z) = (az−1, bz−1) (the crucial point here is that this map is well-defined: we
have (az−1, bz−1) ∈ X×X by definition of N(a) and N(b)). Hence s(ab−1) ⩾ |N(a)∩N(b)|.
But, by definition, |N(a)| and |N(b)| are very large, and so is their intersection. In fact,
we get

|N(a) ∩ N(b)| ⩾ (1 − 2
√
δ)|C| ⩾ |C|

3
,

(recall that δ = 1/10), so that s(ab−1) ⩾ |C|/3, as desired. □

The proof of the full version of Theorem 2.5.5 proceeds in a few steps, which we
summarize as follows, using ci to denote some numerical constants, which can all be
made explicit:

(1) A result in graph theory, of independent interest, states that if γ = (V,E) is a
finite bipartite graph, with V = V1 ⊔ V2 its bipartite decomposition, such that |E| ⩾
α−1|V1||V2 for some α ⩾ 1, then one can find subsets Ui ⊂ Vi with |Vi| ⩽ c1α|Ui|, such
that any pair (u1, u2) ∈ U1 × U2 is joined by at ⩾ c2α

−4|V1||V2| paths of length 3.
(2) Given A, B with e(A,B) ⩾ α−1, one uses this result to deduce that there exist

A1 ⊂ A and B1 ⊂ B such that |A| ⩽ 2c1α|A1|, |B| ⩽ 2c2α|B1|, and

log d(A1,B1) ⩽ c3α
9.

The graph which is used has vertex set the disjoint union A ⊔ B, and edges those
{a, b} (with a ∈ A and b ∈ B in the respective parts of the disjoint union) such that ab

has ⩾ 1
2
α−1

√
|A||B| representations in A · B.

Remark 2.7.3. Theorem 2.7.1 is really a variant (and its proof a simplification) of
the combination of (1) and (2), in the case of a single set.
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(3) Given now sets A, B with log d(A,B) ⩽ α for some α ⩾ 1, one proves that there
exists a c4α

80-approximate subgroup H and a set X such that

|X| ⩽ c5α
104, |H| ⩽ c6α

14|A|
A ⊂ XH, B ⊂ HX.

One can then a simple positivity argument see that there exists elements x ∈ X and
y ∈ X such that

|A ∩ xH| ⩾ |A|
|X|

, |B ∩ Hy| ⩾ |A|
|X|

(because

|A| =
∑
x∈X

|A ∩ xH| ⩽ |X|max
x∈X

|A ∩ xH|

for instance; this argument is often called the “pigeonhole principle”).
All together, this combines to yield Theorem 2.5.5.

2.8. Quasirandom groups and product-free sets

Gowers [42] introduced a notion of “quasi-random” groups, which is a fairly simple
group-theoretic condition which implies that certain associated graphs behave, in certain
respects, like random graphs. We will present this relatively briefly, since accounts of
this theory already appear in a number of sources. It allows us however to also mention
another important topic in additive combinatorics: product-free sets.

Definition 2.8.1. Let α ⩾ 1 be a real number. A finite group G is called α-
quasirandom, or α-quasirandom, if any group morphism ϱ : G → GLn(C) with n < α
is trivial, in the sense that ϱ(g) = Id for all g ∈ G.

In the language of representation theory, this is equivalent to saying that G is α-
quasirandom if and only if any non-trivial irreducible representation of G has dimension
⩾ α.

Example 2.8.2. (1) Any non-trivial finite group G is 1-quasirandom. If G is a abelian,
then this is best possible: G is not α-quasirandom for any α > 1 (taking g ∈ G different
from 1, Lemma A.7.4 shows that there exists a group morphism ϱ : G → C× = GL1(C)
such that ϱ(g) ̸= 1).

More generally, any finite group which is α-quasirandom for some α > 1 must be a
perfect group, meaning that there is no non-trivial group morphism from G to a finite
abelian group (given a morphism f : G → A where A is abelian, we would obtain a non-
trivial morphism f : G → C× by composing f with a character of A which is non-trivial
on some element of the image of f).

(2) On the other hand, if p is an odd prime number, the group SL2(Fp) is α-
quasirandom with α = 1

2
(p − 1). This result goes back to Frobenius, who classified

the irreducible representations of SL2(Fp); inspecting the dimensions of these, the result
immediately follows.

There is also however an elegant elementary argument which we now present. Let
ϱ : SL2(Fp) → GLn(C) be a group morphism which is not trivial, where n ⩾ 1 is an
integer. Consider the matrices

u+ =

(
1 1
0 1

)
, u− =

(
1 0
1 1

)
,
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which are known to generate SL2(Fp). One at least is therefore not in the kernel of ϱ,
say u+ (the other case is treated similarly). There is then in E a non-zero eigenvector x
of the matrix ϱ(u+) for some eigenvalue ξ ̸= 1, which must be a primitive p-root of unity.

Let k ⩾ 1 be an integer coprime to p. Writing k−1 for the inverse of the class of k
modulo p, let

a =

(
k 0
0 k−1

)
∈ SL2(Fp).

A direct computation gives the matrix identity au+a
−1 = uk

2

+ , and the standard
computation

ϱ(u+)ϱ(a−1)x = ϱ(a−1)ϱ(au+a
−1)x = ϱ(a−1)ϱ(u+)k

2

x = ξk
2

ϱ(a)x,

i.e., the vector ϱ(a)x is an eigenvector of ϱ(u+) with eigenvalue ξk
2
.

As k runs over integers between 1 and p−1, the square k2 (mod p) runs over (p−1)/2

distinct elements in F×
p , and the corresponding roots of unity ξk

2
are also distinct; thus

the matrix ϱ(u+) on Cn has at least (p−1)/2 distinct eigenvalues, which implies that n ⩾
(p− 1)/2.

(3) Let n ⩾ 2 be an integer. The symmetric group Sn is only 1-quasirandom since the
signature is a non-trivial homomorphism Sn → {−1, 1} ⊂ C×. If n ⩾ 6, it is known that
the alternating group An is (n − 1)-quasirandom, and that this is sharp.9 The former
result can be deduced from a theorem of Burnside [15, p. 468], and can nowadays also
be proved using formulas for the dimension of the irreducible representations of Sn; to
see that the bound is sharp, note that there is an injective (hence non-trivial) group
morphism An → GLn(C), mapping each permutation to the corresponding permutation
matrix, and observe that each permutation matrix leaves invariant the (n−1)-dimensional
subspace of Cn defined by the condition

x1 + · · · + xn = 0, for (xi) ∈ Cn.

Picking a basis of this subspace, the resulting morphism An → GLn−1(C) is still
non-trivial.

Exercise 2.8.3. This exercise shows that An is φ(n)/2-quasirandom when n ⩾ 4
is odd, where φ(n) is the cardinality of the group of invertible elements in Z/nZ. In
particular, this proves that An is (p − 1)/2-quasirandom when p ⩾ 5 is an odd prime.
(In general, φ(n) is not far from n: it is known that φ(n) ≫ n(log log n)−1, see, e.g., [48,
Th. 328]).

We recall that An is a simple group if n ⩾ 5, and we denote by σ an n-cycle in Sn.
We always assume here that n is odd.

(1) Show that φ(n) is even.

(2) Let m ⩾ 1 be an integer, and let ϱ : Sn → GLm(C) be a group morphism which
is non-trivial when restricted to An. Show that ϱ(σ) is not the identity.

(3) Show that if k is an integer coprime to n, then σk is an n-cycle.

(4) Deduce that m ⩾ φ(n). (Hint: adapt the method used for SL2(Fp).)

(5) Let m ⩾ 1 be an integer, and let ϱ : An → GLm(C) be a non-trivial group
morphism. Show that m ⩾ φ(n)/2. (Hint: if you know about induced repre-
sentations, consider the representation IndSn

An
(ϱ) of Sn, and apply the previous

9 One can check numerically that A5 is only 3-quasirandom.
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result; otherwise, show that φ(n)/2 distinct powers of σ are conjugate to σ in
An, and argue as before.)

The point of the definition of α-quasirandom groups is that it implies strong properties
of product sets if α is relatively large.

Theorem 2.8.4 (Gowers). Let α ⩾ 1 be a real number and G an α-quasirandom
group. Let k ⩾ 1 be an integer.

For any subsets A1, . . . , Ak of G such that

|A1| · · · |Ak| >
|G|k

αk−1
,

we have

A1 · · ·Ak = G.

In particular, for any subsets A, B and C of G such that |A||B||C| ⩾ α−2|G|3, we
have A · B ∩ C ̸= ∅.

Proof of Theorem 2.8.4. We note first that the second statement follows from
the first by taking k = 3 and A1 = A, A2 = B, A3 = C−1; we deduce that A ·B ·C−1 = G,
and in particular writing abc−1 = 1 for suitable (a, b, c) ∈ A × B × C, we get ab = c ∈
A · B ∩ C.

The proof of the first statement is a variant of the proof of Gowers, due to Breuil-
lard [13, Lemma 2.2]. It is, in principle, a straightforward implementation of the basic
idea of harmonic analysis, already sketched in Section 1.3: we expand in a suitable “basis”
the representation function of the product set, and manipulate the resulting expression to
show that it is positive. The trick is to see how to use the quasi-randomness assumption.

Let φi denote the characteristic function of the set Ai, and let r : G → C be the
function defined by

r = φ1 ∗ · · · ∗ φk,

which is a positive multiple of the representation function for A1 · · ·Ak. It suffices to
prove that r(x) > 0 for all x ∈ G. To do this, we use Fourier analysis on G to expand r
in the form

r =
∑
ϱ∈Ĝ

rϱ

as in Section A.8 (see especially Example A.8.7).
Isolating the contribution of the trivial representation, denoted ϱ0 in Theorem A.8.5,

we get

r(x) ⩾
|A1| · · · |Ak|

|G|k
−
∑
ϱ ̸=1

|rϱ(x)|,

since rϱ0 is a constant function equal to the average of r over G.
The functions rϱ can be identified with linear maps on a finite-dimensional Hilbert

space Eϱ, and the space of these linear maps is a Hilbert space, with a norm denoted
u 7→ ∥u∥ϱ. We know that for any x ∈ G, we have

|rϱ(x)| ⩽ ∥rϱ∥ϱ.

By the definition of r using convolution and the fact that the ϱ-component of a
convolution is given by composition of the corresponding linear maps, we have

rϱ = φ1,ϱ ◦ · · · ◦ φk,ϱ
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for any ϱ ∈ Ĝ. The inequality above becomes

(2.29) r(x) ⩾
|A1| · · · |Ak|

|G|k
−
∑
ϱ̸=1

∥φ1,ϱ ◦ · · · ◦ φk,ϱ∥ϱ.

The multiplicativity of the norm ∥u∥ϱ (Proposition A.8.9, (2), gives an upper-bound

∥φ1,ϱ ◦ · · · ◦ φk,ϱ∥ϱ ⩽ ∥φ1,ϱ∥ · · · ∥φk−1,ϱ∥ ∥φk,ϱ∥ϱ
for every ϱ, where ∥u∥ is the usual norm for linear operators on Eϱ (note that only one
of the functions is measured with the ϱ-norm).

Now quasi-randomness can be used: for ϱ ̸= ϱ0 and any linear map u on Eϱ, we have

∥u∥ ⩽ α−1/2∥u∥ϱ,
by Proposition A.8.9, (1),10 and consequently, we get

∥φ1,ϱ ◦ · · · ◦ φk,ϱ∥ϱ ⩽ α−(k−1)/2∥φ1,ϱ∥ϱ · · · ∥φk−1,ϱ∥ϱ ∥φk,ϱ∥ϱ.
If u = φi,ϱ, then we argue from the Parseval identity∑

ϱ

∥φi,ϱ∥2ϱ = ∥φi∥2 =
|Ai|
|G|

and positivity that

∥φi,ϱ∥ϱ ⩽
( |Ai|
|G|

)1/2

.

We use this for the first k− 2 among the terms in the product of ϱ-norms, and obtain

∥φ1,ϱ ◦ · · · ◦ φk,ϱ∥ϱ ⩽ α−(k−1)/2
( |A1| · · · |Ak−2|

|G|k−2

)1/2

∥φk−1,ϱ∥ϱ ∥φk,ϱ∥ϱ

for ϱ ̸= ϱ0.
Furthermore, using the Cauchy–Schwarz inequality and the Parseval identity again,

we obtain the estimate∑
ϱ ̸=ϱ0

∥φ1,ϱ ◦ · · · ◦ φk,ϱ∥ϱ ⩽ α−(k−1)/2
( |A1| · · · |Ak−2|

|G|k−2

)1/2 ∑
ϱ ̸=ϱ0

∥φk−1,ϱ∥ϱ ∥φk,ϱ∥ϱ

⩽ α−(k−1)/2
( |A1| · · · |Ak−2|

|G|k−2

)1/2

∥φk−1∥ ∥φk∥

= α−(k−1)/2
( |A1| · · · |Ak|

|G|k
)1/2

.(2.30)

It follows finally by combining (2.30) with (2.29) that r(x) > 0 for all x if

|A1| · · · |Ak| >
|G|k

αk−1
.

□

Remark 2.8.5. (1) Theorem 2.8.4 is not useful if α = 1, since the assumption can
then only hold when A = B = C = G, but it becomes very interesting as soon as α
grows. In particular, for SL2(Fp) with p an odd prime, Example 2.8.2, (2) combined with
Theorem 2.8.4, shows that if a subset A of SL2(Fp) satisfies |A| ⩾ (1

2
(p−1))−1/3| SL2(Fp)|,

10 Here is the only place where we also use the interpretation of the Fourier decomposition in terms
of linear actions to say that any ϱ ̸= ϱ0 must have degree at least α.
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which is of size roughly 21/3p8/9, then A(3) = SL2(Fp). The analogue of this fails com-
pletely for abelian groups: for instance, if G = Z/pZ, then the set A which is the image
modulo p of an interval of length < p/3 in Z never satisfies A + A + A = Z/pZ.

(2) One can think of this result in analogy with the circle method of diophantine
geometry, which is also based on the use of harmonic analysis to compute the number
of solutions of various additive equations. It is interesting to note that, just as in that
case, the most direct method breaks down for “binary problems”, i.e., in that case for
a product A1 · A2: it leads to a condition on the size of A1 and A2 which can only be
satisfied in the trivial case where each is equal to G.

Gowers deduced from Theorem 2.8.4 and from the existence of α-quasirandom groups
with α arbitrarily large the answer to a question of Babai and Sós [1, Problem 7.5]: a
finite group G does not always contain a product-free subset of density bounded away
from 0 in G. Precisely, a subset A of an arbitrary group G is called product-free if A(2)∩A
is empty (i.e., no element of A is also a product of two, possibly equal, elements of A)
and the question is whether there exists c > 0 such that any finite group G contains a
product-free subset of size at least c|G|.

The answer is “No”: indeed, if G is α-quasirandom, then by taking A = B = C in
Theorem 2.8.4, (1), we see that a subset of size at least α−1/3|G| of G is not product-free.
Taking a sequence of groups Gn which are αn-quasirandom with αn → +∞, the result
follows.

There are also some form of converse statements. For instance, the following exercise
presents a well-known result of Erdős, according to which any non-empty set A of integers
contains a rather large product-free subset. Because of the additive notation, these are
also called sum-free sets.

Exercise 2.8.6. (1) Let p ⩾ 5 be a prime number. Denote by I the image
modulo p of the set of positive integers n such that p/3 < n ⩽ 2p/3. Let A ⊂ Fp

be a finite set. For any x ∈ F×
p , show that the set Bx = A∩ xI is a sum-free set,

where xI denotes here the set of elements of the form xy with y ∈ I.

(2) We now consider Bx when x is taken uniformly at random in F×
p . Show that

E(|Bx|) > |A|/3, i.e., that

1

p− 1

∑
x∈F×

p

|Bx| >
|A|
3
.

(3) Deduce that if A ⊂ Z is a set of integers, then it contains a sum-free subset B
with |B| > |A|/3.

Exercise 2.8.7. (1) Let G be a group and H a subgroup of G. For any x ∈ G H,
show that the cosets xH and Hx are product-free sets.

(2) Deduce that the symmetric group Sn contains a product-free set of size (n− 1)!
for any n ⩾ 2.

(3) Try to find a product-free subset of SL2(Fp) which is as large as possible.

2.9. The Freiman–Ruzsa Theorem

The first truly significant study of what are now called approximate subgroups is to
be found in the work of Freiman (see his book [35]). In particular, what is now called the
Freiman–Green–Ruzsa Theorem provides a basic qualitative description of approximate
subgroups in abelian groups. In the case of torsion-free groups (i.e., groups G where the
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equation dx = 0, with d ⩾ 1 and x ∈ G, implies that x = 0), it takes the following form
(which was how Ruzsa [71, Th. 1.1] stated his version of the result):

Theorem 2.9.1 (Freiman, Ruzsa). Let α ⩾ 1 be a real number. Let A be a finite subset
of a torsion-free abelian group G such that |A + A| ⩽ α|A|. There exist an integer d ⩾ 1
and a real number β ⩾ 0, both depending only on α, such that A is contained in a
d-dimensional generalized arithmetic progression B with |B| ⩽ β|A|.

One of the most challenging questions in additive combinatorics is the polynomial
Freiman–Ruzsa conjecture, which concerns the dependency of d and β on α in theorems
of this type – in particular, d should be bounded by a polynomial in α, see [84, Conj. 5.43]
for a precise statement.

We sketch Ruzsa’s proof, since it involves important ideas. The key step that extracts
some structure from A is the following general result, due to Bogolyubov:

Proposition 2.9.2. Let G be a finite abelian group. Let A be a non-empty subset
of G. There exists an integer d ⩽ (|G|/|A|)2 and characters

χ1, . . . , χd

of G such that the set 2A − 2A contains the set

B = {x ∈ G | Re(χi(x)) ⩾ 0 for 1 ⩽ i ⩽ d}.

Proof. Let φA be the characteristic function of A, and φ−A that of −A. By the
definition of convolution, the function

rA = φA ∗ φA ∗ φ−A ∗ φ−A

is proportional to the representation function for the sumset 2A − 2A, and in particular
is positive exactly on this subset.

We will find a lower bound for the value of rA by expressing it on the Fourier side.
We have r̂A = |G|−3/2|φ̂A|4 (see Remark A.7.9, (1)) since the Fourier transform of φ−A

is φ̂A. Hence, by inverse Fourier transform, we know that

rA(x) = Re(rA(x)) = Re
( 1

|G|2
∑
χ∈Ĝ

|φ̂A(χ)|4χ(x)
)
.

We split the sum according to the size of the Fourier transform of φA, using a param-
eter β that we will specify later, with 0 < β < 1. Note that

|φ̂A(χ)| =
∣∣∣ 1

|G|1/2
∑
x∈A

χ(x)
∣∣∣ ⩽ |A|

|G|1/2
,

and denote by X the set of χ ∈ Ĝ such that |φ̂A(χ)| > β|A||G|−1/2. We have∑
χ∈Ĝ

|φ̂A(χ)|4χ(x) =
∑
χ∈X

φ̂A(χ)|4χ(x) +
∑
χ/∈X

|φ̂A(χ)|4χ(x),

hence

|G|2rA(x) > Re
(∑
χ∈X

|φ̂A(χ)|4χ(x)
)
−
∑
χ/∈X

|φ̂A(χ)|4.

By definition of X, the second term satisfies the bound∑
χ/∈X

|φ̂A(χ)|4 ⩽ β2|A|2

|G|
∑
χ/∈X

|φ̂A(χ)|2 ⩽ β2|A|2

|G|
∑
χ∈Ĝ

|φ̂A(χ)|2 =
β2|A|3

|G|
,
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where we used the discrete Plancherel formula in the end.
The set X contains the trivial character, which gives a contribution equal to |φ̂A(1)|4 =

|A|4/|G|2. Hence, if x satisfies Re(χ(x)) ⩾ 0 for χ ∈ X {1}, then

|G|2rA(x) >
|A|4

|G|2
− β2|A|3

|G|
.

Thus, taking β = (|A|/|G|)1/2, we ensure that the right-hand side is positive, and we
conclude that 2A − 2A contains the set

B = {x ∈ G | Re(χ(x)) ⩾ 0 for χ ∈ X {1}}.

This set is of the form claimed, with

d = |X| − 1 ⩽
( |G|
|A|

)2

,

since

|X| |A|3

|G|2
= |X|β

2|A|2

|G|
⩽

∑
χ∈X

|φ̂A(χ)|2 ⩽
∑
χ∈Ĝ

|φ̂A(χ)|2 = |A|,

by the Plancherel formula once more. □

Sets of the kind described in this lemma, with the conditions Re(χi(x)) ⩾ 0 replaced
by the more general conditions that χi(x) should be of the form e(t) = e2iπt with |t| ⩽ εi
for some parameters εi > 0,11 are called Bohr sets, and appear frequently in harmonic
analysis as well as additive combinatorics. Using the function ∥x∥ on the unit circle which
gives the angular distance (measured from 0 to 1, i.e., identifying the circle with R/Z)
to the point 1, we can express these sets in the form

{x ∈ G | ∥χi(x)∥ < εi for 1 ⩽ i ⩽ d}.

Ruzsa combined Proposition 2.9.2 with another structural result about Bohr sets.

Proposition 2.9.3 (Ruzsa). Let d ⩾ 1 be an integer, and let (ε1, . . . , εd) be positive
real numbers with εi <

1
2
for all i. Let N ⩾ 1 be an integer, and denote by χa the character

x 7→ e(ax/N) of Z/NZ.
For any integers (a1, . . . , ad) such that the gcd of (a1, . . . , ad,N) is equal to 1, the Bohr

set

{x ∈ Z/NZ | ∥χai(x)∥ < εi for 1 ⩽ i ⩽ d}
in Z/NZ contains a proper generalized arithmetic progression of dimension d and size
> δN, where

δ = d−dε1 · · · εd.

2.10. Final remarks

We have omitted many topics related to sum (or product) sets. Here are a few
examples, with some references:

(1) A substantial part of analytic number theory concerns problems which can be
interpreted as asking about properties of sumsets A1 + · · · + Ak for interesting concrete
sets of integers Ai and various values of k. For instance:

11 The case of Bogolyubov corresponds to taking εi = 1
4 .
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– A famous theorem of Lagrange states that 4□ is the set of all positive integers,
where □ denotes the set of squares of positive integers. Another famous theorem
of Gauss identifies exactly the set 3□, and shows in particular that it contains
an some arithmetic progressions modulo 8.

– Waring’s Problem, as solved by Hilbert, can be interpreted as the statement that
for any integer d ⩾ 1, some iterated sumset of the set of d-th powers of positive
integers is equal to the set of positive integers.

– Let P be the set of primes. Vinogradov proved that 3P contains all sufficiently
large odd integers, and it is famously conjectured that 2P contains all even
integers ⩾ 4.

(2) Remarkably, there is an abstract theory of sumsets of integers which suffices to
solve Waring’s Problem and to prove that kP is contains all but finitely many integers
for some k ⩾ 1: this is the topic of Schnirelman’s density (see, e.g., [55, Ch. II]).
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CHAPTER 3

The sum-product phenomenon

3.1. Sum-product in integers

The main theme of this chapter is the sum-product phenomenon, which was already
mentioned in Theorem 1.1.3. Recall the statement: for any finite set A of positive integers,
we have

(3.1) max(|A + A|, |A · A|) ⩾ c|A|1+δ,

for some real numbers c > 0 and δ > 0, independent of A. Intuitively, this is interpreted as
saying that Z does not contain (finite) subsets which behave like “approximate subrings”.

Remark 3.1.1. Note that

max(|A + A|, |A · A|) ⩽ |(A + A) ∪ A · A|
⩽ |A + A| + |A · A| ⩽ 2 max(|A + A|, |A · A|),

hence (up to changing the value of c), the bound (3.1) is equivalent to either

|A + A| + |A · A| ⩾ c|A|1+δ

or

(3.2) |(|A + A) ∪ A · A| ⩾ c|A|1+δ.

To get a first feeling for this result, it is of course useful to check what happens for
sets A for which we already know that either A + A or A · A is not much larger than A.

(1) Suppose first that A has minimal growth under multiplication. This means that
|A ·A| = 2|A| − 1 (we use here the minor assumption that all elements of A are positive,
so we can view A as a subset of the abelian group R×

+ of positive real numbers, which
is isomorphic to R by the logarithm and use the very easy form of Cauchy’s Theorem
in R, see Section 1.3); from the inverse statement (Proposition 1.3.7), it follows that A
is a geometric progression. Thus there exists a0 ∈ A (in particular non-zero) and r ⩾ 2
such that

A = {a0, a0r, . . . , a0r|A|−1}.
We recognize that A is a Sidon set in Z, so A + A is of size |A|2, so that (3.1) is

confirmed with the best possible value δ = 1 in that case.

(2) The case where A has minimal growth under addition is more curious. By Proposi-
tion 1.3.7 again, this means that A is an arithmetic progression; we consider for simplicity
the case A = [N] for some integer N ⩾ 1. The question of the size of A · A is the “mul-
tiplication table problem” of Erdős: how many distinct integers appear in an N × N
multiplication table? The form of the answer is quite surprising: after much earlier work
(of Erdős, Hall, Tenenbaum, in particular) it was proved by Ford [31, Cor. 3] that

|[N] · [N]| ≍ N2

(log N)β(log log N)3/2
, β = 1 − 1 + log log 2

log 2
= 0.086071 . . .

for all N ⩾ 1.
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In particular, although we obtain the bound (3.1) for any δ < 1, it fails when δ = 1.
One can check these facts more easily than by appealing to the deep result of Ford. For
the lower bound, note that [N] contains the set of primes p ⩽ N as a Sidon subset, so
that |[N] × [N]| ⩾ 1

2
π(N)2, where π(N) is the number of primes ⩽ N. By Chebychev’s

estimate already (see, e.g., [78, § 2.3] or [48, Th. 414] for a proof), this implies that
|[N] · [N] ≫ N2/(log N)2.

Concerning the upper bound (showing that δ = 1 is not possible, as had already been
observed by Erdős and Szemerédit, in stronger form), one can exploit a result of Hardy
and Ramanujan, which states that the number of prime factors of a typical integer n ∈ [N]
is usually about log log N, and hence the number of prime factors of an element of [N] · [N]
is about 2 log log N, which means that these integers cannot be typical as elements of
[N2].

More precisely, we denote by Ω(n) the number of prime divisors of an integer n ⩾ 1,
counted with multiplicity; its crucial property is that Ω(ab) = Ω(a)+Ω(b) for any positive
integers a and b. Hardy and Ramanujan proved that

(3.3)
∑
n∈[N]

(Ω(n) − log log N)2 ≪ N log log N,

for N ⩾ 3, which is a variance estimate for Ω(n) (see, e.g., [48, Th. 431]). It follows that

|{n ∈ [N] | |Ω(n) − log log N| ⩾ 1
4
(log log N)1/2}| ≪ N

log log N
,

(this is Markov’s inequality). On the one hand, this implies that

|{n ∈ [N2] | Ω(n) ⩾ 3
2

log log N}| ≪ N2

log log N
,

giving the typical value of Ω(n) for n ∈ [N2] (noting that log(log(N2)) = log(log N) +
log(log 2)).

On the other hand, an element n of [N]× [N] which does not satisfy Ω(n) ⩾ 3
2

log log N
must be of the form n = ab for some (a, b) ∈ [N] × [N] with either

Ω(a) < 1
4

log log N, or Ω(b) < 1
4

log log N.

The total number of (a, b) with this property is bounded by

2N |{k ∈ [N] | Ω(k) < 1
4

log log N}| ≪ N2

log log N
.

It follows that

|[N] × [N]| ⩽ |{n ∈ [N2] | Ω(n) ⩾ 3
2

log log N}| + O
( N2

log log N

)
≪ N2

log log N
.

Remark 3.1.2. The inequality (3.3) is only the tip of an iceberg: the Erdős–Kác
Theorem (see, e.g., [60, § 2.3] for a proof) states that the normalized quantity

Ω(n) − log log N√
log log N

,

for n ∈ [N], becomes distributed, as N → +∞, like a standard gaussian random variable.

Remark 3.1.3. Erdős and Szemerédi conjectured that the sum-product estimate (3.1)
should be valid for any δ < 1.

We will give different proofs of Theorem 1.1.3. We begin by the original argument,
which will lead to the respectable value δ = 1

41
(without much effort at optimization).
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The Erdős–Szemerédi proof. We will prove the statement in the form of the
inequality (3.2).

We begin by considering the case where the set A is contained in a dyadic interval
N + [N], which we may also assume satisfies N ⩾ 3.

The first easy consequence of this reduction is that the sum set A+A and the product
set A · A are disjoint (all elements of the former are ⩽ 4N, all those of the latter are
⩾ (N + 1)2 > 4N).

Let a = |A|, and consider the unique strictly increasing function f : [a] → A. For a
parameter q < a to be chosen later, subdivide [a] in q+1 successive intervals I1, . . . , Iq+1,
all but the latest of the same size ℓ = ⌊a/q⌋. Finally, let I be one interval among I1, . . . ,
Iq chosen so that max f(I) − min f(I) is as small as possible. (We will simply ignore the
contribution of the elements of A parameterized by the last interval.)

For 1 ⩽ j ⩽ q, let

Xj = (f(I) + f(Ij)) ∪ (f(I) · f(Ij)),

a subset of (A + A) ∪ (A · A).
Step 1. The first observation is that if we only consider integers j ≡ 1 (mod 3),

with Ij ̸= I, then the sets Xj are pairwise disjoint. Indeed, since (A + A)∩A ·A is empty,
it suffices to show that (under these conditions on j and k), the equations

a+ c = b+ d

and

ac = bd

have no solutions with (a, b) ∈ f(I)2 and (c, d) ∈ f(Ij) × f(Ik) if j ̸= k.
For the former, this is because we would deduce that a − b = d − c; however, since

|j − k| ⩾ 2 by assumption, there is at least one full interval, say J, between Ij and Ik.
Since f is injective, we get

|d− c| > max(f(J)) − min(f(J)) ⩾ max f(I) − min f(I),

by definition of I, whereas |a− b| ⩽ max f(I) − min f(I).
For the second equation, we may assume that j < k, in particular c < d; the equation

ac = bd then imposes that b < a. Write b = a − u and d = c + v for some positive
integers u and v. Observe that since k ⩾ j + 3 by assumption, the choice of I implies
that v > 2u.

The equation ac = bd is equivalent to bd = (b+ u)(d− v), i.e., to uv = du− bv. But
this is impossible, since uv > 0 whereas

du− bv ⩽ 2bu− bv = b(u− 2v) ⩽ 0

(we used the fact that A is contained in a dyadic interval to ensure that d ⩽ 2b).
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Step 2. Let γ > 0 be a (small) constant, and let I be the set of j ⩽ q congruent
to 1 modulo 3, with Ij ̸= I, such that |Xj| < ℓ1+γ. We claim that if γ < 1/3, then for any
j ∈ I , the system of equations

(3.4)

{
x1 + x3 = x2 + x4
x1x5 = x2x6

with (x1, x2) ∈ f(Ij)
2 and (x3, x4, x5, x6) ∈ f(I)4 has at least one solution which is non-

trivial in the sense that x3 ̸= x4.
Indeed, by assumption on j, the set f(Ij) · f(I) ⊂ Xj has size < ℓ1+γ, and by the

pigeonhole principle, there exists n ∈ f(Ij) · f(I) such that |R(n)| ⩾ ℓ1−γ, where R ⊂
f(Ij) × f(I) is the representation set for f(Ij) · f(I).

Since we assumed that γ < 1/3, we have ℓ2−2γ > ℓ1+γ, and therefore |R(n)|2 > ℓ1+γ >
|Xj|; thus the map {

R(n) × R(n) → f(Ij) + f(I) ⊂ Xj

((a, a′), (b, b′)) 7→ a+ b′

is not injective, and there must exist elements

(a, a′), (c′, c), (b, b′), (d′, d)

of R(n) such that a+ c = b+ d and

(a, a′, c′, c) ̸= (b, b′, d′, d).

Since furthermore aa′ = bb′ = n, we obtain a solution

(x1, x2, x3, x4, x5, x6) = (a, b, c, d, a′, b′)

to the system (3.4), and it does satisfy x3 = c ̸= d = x4, as desired (because otherwise
we would get a = b, and then b′ = a′ and c′ = d′ from aa′ = bb′ = n = cc′ = dd′).

Step 3. We can now conclude: still under the condition γ < 1/3, the previous step
allows us to define a map

ϕ : I → f(I)4

by sending j ∈ I to one quadruple (c, d, e, f) with c ̸= d for which the system (3.4) has
a solution (a, b, c, d, e, f) in f(Ij)

2 × f(I)4.
We claim that the map ϕ is injective. Indeed, given any non-zero integers (c, d, e, f)

with c ̸= d, there is at most one pair (a, b) ∈ Q2 for which the equation{
a+ c = b+ d

ae = bf

has a solution, namely (a, b) = (f(c− d)/(e− f), e(c− d)/(e− f) (which is well-defined
because the existence of a solution with c ̸= d implies that e ̸= f). In our situation,
given j ∈ I , we can recover j from the tuple (c, d, e, f) = ϕ(j) because the corresponding
pair (a, b) exists in f(Ij), and this determines uniquely the value of j.

Thus, we have |I | ⩽ |f(I)|4 ⩽ ℓ4. It follows that, as soon as ℓ4 < q
6
, there are at least

q
6

integers j with j ≡ 1 (mod 3) and |Xj| ⩾ ℓ1+γ, and therefore

|(A + A) ∪ A · A| ⩾
∑

j≡1 (mod 3)

|Xj| ⩾
1

2
× q

6
× ℓ1+γ ≫ a1+γq−γ,
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which is clearly suitable provided q ∼ aβ with 0 < β < 1. To get an explicit exponent,
we take for instance γ = 1/4 and q = ⌊7a4/5⌋, and deduce

|(A + A) ∪ A · A| ≫ |A|1+1/20.

This concludes the proof of the result when A is in a dyadic interval. We now establish
the general case. For j ⩾ 0, let Aj = A ∩ (2j − 1 + [2j]), so that A is the union of the
subsets Aj. We can always apply the first case to each subset Aj, but there is a potential
difficulty: these sets might be very small, so that the growth given by the dyadic case is not
enough to deduce anything significant concerning A. Indeed, A might be so “lacunary”
that each Aj contains a single element. This however gives a clue how to proceed: in this
extreme case, A would be a Sidon set by Example 2.3.5, so growth under sum or product
would arise from all the Aj, instead of from individual pieces.

To make this idea precise, we pick again a parameter β > 0 to be determined later.
Let J be the set of integers j such that 1 ⩽ |Aj| < |A|β, and let A′ be the union of Aj

for j ∈ J . We have two cases to consider.
First, if |A′| ⩽ 1

2
|A| (so that many sets Aj are pretty large), then applying the first

case of the result to the sets Aj with j /∈ J , we obtain the lower bound

|(Aj + Aj) ∪ Aj · Aj| ≫ |Aj|1+γ ≫ |A|βγ|Aj|,

where γ = 1/20. Furthermore, the sets Aj are contained in the disjoint dyadic intervals

Dj = {2j, . . . , 2j+1 − 1}, j ⩾ 0,

which satisfy

Dj + Dj = {2j+1, . . . , 2j+2 − 1}, Dj · Dj ⊂ {22j, . . . , 22j+2 − 1},

and we see that a given integer n ∈ (A + A) ∪ A · A belongs to (Aj + Aj) ∪ Aj · Aj for at
most three values of j. Therefore

|(A + A) ∪ A · A| ⩾ 1

3

∑
j /∈J

|(Aj + Aj) ∪ Aj · Aj| ≫ |A|βγ
∑
j /∈J

|Aj| = |A|1+βγ.

Finally, if |A′| > 1
2
|A| (many sets Aj are small), then by construction the size of J

must be ⩾ 1
2
|A|1−β. Let A′′ ⊂ A be a set formed by taking one element from each set Aj

with j ∈ J , j even; thus |A′′| ⩾ 1
4
|A|1−β. Since the Aj’s are in disjoint dyadic intervals,

it follows that A′′ is a Sidon set in Z (see Example 2.3.5), and thus

|(A + A) ∪ A · A| ⩾ |A′′ + A′′| ≫ |A|2−2β.

As soon as 2β < 1, the combination of these two lower bounds implies the sum-
product theorem. To get the best possible exponent, we choose β so that the two cases
give the same exponent, i.e. so that

1 − 2β = βγ, γ =
1

20
,

thus obtaining (3.1) with δ = βγ = γ/(2 + γ) = 1/41. □

The second proof of the sum-product theorem is due to Elekes [27], and is completely
different – it is strikingly elementary, but it relies on another important result of discrete
geometry, the Szemerédi–Trotter Theorem (see [81, Th. 2] for this precise statement).
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Theorem 3.1.4 (Szemerédi–Trotter). Let P be a finite subset of R2 and L a finite
set of affine lines ℓ ⊂ R2. Let k ⩾ 2 be an integer such that k ⩽ |P|1/2.

If the lower bound |ℓ ∩ P| ⩾ k holds for all ℓ ∈ L, then we have

|L| ≪ |P|2k−3,

where the implied constant is absolute.

Sketch of proof. The proof relies on the crossing number inequality which we
discuss briefly in Section A.5. We apply it to the graph γ with vertices P and edge
set E formed by the pairs {x, y} ⊂ P (with x ̸= y) such that the line through x and y
belongs to L, and there is no element of P other than x and y on the line segment from x
to y. This construction gives also automatically a planar realization of γ, in the sense of
Definition A.5.2.

Considering each line ℓ ∈ L separately, we see that the number of edges of γ is then
given by

|E| =
∑
ℓ∈L

(|ℓ ∩ P| − 1) = |I| − |L|,

where I = {(ℓ, x) ∈ L × P | x ∈ ℓ} is the incidence set.
We now consider the planar realization of γ. Since two distinct lines intersect at most

once, the number of crossings of γ is at most |L|2. Theorem A.5.4 implies that either
|E| < 4|P| or

|E|3

64|P|2
⩽ |L|2.

These two cases mean that

|I| < |L| + 4|P|, or |I| ⩽ |L| + 4|L|2/3|P|2/3,

which are inequalities of independent interest, summarized for convenience in the single
statement

(3.5) |I| ⩽ |L| + 4|P| + 4|L|2/3|P|2/3.

Under the assumptions of the Szemerédi–Trotter Theorem, we have a lower bound

|I| =
∑
ℓ∈L

|ℓ ∩ P| ⩾ k|L|,

hence the inequality

|L| ⩽ 1

k
(|L| + 4|P| + 4|L|2/3|P|2/3)

follows. Using the fact that k ⩾ 2, we get

|L| ⩽ 8|P|
k

+
8|L|2/3|P|2/3

k
⩽ 16 max

( |P|
k
,
|L|2/3|P|2/3

k

)
,

or in other words

|L| ⩽ max
(16|P|

k
,
163|P|2

k3

)
⩽

163|P|2

k3

where the last step uses the fact that k ⩽ |P|1/2. □

We can now prove give the proof of the sum-product inequality following Elekes.
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Elekes’s proof. We may assume that |A| ⩾ 2. Let P = (A + A) × (A · A) ⊂ R2,
and let L be the set of lines in R2 obtained as graphs of the functions

fa,b(x) = a(x− b)

for (a, b) ∈ A2. Observing that

fa,b(b+ c) = ac ∈ A · A

for all c ∈ A, we see that each line in L contains at least |A| elements (b+ c, ac) of P.
We can apply the Szemerédi–Trotter inequality to P and L with k = |A|, since |P| =

|A + A||A · A| ⩾ |A|2 = k2. We get

|A|2 = |L| ≪ |P|2|A|−3 = (|A + A| |A · A|)2 |A|−3,

i.e., |A + A| |A · A| ≫ |A|5/2. Thus

max(|A + A|, |A · A|) ≫ |A|5/4,
which concludes the proof of (3.1) with δ = 1/4. □

Remark 3.1.5. (1) To obtain (3.1), for some δ > 0, it would have been enough to have
a version of Theorem 3.1.4 with k3 replaced by k2+β for some β > 0; such a statement
was first proved by Beck [4, Th. 1.5].

(2) The Szemerédi–Trotter bound is essentially sharp, as shown by the example of
the set P = [N] × [N] of N2 points and of the N vertical lines L with equations x = a for
a ∈ [N], where each line contains k = N = |P|1/2 points of P, so that |P|2k−3 = N.

(3) We refer to the book of Guth [47, Ch. 7 to 12] for a deep and enlightening discussion
of incidence geometry and some of its further applications (as well as discussions of open
problems).

The third proof we present is due to Solymosi [77], and is also geometric in spirit.

Solymosi’s proof. We view A as a subset of the multiplicative group R×. The
main result is a bound for the multiplicative energy of A, in terms of the size of the
sumset A + A. Precisely, we claim that the inequality

(3.6) E(A,A) ⩽ 3|A + A|2 log(4|A|)
holds. Since

E(A,A) ⩾
|A|4

|A · A|
,

by the Cauchy–Schwarz inequality (see (2.15)), it follows that

|A + A|2 |A · A| ⩾ |A|4

2 log(4|A|)
,

and hence, for any ε > 0, the inequality

max(|A + A|, |A · A|) ≫ |A|4/3−ε

holds, where the implied constant depends only on ε.
To prove (3.6), the key idea is to use the equality E(A,A) = E(A,A−1), and the

corresponding formula

E(A,A) =
∑

x∈A·A−1

r(x)2,

in terms of the representation function r for A ·A−1. This has a geometric interpretation:
for any x, the equality

r(x) = |ℓx ∩ (A × A)|
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holds, where ℓx ⊂ R2 is the half-line in the plane (with coordinates (u, v)) with equation
u = xv, with v ⩾ 0.

There are two features which emerge from this geometric point of view. First, if x ̸= y
are elements of A · A−1, then the sumset

Sx,y = (ℓx ∩ (A × A)) + (ℓy ∩ (A × A))

in R2 satisfies
|Sx,y| = |ℓx ∩ (A × A)| |ℓy ∩ (A × A)| = r(x)r(y),

simply because the vectors (1, x) and (1, y) are linearly independent in R2.
Second, the sumset Sx,y is contained in the convex hull of the half-lines ℓx and ℓy, and

even in the interior if x ̸= y. This set is the (strict) angular sector delimited by the two
half-lines ℓx and ℓy. In particular, this means that if we take three elements of A ·A−1 in
increasing order, say x < y < z, then we have Sx,y ∩ Sy,z = ∅.

All this suggests the use of a dyadic subdivision of the range of values of r(x), in order
to restrict attention to x’s where r(x) has roughly the same value, hence r(x)r(y) is close
to r(x)2 if y ̸= x. Doing so, we see that there exists an integer N ⩾ 1 such that

E(A,A) ⩽ log(4|A|)
∑

x∈A·A−1

N⩽r(x)<2N

r(x)2.

(Indeed, we have

E(A,A) =
∑
j⩾0

∑
x∈A·A−1

2j⩽r(x)<2j+1

r(x)2,

and the inner sum has no non-zero terms if 2j > |A|, since s(x) ⩽ |A|; defining N = 2j0

where j0 is an integer with ∑
x∈A·A−1

2j0⩽r(x)<2j0+1

r(x)2

maximal, we obtain the result since the number of possibly non-zero terms is ⩽ 2 +
log(|A|)/ log(2) ⩽ log(4|A|).)

For x such that N < r(x) ⩽ 2N, we denote by x+ > x the next element with the same
property, if it exists. We then have

r(x)2 ⩽ 2r(x)r(x+) = 2|Sx,x+| = 2|Sx|.
When x is the largest element (say x0) such that N < r(x) ⩽ 2N, the element x+ does

not exist. Still, we obtain first∑
x∈A·A−1

N⩽r(x)<2N
x ̸=x0

r(x)2 ⩽ 2
∑

x∈A·A−1

N⩽r(x)<2N
x ̸=x0

|Sx,x+| = 2
∣∣∣ ⋃

x∈A·A−1

N⩽r(x)<2N
x̸=x0

Sx,x+

∣∣∣,
since by the second observation above, the sets Sx,x+ are pairwise disjoint. But, by
construction, the sets Sx,x+ are also subsets of (A + A) × (A + A), and thus∑

x∈A·A−1

N<r(x)⩽2N
x ̸=x0

r(x)2 ⩽ 2|A + A|2.

We add r(x0)
2, noting that

r(x0)
2 ⩽ |A|2 ⩽ |A + A|2,
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to get
E(A,A) ⩽ 3 log(4|A|)|A + A|2,

as claimed. □

Remark 3.1.6. If one wishes to squeeze the best possible constant, one can use a
small trick (as is done by Solymosi): let a0 be the largest element of A, and O the set of
points (y, a0) for y the abscissa of some element of ℓx0 ∩ (A × A). Then, defining

Sx0 = (ℓx0 ∩ (A × A)) + O,

we can also write
r(x0)

2 = |ℓx0 ∩ (A × A)||O| = |Sx0|,
and moreover, it is also elementary geometrically that the set Sx0 is disjoint from the
subsets Sy,y+ . Since Sx0 ⊂ (A + A) × (A + A) also, we get∑

x∈A·A−1

N<r(x)⩽2N

r(x)2 ⩽ 2|A + A|2.

Remark 3.1.7. The basic inequality (3.6) of Solymosi is essentially sharp: if we take
A = [N] for some positive integer N, then |A + A| = 2N − 1 and E(A,A) is certainly at
least of size N2.

3.2. Sum-product in finite fields

The theorem of Erdős and Szemerédi mixes two types of product sets (but note
that Z is not a group for multiplication), and relies on the fact that both addition and
multiplication exist on Z, or in other words that it is a ring. In view of Cauchy’s Theorem,
it is of course natural to also consider the case of finite rings, starting with the finite fields
Fp for p prime. Indeed, we have the following result (see [11]):

Theorem 3.2.1 (Bourgain–Katz–Tao). For any γ > 0, there exists δ > 0 such that
for any prime number p and any set A ⊂ Fp such that

pγ ⩽ |A| ⩽ p1−γ,

we have

(3.7) max(|A + A|, |A · A|) ≫ |A|1+δ,

where the implied constant depends only on γ.

Remark 3.2.2. This theorem should remind the reader of the statement of Theo-
rem 2.6.7 (which is, of course, chronologically posterior), and indeed this was one of the
inspirations for the work of Helfgott. However, note that the exponent δ here depends
on γ. This is not an artefact of the proof, but a necessity (see Remark 3.2.11 for a related
situation where this is more transparent).

We will again present different proofs. One is the original argument of Bourgain, Katz
and Tao, and the second, due to Breuillard [13, § 2.13], is based on an interpretation of the
result as a statement about approximate subgroups of the affine-linear group, combined
with techniques related to the study of approximate subgroups of non-abelian groups,
i.e., to Helfgott’s Theorem and its generalizations.

Both proofs will begin with a statement (due to Katz and Tao), which is in spirit
something like a version for “approximate rings” of the Balog–Szemerédi–Gowers Theo-
rem 2.5.5.
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First comes a translation from a set with both sum and product growing slowly, to a
single condition.

Proposition 3.2.3. Let p be a prime number. Let A be a non-empty subset of Fp

and let α ⩾ 1 be such that

max(|A + A|, |A · A|) ⩽ α|A|.
There exists a subset B ⊂ A such that

(3.8) |A| ⩽ β|B|, |B · B − B · B| ⩽ β|B|.
for some real number β ⩽ cαd, where c ⩾ 0 and d ⩾ 0 are independent of p and A.

Then we have a kind of ring analogue of Ruzsa’s Lemma (Proposition 2.4.10), due to
Bourgain, Katz and Tao. We extend here the notation for product sets to handle more
complicated sets like A ·A−A ·A. Precisely, for any polynomial f ∈ Z[X1, . . . ,Xd], where
d ⩾ 1, we define the set f∗(A) as follows: for a monomial

f = mXn1
1 · · ·Xnd

d

we put
f∗(A) = A(n1+···+nd) + · · · + A(n1+···+nd)

with m summands (an m-fold sum of a multiple product set), and for f = f1 + f2, we
define

f∗(A) = f∗(A1) + f∗(A2).

For any subset B ⊂ Fp, we will also denote B−1 = (B {0})−1.

Example 3.2.4. For instance, if f = X2
1 − X2

2, then f∗(A) = A · A − A · A. This is
also the case for f = X1X2 − X3X4, among many other choices.

A few minutes’s thoughts shows (as a few experiments suggest) that we have the
inclusion

(3.9) f∗(g∗(A)) ⊂ (f ◦ g)∗(A)

for any polynomials f and g.

Proposition 3.2.5. Let E be a finite field. Let A be a non-empty subset of E con-
taining 1 and let α ⩾ 1 be such that

|A · A − A · A| ⩽ α|A|.
For any integer m ⩾ 1, and for any polynomials f ∈ Z[X1, . . . ,Xm], we have

|f∗(A) · f∗(A)−1| ⩽ β|A|, and |f∗(A)| ⩽ β|A|
where β ⩽ cαd for some integers c ⩾ 0 and d ⩾ 0 depending only on f .

Assuming the previous two results, which will be proved in Section 3.3, we can now
prove Theorem 3.2.1 following Bourgain, Katz and Tao.

The Bourgain–Katz–Tao proof. We first observe that it is enough to prove the
theorem for sets containing 1, since in any case the case A′ = A ∪ {1} satisfies the same
size assumptions as A, up to replacing γ by a slightly smaller positive number (any one
will do if p is large enough, which we may also assume), and moreover

|A′ + A′| ⩽ |A + A| + |A| + 1 ⩽ 3|A + A|, |A′ · A′| ⩽ |A · A| + |A| ⩽ 2|A · A|.
Let A ⊂ Fp be a non-empty set containing 1 such that

pγ ⩽ |A| ⩽ p1−γ.
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We let α ⩾ 1 be such that

(3.10) |A · A − A · A| ⩽ α|A|.
We will first show that α ≫ |A|δ for some δ > 0 depending only on γ.

Step 1. There exists an integer k, bounded in terms of γ only, and a linear form
λ : Fk

p → Fp such that the restriction of λ to Ak is surjective.
Indeed, for any integer n ⩾ 1, if we iterate n times the variant of Cauchy’s Theorem

given by Proposition 1.3.9, we find elements x1 = 1, . . . , xn ∈ F×
p such that

|x1A + · · · + xnA| ⩾ min
( |A|n

2n
,
p

12

)
,

(where here xA denotes the dilated set {xa | a ∈ A}).
Taking k = ⌈log(p/12)/ log(|A|/2)⌉, this gives xi’s such that

|x1A + · · · + xnA| ⩾ p

12
,

and since (1
2
p)γ ⩽ 1

2
pγ ⩽ 1

2
|A|, we have k ⩽ 1

γ
+ 1. Applying then Cauchy’s Theorem, in

the form of Corollary 1.3.2, we find an integer k ⩽ 24n ⩽ 24(γ−1 + 1) and elements x1,
. . . , xk in F×

p such that x1A + · · · + xkA = Fp, hence the result with

λ(y1, . . . , yk) = x1y1 + · · · + xkyk.

Step 2. Let B be a subset of Fp. If k ⩾ 2 is an integer and λ is a linear form
on Fk

p such that the restriction of λ to Bk is surjective, then there exists a linear form

λ̃ : Fk−1
p → Fp whose restriction to

B̃ = B · (B − B) + B · (B − B)

is surjective. (Note that B̃ = f∗(B) with f = X1(X2 − X3) + X4(X5 − X6).)
Amusingly, this is a form of Gaussian elimination. Precisely, note that the restriction

of λ to Bk is not injective (for the simple reason that this would imply that p = |Fp| = |B|k,
contradicting the primality of p), hence we find two distinct elements x0 ̸= y0 in Bk such
that λ(x0) = λ(y0). Thus z = x0 − y0 is a non-zero element of B − B in the kernel of λ.
Assume, for simplicity, that the last coordinate zk of z is non-zero, and write

λ(y) = a1x1 + · · · + akxk

for all x ∈ Fk
p. We obtain from λ(z) = 0 the identity

akzk = −
k−1∑
j=1

ajzj.

For any t ∈ Fp, the surjectivity of λ : Bk → Fp applied to t/zk gives elements b1, . . . ,
bk of B such that

t = a1zkb1 + · · · + akzkbk,

and we conclude that

t =
k−1∑
j=1

aj(zkbj − zjbk),

which gives the result with λ̃(y) = a1y1 + · · · + ak−1yk−1, since zkbj − zjbk ∈ B̃.

Step 3. We apply Step 1 to the set A, and then iterate k− 1 times the previous step
(recalling that k is bounded in terms of γ only, hence is a constant for fixed γ); because
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of (3.9), there is a polynomial f (in many variables, but depending only on γ) and a
surjective map f∗(A) → Fp. It follows that

|f∗(A)| ⩾ p.

Combining this with Proposition 3.2.5 applied to f , we obtain

p ⩽ |f∗(A)| ⩽ cαd|A|

for some constants c and d. Under the assumption that |A| ⩽ p1−γ, this implies that

α ≫
( p

|A|

)1/d

≫ |A|δ, δ =
γ

d(1 − γ)
.

This estimate was our first objective, but it is not exactly the right kind, since α is
defined in (3.10) in terms of the growth of A · A − A · A. However, in general, let β ⩾ 1
be such that

max(|A + A|, |A · A|) = β|A|.
Proposition 3.2.3 provides a subset B ⊂ A such that

|B · B − B · B| ⩽ κ|B|, |A| ⩽ κ|B|,

where κ ⩽ c′βd′ for some constants c′ and d′. We have of course |B| ⩽ |A| ⩽ p1−γ. On
the other hand, from |B| ⩾ κ−1|A|, we see that either κ ⩾ pγ/2, or |B| ⩾ pγ/2.

In the first case, we deduce from β ≫ κ1/d
′

that β ≫ pγ/(2d
′), and this, in turn, gives

β ≫ |A|
γ

2d′(1−γ) ,

which is of the desired form.
In the second case, the previous argument can be applied to the set B (with γ replaced

by γ/2). It yields

max(|B + B|, |B · B|) ≫ |B|1+δ,

for some δ > 0 depending only on γ. This implies

β|A| = max(|A + A|, |A · A|) ≫
( |A|
κ

)1+δ

≫
( |A|
βd′

)1+δ

,

and this straightens itself into a bound β ≫ |A|δ′ , where δ′ = 1+d′(1+δ) > 0, a constant
depending again only on γ. □

Remark 3.2.6. As happened for product sets, it is not necessarily the case that a
finite subset A of a field E which satisfies

max(|A + A|, |A · A|) ⩽ α|A|

always satisfies a bound

|A · A − A · A| ⩽ β|A|
with β depending polynomially on α (or similar bounds for other sets of the form f∗(A)).

However, the easiest examples are A = F ∪ {x} where F ⊂ E is a proper subfield
and x ∈ E F (in which case |A ·A| ⩽ 2|A| and |A + A| ⩽ 2|A|, as one checks easily, but
|A · A − A · A| ⩾ |E + xE| = (|A| − 1)2.

A posteriori, one can see that Theorem 3.2.1 shows this conclusion does hold for the
field Fp and for subsets which satisfy the size conditions there, but for the “trivial” reason
that α must be at least |A|δ ⩾ pγδ, so the trivial bound |f∗(A)| ⩽ p is already polynomial
in terms of α.
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We will now present a second proof of the sum-product theorem over finite fields,
which is due to Breuillard [13], and makes very explicit the connection between this
result and the general study of approximate groups. In this case, the question is to
classify the approximate subgroups of the affine linear group Aff(Fp) over Fp, which is
the group of transformations x 7→ ax+ b of Fp, where (a, b) ∈ F×

p ×Fp, with composition
as the group law. Although there exist general statements of this kind, goint back to
Helfgott [50, Th. 3.6] and Murphy [63] (later improved by Rudnev and Shkredov [69,
Th. 6]), we state only the version that leads immediately to the sum-product theorem.

We will identify the group Aff(Fp) with the group of invertible matrices of the form(
a b
0 1

)
,

as we may since the composition of affine-linear maps behaves like the product of the
corresponding matrices. For a subset A of Fp, we further denote

Aff(A) =
{(

a b
0 1

)
| (a, b) ∈ (A {0}) × A

}
and Affs(A) = Aff(A) ∪ Aff(A)−1 ∪ {1}.

Theorem 3.2.7 (Partial growth theorem for Aff(Fp)). Let p be a prime number and
let A be a subset of Fp containing 0 and 1. The symmetric subset Affs(A) of Aff(Fp)
satisfies

|Affs(A)(3)| ⩾ min
(
p
( |Affs(A)|
|f∗(A) · f∗(A)−1|

− 1
)
, |Affs(A)|

( |Affs(A)|
|f∗(A) · f∗(A)−1|

)1/3)
,

for some polynomial f independent of p and A.

Using this theorem, we now prove Theorem 3.2.1; in fact, we can now prove it without
the assumption that |A| ⩾ pγ (a version of the sum-product phenomenon over finite fields
which did not require this condition was first obtained by Konyagin [56]).

Breuillard’s proof. We will make the minor assumption that 0 and 1 belong to A.
As in the original argument, we begin with the case where the subset A satisfies the

condition |A · A − A · A| ⩽ α|A|, and show that α must be large.
According to Proposition 3.2.5, the set B = f∗(A)·f∗(A)−1 appearing in Theorem 3.2.7

satisfies |B| ⩽ β|A| with β ⩽ cαd for some constants c and α. In particular, we will have
|B| ⩽ 1

2
|A|2 unless α ⩾ |A|δ for some constant δ > 0, in which case we are done. When

|B| ⩽ 1
2
|A|2, Theorem 3.2.7 yields

|Affs(A)(3)| ≫ |A|2 min
( p

|B|
,
( |Affs(A)|

|B|

)1/3)
≫ |A|2 min

(pγ
β
,
( |A|
β

)1/3)
.

On the other hand, from the matrix computations(
a b
0 1

)−1

=

(
a−1 −a−1b
0 1

)
,

(
a b
0 1

)(
c d
0 1

)(
e f
0 1

)
=

(
ace acf + ad+ b
0 1

)
,

we deduce that Affs(A)(3) ⊂ Aff(C) where C = g∗(A)·g∗(A)−1 for some fixed polynomial g.
Proposition 3.2.5 therefore leads to

|Affs(A)(3)| ⩽ |C|2 ⩽ κ2|A|2

where κ ⩽ c1α
d1 for some constants c1 and d1.
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Comparing the two bounds and using the fact that |A| ⩽ p1−γ, we deduce that

min(|A|γ/(1−γ), |A|1/3) ⩽ min(pγ, |A|1/3) ≪ c2α
d2

for some constants c2 and d2, which leads to the conclusion α ≫ |A|δ for some δ > 0
depending only on γ.

Finally, we reduce the case of a general subset A to this first case in exactly the same
manner as was done at the end of the proof of Bourgain, Katz and Tao. □

We now prove Theorem 3.2.7. This uses two key ingredients from the elementary
theory of approximate groups, which are due to Helfgott. The first is a version of the
classical orbit-stabilizer theorem.

Lemma 3.2.8 (Orbit-stabilizer lemma). Let G be a group acting on a non-empty set X.
Let x ∈ X and denote by H the stabilizer of x in G. For any finite non-empty symmetric
subset A of G, we have

|A| ⩽ |H ∩ A(2)| |A · x|,
where A · x = {a · x | a ∈ A}.

Proof. Consider the surjective orbit map f : A → A · x which maps a to a · x. We
have the equality ∑

y∈A·x

|f−1(y)| = |A|.

For a given y = a · x ∈ A, the elements in f−1(y) are the b ∈ A such that a · x = b · x.
This condition holds if and only if b−1a ∈ H, and since b−1a ∈ A(2), this implies the bound
|f−1(y)| ⩽ |H ∩ A(2)|. Summing over y gives the lemma. □

Remark 3.2.9. If A = G (so G is finite) then the orbit-stabilizer formula is the
equality |G| = |H||G · x|, which explains the interpretation of this result.

The second fact we will use is the following, which states intuitively that if A is an ap-
proximate subgroup of G, then its intersection with any subgroup is also an approximate
subgroup in that group.

Lemma 3.2.10. Let G be a group and H a subgroup of G. For any non-empty sym-
metric subset A of G, and any integer k ⩾ 1, we have

|A(k+1)|
|A|

⩾
|H ∩ A(k)|
|H ∩ A(2)|

.

Proof. We compute the size of A(k+1) by intersecting with cosets of H: we have

|A(k+1)| =
∑

xH∈G/H

|xH ∩ A(k+1)|.

We next observe that, as soon as xH ∩ A is not empty, say with y ∈ xH ∩ A, the set
xH ∩ A(k+1) contains y(H ∩ A(k)), so that |xH ∩ A(k+1)| ⩾ |H ∩ A(k)|. Hence

|A(k+1)| ⩾ |H ∩ A(k)| |X|
where X is the set of cosets xH which intersect A.

To obtain a lower bound for the size of X, we consider the analogue of the decompo-
sition above for A itself:

|A| =
∑
xH∈X

|xH ∩ A|,
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and observe that |xH ∩ A| ⩽ |H ∩ A(2)|, so that

|A| ⩾ |X| |H ∩ A(2)|.
The combination of these bounds leads to the result. □

Before proving Theorem 3.2.7, we introduce some notation. The group Aff(Fp) con-
tains as subgroups the group of dilations or homotheties

D =
{(

a 0
0 1

)
| a ∈ F×

p

}
,

which is isomorphic to F×
p , and the group of translations

U =
{(

1 b
0 1

)
| b ∈ Fp

}
,

which is isomorphic to Fp. Since(
a b
0 1

)
=

(
1 b
0 1

)(
a 0
0 1

)
,

and D ∩ U = {1}, any element g of Aff(Fp) has a unique representation g = ud with
d ∈ D and u ∈ U; we call the corresponding elements of F×

p and Fp the dilation factor and
translation factor of g, respectively. Note that the map g 7→ d is a group homomorphism.

For any subset A of Aff(Fp), we will denote by Atr the intersection A∩U(Fp), identified
with a subset of Fp.

Proof of Theorem 3.2.7. We can assume that A contains at least one element
different from 0 and 1, since otherwise the result is immediate.

The proof exploits two natural actions of Aff(Fp). The first one, which exists for any
group, is the action of the group on itself by conjugation; the second is the “obvious” one
of Aff(Fp) on Fp by affine-linear maps.

We first consider some properties of this second action. It is transitive, or in other
words, the orbit of any x ∈ Fp is equal to Fp (indeed, this is already true for the action
of the subgroup U by translation). By direct computation, the stabilizer of a given x is
the subgroup Tx of matrices of the form(

a (1 − a)x
0 1

)
with a ∈ F×

p . Each of these subgroups is isomorphic to F×
p , by the homomorphism

sending a matrix as above to a. The union of all Tx is the set of elements in Aff(Fp)
which have some fixed point, hence is the complement Aff(Fp) (U {1}) of the set of
non-trivial translations. Moreover, we have Tx ∩ Ty = {1} if x ̸= y (because an affine
linear transformation which is not the identity has at most one fixed point). Finally,
we observe that for g ∈ Aff(Fp) and x ∈ Fp, we have gTxg

−1 = Tg·x (this is a general
property of stabilizers in any group action).

Now the idea we will use is to study how Affs(A)(2) is “shared” among the various
subgroups Tx. Roughly speaking, there will be a dichotomy: either all Tx contain many
elements of Affs(A)(2), or there is such an accumulation in a single Tx that it suffices to
produce growth using Lemma 3.2.10.

To implement this idea, we study Tx ∩ Affs(A)(2) for x ∈ Fp. This set contains the
identity, since Affs(A) is symmetric. We say that x is involved (with A) if Tx∩Affs(A)(2)

is not reduced to the identity.
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Suppose that x ∈ Fp is involved. There exists then g ∈ Affs(A)(2) {1} fixing x, and
no other element of Fp. We now observe that Tx is also the centralizer of g in Aff(Fp),
i.e., the stabilizer of g for the conjugation action of Aff(Fp) on itself. Indeed, since Tx is
abelian and contains g, it is contained in the centralizer of g; conversely, if gh = hg, we
deduce that g · (h · x) = h · x, so that h · x is a fixed point of g; by uniqueness of the fixed
point of g, this means that h · x = x, i.e., that h ∈ Tx.

Applying Lemma 3.2.8 to the conjugation action, we deduce a lower bound

|Tx ∩ Affs(A)(2)| ⩾ |Affs(A)|
|gAffs(A)|

,

where gAffs(A) = {hgh−1 | h ∈ Affs(A)} (a common notation that is used to avoid
confusing the two actions).

At this point, we make a key computation: if g =

(
c d
0 1

)
, then

(3.11)

(
a b
0 1

)−1(
c d
0 1

)(
a b
0 1

)
=

(
c a−1(b(c− 1) + d)
0 1

)
,

which shows that all conjugates of g have the same dilation factor (which is simply because
the dilation factor is multiplicative) and that, if we conjugate by an element of Affs(A)2,
then the translation factor will belong to f∗(A) · f∗(A)−1 for some fixed polynomial f .
(Indeed, note first from (

a b
0 1

)−1

=

(
a−1 −ba−1

0 1

)
we have (say) Affs(A) ⊂ Aff(A − A · A−1), and then that if, say

g =

(
c1 d1
0 1

)(
c2 d2
0 1

)
=

(
c1c2 c1d2 + d1

0 1

)
,

with factors in Aff(A1), then in (3.11), we have

a−1(b(c− 1) + d) = a−1(bc1c2 − b+ c1d2 + d1) ∈ A−1
1 · (A

(3)
1 − A1 + A

(2)
1 + A1),

which implies the result.)
We therefore have

(3.12) |Tx ∩ Affs(A)(2)| ⩾ |Affs(A)|
|f∗(A) · f∗(A)−1|

,

an inequality which is valid for any x ∈ Fp which is involved. (Note that if we had used the
orbit-stabilizer lemma for the action on Fp to obtain a lower-bound for |Tx ∩Affs(A)(2)|,
the resulting lower bound would be |Affs(A)|/|Affs(A) · x|, but we have little control
on an upper-bound for |Affs(A) · x|; indeed, it follows from Proposition 1.3.9 that for
some x ∈ Fp at least, the size of Affs(A) · x is close to that of Affs(A), in which case the
lower-bound from the orbit-stabilizer lemma would be useless.)

We are now ready to start the final stages of the proof. First, we observe that
some x ∈ Fp must be involved. Indeed, otherwise this means by definition that Affs(A)(2)

is contained in U, which is not the case since A contains an element distinct from 0 and 1.
We then distinguish two cases.

Case 1. Assume that if x is involved and g ∈ Affs(A), then g ·x ∈ Fp is also involved.
Since the subgroup generated by Affs(A) acts transitively on Fp (e.g., simply because it
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contains a non-trivial translation), we deduce that every element of Fp is involved. Now
we get

|Affs(A)(2)| ⩾
∑
x∈Fp

|(Tx {1}) ∩ Affs(A)(2)|

since the sets Tx {1} are pairwise disjoint, and then

|Affs(A)(2)| ⩾ p|Affs(A)|
|f∗(A) · f∗(A)−1|

− p

by (3.12).

Case 2. There exists an x which is involved and some g ∈ Affs(A) such that g · x
is not involved. We then apply Lemma 3.2.10 to the subgroup Tg·x, with k ⩾ 1 to be
determined later; this leads to the inequality

|Affs(A)(k+1)|
|Affs(A)|

⩾
|Tg·x ∩ Affs(A)(k)|
|Tg·x ∩ Affs(A)(2)|

= |Tg·x ∩ Affs(A)(k)|

since g · x is not involved. But

Tg·x ∩ Affs(A)(k) = gTxg
−1 ∩ Affs(A)(k) ⊃ g(Tx ∩ Affs(A)(k−2))g−1

since g ∈ Affs(A). We take k = 4, and use the fact that x is involved to conclude that

|Affs(A)(5)|
|Affs(A)|

⩾ |Tx ∩ Affs(A)(2)| ⩾ |Affs(A)|
|f∗(A) · f∗(A)−1|

by (3.12), and so

|Affs(A)(3)| ⩾ |Affs(A)|
( |Affs(A)|
|f∗(A) · f∗(A)−1|

)1/3

by Ruzsa’s Lemma.
The combination of Cases 1 and 2 gives the claimed bound. □

Remark 3.2.11. A natural question is whether the formula of Theorem 3.2.7, as-
suming that the set A is “not too large”, is really necessary, or if a statement similar to
Helfgott’s Theorem would be possible (without such an assumption, but with the alter-
native possibility that A(3) is the whole group, or some other fixed multiple product set
A(m)). This is not the case, because in contrast with SL2(Fp), the group Aff(Fp) is not
quasirandom enough. In fact, since we have the surjective group morphism Aff(Fp) → F×

p

mapping an affine-linear map to its dilation factor, there are many non-trivial characters
of Aff(Fp) if p is large, obtained by composition

Aff(Fp) → F×
p

χ−→ C×,

hence Aff(Fp) is only 1-quasirandom (if p ⩾ 3).
Concretely, pick some ε > 0 arbitrarily small. Fix a large integer m ⩾ 1. For p large

enough, if we identify F×
p with the cyclic group Z/(p − 1)Z (using a fixed generator of

F×
p ), and consider an interval I of length about p/m in F×

p , then the subset

A =
{(

a b
0 1

)
∈ Aff(Fp) | a ∈ I, b ∈ Fp

}
has size about |Aff(Fp)|/m, thus |A| ⩾ p1−ε if p is large enough, but satisfies A(m−1) ̸=
Aff(Fp), simply because we even have I(m−1) ̸= F×

p .
The same remark on the dependency of δ and γ applies to the sum-product theorem

in Fp also, as was shown by Chang, and explained in the next exercise.
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Exercise 3.2.12. Let p be a prime number. Fix a generator τ of the group F×
p . Let

N ⩽ p be a positive integer.

(1) Let M be an integer such that (pN)1/2 ⩽ M ⩽ 2(pN)1/2. Show that there exists
an integer L such that

|τ [M] ∩ (L + [M] (mod p))| ≫ N.

(2) Deduce that there exists a subset A ⊂ Fp such that |A| ≫ N and

max(|A + A|, |A · A|) ≪ p1/2|A|1/2.
(3) Deduce an upper-bound for the possible exponent δ in Theorem 3.2.1 when

|A| ⩽ p1−γ and γ is close to 1.

Exercise 3.2.13. Let p be a prime number. Let A1, A2 be subsets of F×
p and A3 ⊂ Fp.

Let G = F×
p × Fp and consider the subsets

B = {(x, x) | x ∈ A1} ⊂ G, C = A2 × A3 ⊂ G.

(1) Show that |B ⋆ C| ⩽ |A1A2||A1 + A3|, where ⋆ refers to the group law in G.

(2) Find a suitable Sidon set A ⊂ G such that |A ∩ B| = |B|.
(3) Deduce that there exists a constant c > 0 such that

max(|A1 + A3|, |A1A2|) ⩾ cmin((|A1|p)1/2, |A1|(|A2||A3|p−1)1/2)

(Use Exercise 2.3.21).

(4) What does this result, and that of the previous exercise, imply for the sum-
product problem in Fp?

The result of this exercise is due Cilleruelo [17, Th. 3.1]; the special case where A1 =
A2 = A3 was proved first by Garaev [39, Th. 1].

3.3. Approximate rings

We first prove Proposition 3.2.5. The argument follows the original one. We will use
the notation A ⊏α B for subsets of a group G, as in Definition 2.4.14, as well as the simple
properties explained in Remark 2.4.16. Recall that A ⊏α B means that there exists a
subset X ⊂ G with |X| ⩽ α such that A ⊂ XB.

Lemma 3.3.1. Let R be a commutative ring with unit. Let A be a finite subset of R
containing 1 and α ⩾ 1 a real number such that

|A · A − A · A| ⩽ α|A|.

(1) We have A − A + A − A ⊏α5 A − A.

(2) We have A · A ⊏α A − A, and in particular aA ⊏α A − A For any a ∈ A.

(3) Let x and y ∈ R, and let β ⩾ 1, γ ⩾ 1 be such that xA ⊏β A−A and yA ⊏γ A−A.
Then we have

(x+ y)A ⊏α5βγ A − A,

xyA ⊏α5β2γ A − A.

Proof. (1) Since 1 ∈ A, we have A−A ⊂ A·A−A·A, so that the assumption implies
the bound |A − A| ⩽ α|A|. The result is then a consquence of Plünnecke’s Theorem in
the form of Proposition 2.4.17.
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(2) Since 1 ∈ A, we have |A · A − A| ⩽ |A · A − A · A| ⩽ α|A|, so Ruzsa’s Covering
Lemma (Lemma 2.4.12) implies A · A ⊏α A − A.

(3) By the elementary properties of Remark 2.4.16, combined with (1), the assumption
implies that

(x+ y)A ⊂ xA + yA ⊏βγ A − A + A − A ⊏α5βγ A − A.

There exist sets X and Y with |X| ⩽ β and |Y| ⩽ γ such that xA ⊂ A − A + X and
yA ⊂ A − A + Y. Then

xyA ⊂ A − A + A − A + xY + X − X,

so that (since |xY + X − X| ⩽ β2γ), we get

xyA ⊏β2γ A − A + A − A ⊏α5β2γ A − A,

which concludes the proof. □

Proposition 3.2.5 follows easily from the following claim.

Proposition 3.3.2. Let R be a commutative ring with unit. Let A be a finite subset
of R containing 1 and α ⩾ 1 a real number such that

|A · A − A · A| ⩽ α|A|.
Let f ∈ Z[X1, . . . ,Xd] be a polynomial. We have

f∗(A) ⊏β A

where β ⩽ cαd for some constants c, d depending only on f .

Proof. Using the first part of Lemma 3.3.1, it is enough to prove the result when
f = Xk for some integer k ⩾ 0. We proceed by induction on k ⩾ 0. The case k = 0 and
k = 1 are elementary.

Suppose that k ⩾ 2 and that Ak ⊏β A − A. Let X be a set with |X| ⩽ β such that
Ak ⊂ A − A + X and X ⊂ Ak − A + A (which we may assume). We have

Ak ⊂ A · A − A · A + A · X.

By Lemma 3.3.1, (3), every x ∈ X ⊂ Ak − A + A satisfies xA ⊏γ A − A for some
γ ⩽ c1α

d1 , where c1 and d1 depend only on k. Writing

xA ⊂ A − A + Yx, |Yx| ⩽ γ,

for each x ∈ X, we get

A · X ⊂ A − A +
⋃
x∈X

Yx,

hence A · X ⊏|X|γ A − A. Consequently

Ak ⊏βγ A · A − A · A + A − A,

and by Lemma 3.3.1, (2), this gives Ak ⊏α2βγ A − A + A − A + A − A, so that we finish
the induction using Lemma 3.3.1, (1) twice. □

Proof of Proposition 3.2.5. From the previous proposition, it only remains to
estimate the size of f∗(A) ·f∗(A)−1 for f ∈ Z[X1, . . . ,Xd], polynomially in terms of α such
that |A · A − A · A| ⩽ α|A| (for a set A containing 1).

Denoting B = f∗(A) {0}, we have

|f∗(A) · f∗(A)−1| ⩽ 1 + |B · B−1|,
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where the 1 accounts for the possible appearance of 0 in the product set on the left-hand
side. By Plünnecke’s Theorem (Theorem 2.4.13 applied to the subset B of the group F×

p )

we have |B ·B−1| ⩽ β2|B|, with β such that |B ·B| ⩽ β|B|. By Proposition 3.3.2 (applied
to the polynomial f1f2, where f1 = f and f2 results from f by replacing all variables by
“new ones”), we have such a bound with β ⩽ cαd for some c ⩾ 0 and d ⩾ 1 depending
only on f . Hence

|f∗(A) · f∗(A)−1| ⩽ 1 + cαd|A| ⩽ (1 + c)αd|A|
since |A| ⩾ 1, which concludes the proof. □

We now prove Proposition 3.2.3. We follow an argument of Bourgain, as presented
by Tao and Vu [84, Lemma 2.53]. Remarkably, it will be (almost) possible to describe
explicitly the set B.

Proof of Proposition 3.2.3. We assume that 0 /∈ A, which is certainly allowed.
Writing here xA for the dilate of A by multiplication by some x ∈ Fp, we claim that
there exists a0 ∈ A such that

(3.13)
∑
a∈A

|aA ∩ a0A| ⩾ α−1|A|2,

and that the set
B = {a ∈ A | |aA ∩ a0A| ⩾ 1

2
α−1|A|} {a0}

then satisfies the required properties (3.8).
To prove (3.13), it suffices to prove that∑

a,b∈A

|aA ∩ bA| ⩾ |A|3

α
,

and this follows from the basic multiplicative energy inequality (2.15): indeed, the rep-
resentation function rA for A · A satisfies

E(A,A) =
∑
x

rA(x)2 =
∑
x∈G

∑
ac=x
a,c∈A

∑
bd=x
b,d∈A

1 =
∑
a,b∈A

|aA ∩ bA|,

so we obtain ∑
a,b∈A

|aA ∩ bA| = E(A,A) ⩾
|A|4

|A · A|
⩾

|A|3

α

using the assumption |A · A| ⩽ αA.
Once (3.13) is established, note that it implies that

|B| ⩾ |A|
2α

− 1 ⩾
|A|
4α

,

provided |A| ⩾ 4α, which we may also assume. This proves that B satisfies the first
condition of (3.8), and it remains to check that

|B · B − B · B| ≪ αd|B|
for some constant d.

To do this, we introduce some notation. First, let ω be the product of all elements of A;
we have ω ∈ F×

p since we assumed that 0 /∈ A. Define then C = B·B·ωB−1 = ω(B·B·B−1).
We first prove that if c1 and c2 are in C, then we have

(3.14) |c1A − c2A| ≪ αd|A|
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for some constant d ⩾ 0. To see this, we use the Ruzsa distance, in the additive group
of Fp, since by definition we have |c1A − c2A| = |A| log(d(c1A, c2A)), so that we need to
bound the Ruzsa distance between c1A and c2A.

This is done in multiple steps, and to simplifty notation we define a function

f : F2
p → R

by f(x, y) = d(xA, yA). We first note explicitly some easy consequences of the definition
of the Ruzsa distance. First, if X ⊂ Y are non-empty subsets of a group G (with
multiplicative notation) such that with |Y| ⩽ β|X|, then

(3.15) d(X,Y) = log
( |X · Y−1|√

|X||Y|

)
⩽ log

(β|Y · Y|
|X|

)
.

Second, if b ∈ F×
p , then for any non-empty subsets X and Y of Fp, we have d(bX, bY) =

d(X,Y). In particular, this implies that f(bx, by) = f(x, y) for any (x, y) ∈ F2
p.

We can then begin the proof of (3.14). First, the assumption |A + A| ⩽ α|A| implies
d(A,−A) ⩽ log(α), and by symmetry and the triangle inequality, it follows that d(A,A) ⩽
2 log(α). Next, for a ∈ B, we apply (3.15) to aA∩ a0A ⊂ aA and aA∩ a0A ⊂ a0A, where
we can take β = 2α by definition of B; we deduce the bound

f(a, a0) = d(aA, a0A) ⩽ d(aA, aA ∩ a0A) + d(aA ∩ a0A, a0A) ⩽ 2 log(2α2),

using again the assumptions (in the form |aA + aA| = |a0A + a0A| = |A + A| ⩽ α|A|).
Now we proceed to bound f(a1a2, a

2
0) for any a1 and a2 in B. Using the previous

bound, invariance under dilation twice and the triangle inequality, we have

f(a1a2, a
2
0) ⩽ f(a1a2, a1a0) + f(a1a0, a

2
0) ⩽ 4 log(2α2).

Next, we bound f(a1a2ω
−1a3, a

2
0ωa

−1
0 ) for a1, a2 and a3 in B in a similar way:

f(a1a2ωa
−1
3 , a20ωa

−1
0 ) ⩽ f(a1a2ωa

−1
3 , a1a2ωa

−1
0 ) + f(a1a2ωa

−1
0 , a20ωa

−1
0 )

⩽ f(ba3, ba0) + f(ca1a2, ca
2
0)

where b = a1a2ωa
−1
0 a−1

3 and c = ωa−1
0 , so

f(a1a2ωa
−1
3 , a20ωa

−1
0 ) ⩽ 6 log(2α2).

Recalling that C = B · B · ωB−1, a last application of the triangle inequality gives

f(c1, c2) ⩽ 12 log(2α2)

for any c1 and c2 in C, which concludes the proof of (3.14). This, in turn, immediately
gives ∑

c1,c2∈C

|c1A − c2A| ≪ αd|A||C|2 ≪ α12+d|A|3 ≪ α15+d|B|3,

after noting that |B ·B| ⩽ |A ·A| ⩽ α|A| ⩽ 4α2|B| and using Plünnecke’s Theorem in F×
p

(see Theorem 2.4.13) to bound the size of C.
The final flourish is the observation that

|B|2|B · B − B · B| = |B|2|ω(B · B − B · B)| ⩽
∑

c1,c2∈C

|c1A − c2A|.

Indeed, this is due to the fact that for any (a1, . . . , a4) ∈ B4, and for any (a, b) ∈ A2,
we have

ω(a1a2 − a3a4) = a1a2ωa
−1a− a3a4ωb

−1b,

which means that ω(a1a2 − a3a4) ∈ c1A − c2A, with c1 = a1a2ω
−1a and c2 = a3a4ω

−1b,
and thus this element is counted for ⩾ |B|2 values of c1 and c2 in the right-hand sum.
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Combining this with the previous step finishes the proof. □

3.4. Applications of the sum-product theorem

The work of Bourgain, Katz and Tao was motivated at least in part by a number of
applications which they deduced from Theorem 3.2.1. Moreover, many more applications,
sometimes quite surprising, have appeared in the following years. We briefly discuss some
examples here; in the next section, we will give full details of the proof of one of these
results.

Incidence bound. Strikingly, Bourgain, Katz and Tao manage to reverse the argu-
ment of Elekes deriving a sum-product estimate from the incidence bound of Szemerédi
and Trotter, obtaining a non-trivial incidence bound over finite fields from the sum-
product theorem. They prove (see [11, Th. 6.2]):

Theorem 3.4.1. Let p be a prime number. Let P be a finite subset of F2
p and L a

finite set of affine lines ℓ ⊂ F2
p. Assume that

|L| ⩽ |P| ⩽ pγ

where 0 < γ < 2.
Let k ⩾ 2 be an integer such that k ⩽ |P|1/2. If the lower bound |ℓ ∩ P| ⩾ k holds for

all ℓ ∈ L, then we have

|L| ≪ |P|2k−2−δ,

for some δ > 0 depending only on γ, where the implied constant also only depends on γ.

Remark 3.4.2. The precise statement in [11] is a bit different, but this version is a
direct consequence. Precisely, from the result of Bourgain, Katz and Tao, one gets

k|L| ≪ max(|P|, |L|)3/2−δ

for some δ > 0 depending only on γ. Under our assumptions on the sizes of L, P and
on k, this gives

|L| ≪ |P|3/2−εk−1 ≪ |P|2−δk−2 ≪ |P|2k−2−2δ.

Theorem 3.4.1 has been improved significantly, and in fact the most recent bounds
are obtained independently of the sum-product theorem, which then permits the use of
the method of Elekes also over finite fields to deduce improved versions of Theorem 3.2.1.
Stevens and de Zeeuw prove, for instance, an incidence bound which implies that

min(|A + A|, |A · A|) ≫ |A|6/5

for |A| ≪ p5/8; this result had first been obtained, using a different method, by Roche–
Newton, Rudnev and Shkredov [67], and this recovers the Elekes estimate for integers.

Exercise 3.4.3. Let p be a prime number. Let P ⊂ F2
p be a set of points and L a

set of affine lines in F2
p. Assume that all lines are given by an equation y = ax + b with

a ̸= 0 and that all (u, v) ∈ P satisfy u ̸= 0.

(1) Find a large Sidon subset A ⊂ F×
p × Fp and subsets B, C ⊂ F×

p × Fp such that

|{(b, c) ∈ B × C | b+ c ∈ A}| = |{(p, ℓ) ∈ P × L | p ∈ ℓ}|.

(Hint: write the equations of the lines in the form y = ax+b and the coordinates
of the points as (u, v), and interpret the equation au+ b = v.)
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(2) Deduce from this and from the Exercise 2.3.21 that

|{(p, ℓ) ∈ P × L | p ∈ ℓ}| =
|P||L|
p

+ O(p1/2
√

|P||L|).

(3) When is this result (due to Cilleruelo [17, Th. 2.2]) interesting?

Bounds for Besicovitch sets over finite fields. A rather remarkable result of
Besicovitch states that for d ⩾ 2, there exist subsets B ⊂ Rd of Lebesgue measure 0
which contain a segment of length one in any direction. A question, raised by Kakeya, is
whether such sets can also have small Hausdorff dimension, and it is expected that that
answer should be No: the Hausdorff dimension of a Besicovitch set in Rd should be equal
to 1. This problem turns out to have deep relevance to problems in harmonic analysis
(see, for instance, the surveys of Tao [83] and  Laba [62] for accessible overviews, as well
as the more recent discussion by Guth [47, Ch. 15]).

One of the applications of the sum-product theorem in the original paper of Bourgain,
Katz and Tao was a lower bound for the analogue of the 3-dimensional version of this
question over finite fields, namely the fact that for p prime, a subset B ⊂ F3

p which con-

tains an affine line in every direction has cardinality ≫ p5/2+δ for some δ > 0 independent
of p.

This result was strikingly improved by Dvir [23] who, with completely different meth-
ods, actually solved the problem over finite fields. Precisely, for a prime p and an integer
d ⩾ 1, we say that B ⊂ Fd

p is a Besicovitch set if it contains a line in very direction, i.e.,

if for any ξ ∈ Fd
p {0}, there exists x ∈ Fd

p with x+ Fp ξ ⊂ B.

Theorem 3.4.4 (Dvir). Let d ⩾ 2 be an integer. For any prime number p and any
Besicovitch subset B ⊂ Fd

p, the lower bound

|B| ⩾ (p− 1)d−1

(d− 1)!

holds. In fact, for any ε > 0, we have

|B| ≫ pd−ε,

where the implied constant depends only on d and ε.

Although the proof is very far from the sum-product phenomenon, we present it as an
illustration of the variety of tools available to study problems related to additive combina-
torics (more generally, this is an instance of the “polynomial method” in combinatorics;
see for instance the book of Guth [47]).

Proof. For any integers k ⩾ 1 and d ⩾ 1, we denote by Xd,k the vector space of
homogeneous polynomials of degree k in d variables, with coefficients in Fp. We will show
that any Besicovitch set B ⊂ Fd

p satisfies

(3.16) |B| ⩾ dim Xd,p−2.

Using the general formula

dim Xd,k =

(
d+ k − 1

d− 1

)
(see Proposition A.4.1), we conclude then that

|B| ⩾ (p+ d− 3) · · · (p− 1)

(d− 1)!
⩾

(p− 1)d−1

(d− 1)!
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which gives the first result.
The proof of (3.16) is by contradiction. In fact, let k ⩾ 1 be any integer such that

|B| < dim Xd,k. If we note that the conditions f(b) = 0, for all b ∈ B, can be seen as
linear equations for the coefficients of f , and that there are then dim Xd,k unknowns and
|B| equations, it follows from linear algebra that we can then find a non-zero polynomial
f ∈ Xd,k such that f(b) = 0 for all b ∈ B.

Let ξ ∈ Fd
p {0}. By assumption, we can find some x ∈ Fd

p such that the affine line

x+ Fpξ = {x+ aξ | a ∈ Fp}
is contained in B; we then define the one-variable polynomial fξ = f(xX + ξ), which has
degree ⩽ k. Then, for any a ∈ F×

p , we have

fξ(a) = f(ax+ ξ) = f(a(x+ a−1ξ)) = akf(x+ a−1ξ) = 0,

since f is homogeneous of degree k and vanishes on x+ Fpξ. Hence fξ has at least p− 1
zeros. If k < p − 1, so that deg(fξ) < p − 1, this means that fξ is the zero polynomial.
In particular, we then get fξ(0) = f(ξ) = 0. This is true for all non-zero ξ ∈ Fd

p, but in
addition f(0) = 0 because f is homogeneous of degree k ⩾ 1, so f in fact vanishes on all
of Fd

p. But the Schwarz–Zippel Lemma (see Proposition A.4.2) shows that the number

of zeros of f in Fd
p is at most kpd−1. If k = p− 2 (in particular, k < p− 1, so the above

applies), we get a contradiction since kpd−1 = pd − 2pd−1 < pd.
We deduce the more precise statement using a trick: given ε > 0, let r = ⌈ε−1⌉. Note

that if B ⊂ Fd
p is a Besicovitch set, then the set Br is a Besicovitch set in Fdr

p (indeed, let

ξ = (ξ1, . . . , ξr) ∈ Frd
p {0}; for i such that ξi ̸= 0, let yi ∈ Fd

p be such that yi +Fpξi ⊂ B,
and otherwise let yi be an arbitrary element of B; then the line

(y1, . . . , yr) + Fpξ

with direction ξ is contained in Br). The first result, applied to Br in Frd
p , implies that

|B| ⩾ (p− 1)d−1/r

((dr − 1)!)1/r
≫ pd−ε,

where the implied constant depends only on d and ε. □

Exercise 3.4.5. Let p be a prime number, d ⩾ 1 an integer. Let B ⊂ Fd
p be a

Besicovitch set.

(1) If |B| ⩽
(
p+d−1

d

)
, show that there exists a non-zero polynomial f ∈ Fp[X1, . . . ,Xd],

of degree k ⩽ p − 1, such which vanishes on B. (This polynomial need not be
homogeneous.)

(2) Let fd denote the homogeneous component of f of degree d. Show that for any
ξ ∈ Fd

p, we have fd(ξ) = 0. (Hint: consider f(x+ Xξ) ∈ Fp[X].)

(3) Conclude that the assumption on |B| cannot be satisfied and that |B| ≫ pd,
where the implied constant depends only on d.

(This improvement of Dvir’s Theorem, which is now essentially best possible, was
found by Alon and Tao, independently.)

Exercise 3.4.6. Let p be a prime number and d ⩾ 1 an integer. A subset N ⊂ Fn
p

is called a Nikodym set if, for every x ∈ Fd
p, there exists an affine line ℓx ⊂ Fd

p such that
x ∈ ℓx and ℓx {x} ⊂ N.

Prove that a Nikodym set N ⊂ Fd
p satisfies |N| ≫ pd, where the implied constant

depends only on d (this result is also due to Dvir).
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Bounds for exponential sums. An extremely important consequence of the sum-
product theorem over finite fields was obtained by Bourgain, Glibichuk and Konyagin [10].
In its simplest form, it states that the Fourier coefficients of the characteristic function
of a multiplicative subgroup of F×

p are small. Here, we recall that although F×
p is group-

theoretically relatively “simple”, since it is cyclic of order p − 1, it may have many
subgroups, of order given by the divisors of p−1. Since it is known that p−1 is, in many
respects, a “typical” integer (e.g., as far as the number of prime factors, or the number
of divisors, is concerned, among other things), such subgroups may have a wide variety
of sizes.

Theorem 3.4.7 (Bourgain, Glibichuk and Konyagin). Let p be a prime number and
let γ > 0 be a real number. There exists ν > 0, depending only on γ, such that if H ⊂ F×

p

is a subgroup of F×
p with |H| ⩾ pγ, then we have∑

x∈H

e
(ax
p

)
≪ |H|p−ν

for any a ∈ F×
p , where the implied constant depends only on γ.

This result is another incarnation of the fact that a multiplicatively structured set
(here, a multiplicative subgroup) should have little additive structure, here measured by
the size of the discrete Fourier transform. The remarkable point of the theorem is the
very weak assumption on the size of H: the well-established methods of number theory
and harmonic analysis over finite fields are directly applicable to the problem, but they
only succeed if H is quite large (for instance, when |H| ⩾ p1/2+δ for some δ > 0, see
Exercise 3.4.10 below).

Corollary 3.4.8. Let γ > 0 be a real number Let p be a prime number and let
d | p − 1 be a divisor of p − 1 such that d ⩽ (p − 1)p−γ. There exists ν > 0, depending
only on γ, such that ∑

x∈Fp

e
(axd
p

)
= O(p1−ν)

for any a ∈ F×
p .

Proof. This is essentially a reformulation of Theorem 3.4.7, applied to the subgroup

H = {xd | x ∈ F×
p }

which has order (p − 1)/d. More precisely, since each y ∈ H is of the form y = xd for d
different values of x ∈ F×

p , we get∑
x∈Fp

e
(axd
p

)
= 1 +

∑
x∈F×

p

e
(axd
p

)
= 1 + d

∑
y∈H

e
(ay
p

)
≪ 1 + (p− 1)p−ν .

□

Remark 3.4.9. One can wonder about even smaller subgroups, but some restriction
is certainly needed since H could be of bounded order. For instance, if p is odd, there
is always a subgroup of order 2, namely {−1, 1}, for which the behavior of the sums is
quite clearly rather different. We note that papers of Garcia, Hyde and Lutz [40] and
Duke, Garcia and Lutz [22], among others, have showed that some interesting statistical
behavior can be observed in the context of sums over roots of unity of fixed order d, for
primes p ≡ 1 (mod d) (which ensures that F×

p contain all the d-th roots of unity).
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Exercise 3.4.10. Let p be a prime number and let H ⊂ F×
p be a multiplicative

subgroup.

(1) For any character χ of F×
p , show that∑

x∈H

χ(x) =

{
|H| if χ(x) = 1 for all x ∈ H

0 otherwise,

and that the number of χ such that the first case holds is equal to (p− 1)/|H|.
(2) Show that the characteristic function φH of H satisfies

φH(x) =
|H|
p− 1

∑
χ∈H⊥

χ(x),

where H⊥ is the set of characters such that χ(x) = 1 for all x ∈ H.

(3) Let χ be a character of F×
p and let a ∈ Fp. The sum

τ(χ, a) =
∑
x∈F×

p

χ(x)e
(ax
p

)
is called a Gauss sum. Prove that τ(χ, a) = −1 if χ is trivial and a ̸= 0, and
that

|τ(χ, a)|2 = p

if χ is non-trivial and a ̸= 0.

(4) Deduce that if a ∈ F×
p , we have∣∣∣∑

x∈H

e
(ax
p

)∣∣∣ ⩽ √
p.

(5) When is the last bound interesting?

3.5. Exponential sums and random walks

We will now prove Theorem 3.4.7 in detail, following essentially the account by Kurl-
berg [61]. We first outline the main steps and intermediate statements, before proving
the latter.

Step 1. The key result is a statement according to which the existence of certain
probability measures on Fp lead to the existence of subsets with small sum and product
sets. We will state the result in a more probabilistic language than either the original
paper of [61]. This requires some notation.

Given an Fp-valued random variable X (defined on some probability space Ω which we
do not need to specify), we denote by (X1,X2) a couple of independent random variables,
each distributed like X, and we define Y = X1 − X2. We define then

NX =
∑
x∈Fp

P(X = x)2 = P(Y = 0).

The main statement of the first step is the following:

Proposition 3.5.1. Let p be a prime number. Let X be an Fp-valued random variable,
and let Y be as above. Define

ϕ(y) = P(Y = y)
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for y ∈ Fp. Let α ⩾ 1 be a real number such that

(3.17) E(ϕ(XY))) ⩾
ϕ(0)

α
.

Assuming that

(3.18) P(X = 0) ⩽
1

4α
, P(Y = 0) ⩽

1

4α
,

there exists a subset A ⊂ F×
p such that

1

αdϕ(0)
≪ |A| ≪ α

ϕ(0)

with the property that

max(|A + A|, |A · A|) ≪ αd|A|,
where d is an absolute constant.

Remark 3.5.2. (1) Kurlberg [61, Prop. 3.1] shows that one can take here d = 768,
and gives explicit values for all the implicit constants.

(2) The statement (and its proof) can also be presented (as in [61]) using measure-
theoretic language. For instance, denoting

µ(x) = P(X = x), ϕ(y) = P(Y = y),

the assumption (3.17) is the requirement that∑
x∈Fp

∑
y∈Fp

µ(x)ϕ(y)ϕ(xy) ⩾ α−1.

Which language is more enlightening or transparent may depend on the reader – for
those whose inclinations are less probabilistic, we can again recommend the presentation
of Kurlberg, or the original papers.

Intuitively, if we rephrase the main assumption (3.17) in the form

E
(
P(Y = XY′)

)
⩾ α−1

for some random variable Y′ distributed like Y, we see that it can interpreted as saying
that, on average, there is a rather large probability that X = Y1Y

−1
2 , with Y1 and Y2 dis-

tributed like Y, but conditioned to be non-zero. If Y1 and Y2 were uniformly distributed
on some subset A of F×

p , this would amount to saying that the average of the represen-
tation function rA·A−1(X) is large, and we could then use the Balog–Szemerédi–Gowers
Theorem to extract from A a subset with small product set. The proof of Proposi-
tion 3.5.1 will start by showing that finding such an A is indeed possible even without
such a normalizing assumption on Y, and then to show that the sumset A + A is also
under control.

Step 2. We now describe for which random variables we will apply Proposition 3.5.1.
An elementary but crucial step is that the relevant quantity has a Fourier-analytic ex-
pression; using this, it will be possible to show that, assuming for contradiction that some
of the exponential sums over H are “large”, we obtain using Proposition 3.5.1 certain A
which violate the sum-product theorem in Fp.
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We introduce first some necessary notation. For any Fp-valued random variable X,
we denote by φX the “characteristic function” of X (in the probabilistic sense, hence
essentially its Fourier transform), namely the function on Fp defined by

φX(a) = E
(
e
(ax
p

))
for a ∈ Fp. We have φ−X = φX, and if X1 and X2 are independent, then

φX1+X2 = φX1φX2 .

We go back to the previous notation with a random variable X, the independent copies
(X1,X2) and Y = X1 − X2. We have then φY = |φX|2. In particular, the characteristic

function of Y is non-negative, and since φY(0) = 1, we can consider a random variable Ŷ
on Fp, such that

P(Ŷ = a) =
φY(a)

MX

=
|φX(a)|2

MX

for a ∈ Fp, where

MX =
∑
a∈Fp

|φX(a)|2.

Moreover, we may (and do) insist that Ŷ is independent from (X,X1,X2), hence also

from Y. (Similarly, whenever we consider Ẑ for some other random variable Z, it will be

understood that Ẑ is independent of any previously described random variables.)
The next lemma is the Fourier-theoretic description of E(ϕ(XY)).

Lemma 3.5.3. We have

ϕ(y) =
MX

p
φŶ(y),

for any y ∈ Fp and

E(ϕ(XY)) = ϕ(0)E(|φX(XŶ)|2).

Proof. For any y ∈ Fp, we have ϕ(y) = P(Y = y). We use the orthogonality of
characters of Fp to represent the (set-theoretic!) characteristic function of y by

1

p

∑
a∈Fp

e
(a(x− y)

p

)
=

{
1 if x = y

0 if x ̸= y,

and get

ϕ(y) = E
(1

p

∑
a∈Fp

e
(a(Y − y)

p

))
=

1

p

∑
a∈Fp

e
(
−ay
p

)
φY(a) =

MX

p
φŶ(−y).

This proves the first formula since ϕ(−y) = ϕ(y). Since it implies in particular that
ϕ(0) = MX/p, it further leads to

E(ϕ(XY)) = ϕ(0)E(φŶ(XY)),

and it only remains to appeal to the symmetry formula

E(φŶ(XY)) = E(|φX(XŶ)|2)
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to conclude the proof. This last identity can be seen as a (very simple) instance of Fubini’s
formula:

E(φŶ(XY)) = E
(
E
(
e
(XYŶ

p

)))
= E

(
E
(
e
(X(X1 − X2)Ŷ

p

)))
= E

(∣∣∣E(e(XX1Ŷ

p

))∣∣∣2) = E(|φX(X1Ŷ))|2),

leading to the conclusion since X and X1 are identically distributed. □

Remark 3.5.4. (1) Again, in concrete terms, with µ(x) = P(X = x) and ϕ(y) =
P(Y = y), this statement means that∑

x∈Fp

∑
y∈Fp

µ(x)ϕ(y)ϕ(xy) =
MX

p

∑
x∈Fp

∑
a∈Fp

φX(ax)|φX(a)|2µ(x).

This can be checked straightforwardly using elementary properties of the Fourier
transform.

(2) The use of the random variable Ŷ (which emphasizes values a ∈ Fp where |φX(a)|2
is “large”) is reminiscent of the similar use of a non-uniform distribution in Schoen’s proof
of the Balog–Szemerédi–Gowers Theorem (see Theorem 2.7.1).

Given the subgroup H ⊂ F×
p , let S and (Sk)k⩾1 be independent random variables all

uniformly distributed on H (so that P(Sj = x) = 0 unless x ∈ H, in which case the
probability is 1/|H|). We then consider the random variables

Xk = S1 − S2 + · · · + S2k−1 − S2k

for k ⩾ 1. Probabilistically, these correspond to a random walk on Fp where the steps
are taken alternately from H and −H (so the picture could be simplified a bit in the case
where −1 ∈ H, since then each Yi would distributed in the same way as −Yi, and we
would have a “standard” random walk; in any case, the classical theory of such random
walks – or of reversible finite Markov chains – implies that if k is allowed to go to infinity,
the random variable Xk will converge in law to the uniform distribution on all of Fp; thus,
for k large, we should expect Xk to be quite well distributed, and this intuition helps to
understand the quantitative statements which follow).

For ν > 0, we define the set

Λν = {a ∈ Fp | |φS(a)| > p−ν}.

Note that 0 ∈ Λν in all cases, and that, since

φS(a) =
1

|H|
∑
x∈H

e
(ax
p

)
,

we can restate our goal, Theorem 3.4.7, as the existence of some ν > 0 such that Λν only
contains 0. This is therefore our objective.

The content of the second step is as follows:

Proposition 3.5.5. Let η > 0 be a real number. Let p be a prime number. If p is
large enough, depending only on η, then there exist an integer k ⩾ 1 and a positive real
number ν < 1

2
η, independent of p, such that

(3.19) p−η ⩽
|Λν |
MXk

⩽ pη,
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and

(3.20) E(|φXk
(XkX̂2k)|2) ⩾ p−10η.

Since

X2k = S1 − S2 + · · · + S2k−1 − S2k + S2k+1 − S2k+2 + · · · + S4k−1 − S4k

is the difference of two independent random variables, each distributed like Xk, Lemma 3.5.3
shows that the estimate (3.20) is precisely the assumption (3.17) of Proposition 3.5.1
for the random variable Xk in place of X, and hence (up to checking the minor condi-
tions (3.18)), we will be able to apply the latter to construct a set A with controlled sum
and product growth.

Step 3. We can now conclude. Pick η > 0, and suppose that p is large enough so
that the previous proposition applies.

By Lemma 3.5.3, the conclusion (3.20) of Proposition 3.5.5 implies that the random
variables X = Xk and Y = X2k satisfy E(ϕ(XkYk) ⩾ α−1 with α = p10η. This veri-
fies (3.17). Moreover, by induction on k, we have

P(Y = 0) ⩽ P(X = 0) ⩽ max
x∈Fp

P(Y = x) =
1

|H|
,

and hence (if η is small enough compared to γ), the conditions (3.18) are also satisfied.
Thus we can apply Proposition 3.5.1, and deduce that there exists a set A ⊂ F×

p with

(3.21) max(|A + A|, |A · A|) ≪ αd|A|
and

1

αdϕ(0)
≪ |A| ≪ α

ϕ(0)
,

where ϕ(0) = P(Y = 0). Moreover, since ϕ(0) = MX/p, the inequalities (3.19) imply that

p−1−η|Λν | ⩽ ϕ(0) ⩽ p−1+η|Λν |.
Now comes a key observation which exploits the specific structure of the random

variable Y as a uniform random variable over H: the set Λν is stable under multiplication
by H. (Indeed, for S uniformly distributed on H, the random variable xS has the same
law as S for any x ∈ H, and therefore φxS = φS, which implies the claim.) Hence, as
soon as there exists some a ∈ Λν {0}, we have |Λν | ⩾ |H| (this key step is reminiscent
of the use of quasi-randomness, in the sense of Gowers, for instance in the last stages of
the proof of Helfgott’s Growth Theorem).

Thus, assuming that Λν is not reduced to 0, we deduce from (3.19), and the assumption
on |H|, that the estimate

|A| ≪ α

ϕ(0)
≪ p1+11η

|Λν |
≪ p1+11η

|H|
≪ p1+11η−γ

holds. Assuming that (say) 11η < 1
2
γ, this means that |A| ≪ p1−γ/2 ⩽ p1−γ/4, for p large

enough. Hence the bound (3.21) will contradict Theorem 3.2.1 if η is also small enough
so that αd = p10dη ≪ |A|δ, where δ > 0 is the exponent from the sum-product theorem,
applied for the parameter γ/4.

We claim that, for η sufficiently small, this will indeed be the case. Indeed, since∑
a∈Fp

|φS(a)|2 =
p

|H|
,
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we have |Λν | ⩽ p1+2ν |H|−1 by Chebychev’s inequality. Thus

|A| ≫ 1

αdϕ(0)
≫ p1−(10d+1)η

|Λν |
≫ p−2ν−(10d+1)η+γ,

and we reach the desired contradiction if η is small enough, depending only on γ (recall
that 2ν < η by assumption).

We conclude finally that Λν = {0}, and (by definition) this means that∣∣∣ 1

|H|
∑
x∈H

e
(ax
p

)∣∣∣ ⩽ p−ν

for all a ∈ F×
p , provided p is large enough.

We have thus reduced the proof of Theorem 3.4.7 to that of Propositions 3.5.1
and 3.5.5. This will occupy the remainder of this section.

We begin with Proposition 3.5.1. In the proof, the set A will be constructed by two
applications of the Balog–Szemerédi–Gowers Theorem. The necessary energy assump-
tions will be deduced from probabilistic properties of certain random variables, which we
state separately and in greater generality than strictly needed here.

Lemma 3.5.6. Let G be a finite group and let A be a subset of G. Let X be a G-valued
random variable. We assume that β ⩾ 1 is such that

E(rA·A−1(X)) ⩾ β−1|A|.

Let

NX =
∑
x∈G

P(X = x)2.

We then have

e(A) ⩾
1

4β4NX|A|
.

Proof. Let

L = {x ∈ G | rA·A−1(x) ⩾ 1
2
β−1|A|},

so that we have the lower-bound

E(A) =
∑
x∈G

rA·A−1(x)2 ⩾
∑
x∈L

rA·A−1(x)2 ⩾ β−2|A|2|L|.

Noting that rA·A−1(x) ⩽ |A| for all x, the assumption implies that

P(L) = P
(
rA·A−1(X) ⩾ 1

2
β−1|A|

)
⩾

1

2β

(see (A.3)), but the Cauchy–Schwarz inequality and positivity imply that

P(L) =
∑
x∈L

P(X = x) ⩽ |L|1/2
(∑
x∈G

P(X = x)2
)1/2

= |L|1/2N1/2
X ,

and hence |L| ⩾ (2β)−2N−1
X . The previous lower-bound gives

E(A) ⩾ 2−2β−4N−1
X |A|2,

which is equivalent to the desired result. □
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Proof of Proposition 3.5.1. We will use frequently the fact that ϕ(y) ⩽ ϕ(0) for
all y ∈ Fp, which follows for instance from the first formula in Lemma 3.5.3.

We define

A1 = {y ∈ Fp | ϕ(y) ⩾
ϕ(0)

8α
}

and A2 = A1 {0} ⊂ F×
p (note that 0 ∈ A1). By Chebychev’s inequality simply, we have

|A2| ⩽ |A1| ⩽
8α

ϕ(0)
.

We now claim that (3.17) implies that

(3.22) E(ϕ(XY)1X ̸=0,Y∈A1∩X−1A1
) ⩾

ϕ(0)

2α
.

This is a matter of showing that the contributions to E(ϕ(XY)) from the complemen-
tary event, where X = 0 or Y /∈ A1, or XY /∈ A1, are small enough. And indeed, first of
all the first part of (3.18) gives the upper bound

E
(
ϕ(XY)1X=0

)
= ϕ(0)P(X = 0) ⩽

ϕ(0)

4α
,

while

E(ϕ(XY)1X ̸=0, XY/∈A1) ⩽
1

8α
E(ϕ(XY)) ⩽

ϕ(0)

8α
.

To bound the last contribution with X ̸= 0 and Y /∈ A1, we write

E(ϕ(XY)1X̸=0, Y/∈A1) =
∑
y/∈A1

E(ϕ(XY)1X ̸=0,Y=y) =
∑
y/∈A1

E(ϕ(yX)1X ̸=0,Y=y).

Using the independance of X and Y, we deduce that

E(ϕ(XY)1X ̸=0, Y/∈A1) =
∑

y∈Fp A1

P(Y = y)E(ϕ(yX)1X ̸=0)

⩽
ϕ(0)

8α
E
(∑
y/∈A1

ϕ(yX)1X ̸=0

)
⩽
ϕ(0)

8α
E
(∑
y∈Fp

ϕ(yX)1X ̸=0

)
⩽
ϕ(0)

8α
,

using in the last step the fact that, for any given x ̸= 0, we have∑
y∈Fp

ϕ(yx) = P(Y ̸= 0) ⩽ 1.

We next deduce from (3.22) a lower-bound for |A1| complementing the previous upper-
bound, namely

(3.23)
1

2αϕ(0)
⩽ |A1| ⩽

8α

ϕ(0)
,

which in turn implies |A1| ⩾ 2 (by (3.18) since ϕ(0) = P(Y = 0)), and therefore |A2| =
|A1| − 1 ⩾ 1

2
|A1|, i.e.

(3.24)
1

4αϕ(0)
⩽ |A2| ⩽

8α

ϕ(0)
,

Indeed, we obtain (3.23) by noting that, by (3.22), we have

ϕ(0)

2α
⩽ E(ϕ(XY)1X ̸=0, Y∈A1) ⩽ ϕ(0)P(Y ∈ A1) ⩽ ϕ(0)2|A1|.
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The next step is to relate the bound (3.22) to the representation function r2 for A2·A−1
2 .

For this, we start with the formula

E(r2(X)) =
∑

y,z∈A2

P(X = y−1z) =
∑
y∈A2

E
(∑
z∈A2

P(yX = z)
)

=
∑
y∈A2

P(yX ∈ A2).

On the other hand, by independance of X and Y, we have

E(ϕ(XY)1X ̸=0,Y∈A1∩X−1A1
) =

∑
y∈A1

ϕ(y)E(ϕ(yX)1X ̸=0, yX∈A1)

⩽ ϕ(0)2E
(∑
y∈A1

1X ̸=0, yX∈A1

)
= ϕ(0)2

∑
y∈A1

P(X ̸= 0 and yX ∈ A1).

Isolating the contribution of y = 0 ∈ A1, we then have∑
y∈A1

P(X ̸= 0 and yX ∈ A1) = P(X ̸= 0) + E(r2(X)) ⩽ 1 + E(r2(X)),

and thus (3.22) implies that

ϕ(0)

2α
⩽ ϕ(0)2E(r2(X)) + ϕ(0)2.

The assumption P(Y = 0) = ϕ(0) ⩽ (4α)−1 (see (3.18)) now leads to the lower-bound

E(r2(X)) ⩾
1

4αϕ(0)
⩾

|A2|
32α2

.

Applying Lemma 3.5.6 to the random variable X on F×
p , with β = 32α2, we obtain

e(A2) ⩾
1

222α8NX|A2|
=

1

222α8ϕ(0)|A2|
⩾

1

225α9
,

and therefore, by the Balog–Szemerédi–Gowers Theorem (Theorem 2.7.1, applied to A2 ⊂
F×

p ), there exists a subset A3 ⊂ A2 with |A2| ≪ αd|A3| and |A3 · A3| ≪ αd|A3|, where d
and the implied constants are absolute.

We now consider the additive growth. Let r3 be the representation function for
A3 − A3. We first show that the random variable r3(Y) is quite large on average. Recall
that Y = X1 − X2, where X1 and X2 are independent and distributed like X. We then
have

E(r3(Y)) =
∑

a,b∈A3

P(Y = a− b) =
∑

a,b∈A3

P(X1 − a = X2 − b),

and this implies that

E(r3(Y)) =
∑
y∈Fp

∑
a,b∈A3

P(X1 − a = y and X2 − b = y)

=
∑
y∈Fp

∑
a,b∈A3

P(X1 − a = y)P(X2 − b = y) =
∑
y∈Fp

P(X1 ∈ y + A3)
2.

The “reversed” Cauchy–Schwarz inequality now shows that for any choice of f(y) ⩾ 0
for y ∈ Fp, not all zero, we have

E(r3(Y)) ⩾
V2

W
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with
V =

∑
y∈Fp

f(y)P(X1 ∈ y + A3), W =
∑
y∈Fp

f(y)2.

We pick f(y) = P(X2 = y); in this case, we have

V = P(Y ∈ A3), W = P(Y = 0),

and therefore

E(r3(Y)) ⩾
P(Y ∈ A3)

2

ϕ(0)
⩾
ϕ(0)

26α2
|A3|2,

where the last step follows from the fact that A3 ⊂ A1, so that P(Y = y) ⩾ 2−3α−1ϕ(0)
for y ∈ A3. Now recall that |A3| ≫ α−d|A2| ≫ α−d−1ϕ(0)−1 (see (3.24)), and thus
ϕ(0)|A3| ≫ α−d−1. We deduce then that

E(r3(Y)) ≫ α−d1|A3|,
for some absolute constant d1. Applying Lemma 3.5.6 to the random variable Y on Fp

and the set A3, with β a multiple of αd1 , we get

e(A3) ⩾
1

4β4NY|A3|
.

But we have

NY =
∑
y∈Fp

P(Y = y)2 ⩽ P(Y = 0)
∑
y∈Fp

P(Y = y) = P(Y = 0) = ϕ(0),

(a simple instance of the “flattening” effect of random walks) so we get finally the lower
bound

e(A3) ⩾
1

4β4ϕ(0)|A3|
≫ α−d2

for some absolute constant d2. Applying Theorem 2.7.1 to A3 ⊂ Fp, we find a subset
A4 ⊂ A3 with |A3| ≪ αd3|A4| and |A4 + A4| ≪ αd3 |A4| for some absolute constant d3.
Since, in addition

|A4 · A4| ⩽ |A3 · A3| ≪ αd|A3| ≪ αd+d3|A4|,
we finally have proved Proposition 3.5.1 with the set A equal to A4. □

We now come to the proof of Proposition 3.5.5. This splits into a more general
statement where the distribution of the steps of the random walk are quite arbitrary, and
which provides the estimate (3.19) for a suitable value of k, and a last step where (3.20)
is obtained when this distribution is uniform on a multiplicative subgroup.

Recall the definition

Xk =
k∑

i=1

(S2i−1 − S2k), k ⩾ 1,

of the random walk, and note that it implies the formula

φXk
(a) = |φS(a)|2k

for any k ⩾ 1 and a ∈ Fp, since the summands are independent.

Proof of Proposition 3.5.5. We observe first that for any integer k ⩾ 1 and
ν > 0, provided the condition 4kν ⩽ η is satisfied, we have

|Λν |
MXk

⩽ pη,
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since then

MXk
⩾

|Λν |
p4kν

⩾
|Λν |
pη

by definition.
We now claim that if p is large enough, depending only on η, then we can find the

integer k ⩾ 1 and ν < 1
2
η, independent of p, such that 4kν ⩽ η and

(3.25) p−η ⩽
|Λν |
MXk

.

To prove the claim, we first note that there is a general upper bound

MXk
⩽ |Λ1/k| + p · (p−4k)k = |Λ1/k| + p−3 ⩽ |Λ1/k|(1 + p−3),

valid for any integer k ⩾ 1. Now, given k ⩾ 1, we denote k+ = ⌈ η
k2
⌉. If the inequality

MXk
> pη|Λ1/k+| holds, then it follows that

|Λ1/k+ | ⩽ |Λ1/k|p−η(1 + p−3).

Iterating this observation m times, starting from k = 4, we see that either we find k ⩾
1 such that (3.25) holds for ν = 1/k+, or we have

|Λ1/k| ⩽ p1−mη(1 + p−3)m

for m ⩾ 1 and some k depending on m. But for suitable m, we obtain |Λ1/k| < 1, which
is a contradiction since 0 ∈ Λν for all ν.

Our next goal is the crucial inequality

(3.26) E(|φXk
(aXk)|2) ⩾ φS(a)4k

for all k ⩾ 1 and a ∈ Fp, which depends on the specific choice of random walk. Indeed,
we have

E(φXk
(aXk)2) = E(φXk

(aX2k)) = E(|φS(aX2k)|2k) ⩾ E(φS(aX2k))2k

by Jensen’s inequality. But, by symmetry, we have

E(φS(aX2k)) = E(|φXk
(aS)|2)

and finally E(|φXk
(aS)|2) = φXk

(a)2 since φXk
(aS) = φXk

(a), which concludes the proof.
We can then deduce (3.20) straightforwardly. First, From (3.25), we deduce the lower

bound

P(X̂2k ∈ Λν) ⩾ p−η |Λν |
MXk

⩾ p−2η,

and then from (3.26), we get

E(|φXk
(XkX̂2k)|2) ⩾ E(φXk

(X̂2k)4k) ⩾ p−4k2ν P(X̂2k ∈ Λν) ⩾ p−4k2ν−2η ⩾ p−10η.

□

3.6. Final remarks

As indicated by Bourgain, Katz and Tao, their proof was inspired by a paper of Edgar
and Miller [25], who established that any subring A of R which is a so-called “analytic
set” (i.e., the image of a Borel set by a continuous map Rk → R for some k) must be
either equal to R or rather small, in the sense that its Hausdorff dimension is zero. (This
means that, for any real numbers s > 0, δ > 0 and ε > 0, we can find a sequence (Ij)j⩾1
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of intervals in R of length < δ such that A is contained in the union of the Ij’s and the
inequality ∑

j

λ(Ij)
s < ε

holds, where λ denotes the length of the intervals.) Interestingly, some set-theoretic
regularity condition, such that the assumption that A is a Borel set, is necessary: it is
known by work of Davies (as explained by Edgar and Miller [25, p. 1122]) that assuming
the continuum hypothesis there exist subrings of R of any Hausdorff dimension between 0
and 1.
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CHAPTER 4

Arithmetic progressions

4.1. Introduction: structure and randomness

The topic of this chapter is that of arithmetic progressions in subsets of abelian
groups. This was already mentioned in the introduction, with the theorem of van der
Waerden and that of Szemerédi. Our discussion will be very incomplete and will focus on
(elementary) quantitative aspects, which have been at the forefront of many fundamental
developments of additive combinatorics and its applications.

We begin by introducing some notation.

Definition 4.1.1. Let k ⩾ 1 be an integer and let G be an abelian group.
A k-term arithmetic progression in G is an arithmetic progression of length k.
For any finite subset A of G, we denote by Fk(A) the maximal size of a subset of A

which does not contain a proper k-term arithmetic progression, i.e., for which there does
not exist a0 ∈ A and a ∈ G such that A contains the elements a0, a0+a, . . . , a0+(k−1)a,
and moreover these elements are pairwise distinct.

Remark 4.1.2. (1) A more customary notation is rk(A), but we want to avoid a clash
of notation with representation functions. The initial F is meant to indicate sets Free of
k-term arithmetic progressions.

(2) With this notation, Szemerédi’s Theorem can be summarized as the fact that, for
k fixed, we have

lim
N→+∞

Fk([N])

N
= 0,

(with [N] viewed as a subset of Z).
The quantitative aspect we are considering is the question of finding “explicit” func-

tions f defined for positive integers, with f(N) tending to +∞ as N → +∞, so that

Fk([N]) ⩽
N

f(N)
.

(3) If G has no torsion (for instance, if G = Z), a k-term arithmetic progression
{a0 + ia} is a proper progression if and only if a ̸= 0.

The following fact is, as usual, elementary, but very useful.

Proposition 4.1.3. Let k ⩾ 1 be an integer. Let G and H be abelian groups. If A
is a subset of G and f : A → H is a Freiman 2-morphism, then the image by f of an
arithmetic progression in A is an arithmetic progression in H.

In particular, if f is injective, then Fk(f(A)) ⩽ Fk(A), and if f defines by restriction
a Freiman 2-isomorphism from A to f(A), then Fk(f(A)) = Fk(A).

Proof. The fact that the image by f of an arithmetic progression in A is one in H
follows directly from the characterization of arithmetic progressions as images of Freiman
2-morphisms from intervals of Z to H (Example 2.2.5, (4)).
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If f is injective, then the image of a proper arithmetic progression is a proper arith-
metic progression. In this case, if X ⊂ f(A) contains no k-terms arithmetic progression,
the inverse image f−1(X) is contained in A (by injectivity) and contains no k-terms
arithmetic progression by the above. It follows that Fk(A) ⩾ |f−1(X)| = |X|, hence
Fk(A) ⩾ Fk(f(A)). □

Exercise 4.1.4. (1) Let G be a finite abelian group and let H = Z/pZ for some
prime number p. Let A ⊂ G and B ⊂ H be subsets of G and H, respectively.
Show that Fk(A)Fk(B) ⩽ Fk(A × B), with A × B ⊂ G × H.

(2) Show by an example that the previous fact is false if H is an arbitary finite
abelian group.

(3) For n ⩾ 1, show that a proper 3-term progression in Fn
3 is an affine line in this

F3-vector space. Moreover, show that such a line ℓ is of the form ℓ = {x1, x2, x3}
where xi = (xi,1, . . . , xi,n) and for j = 1, . . . , n, either

x1,j = x2,j = x3,j

or

{x1,j, x2,j, x3,j} = F3.

(4) For n ⩾ 1, show that F3(F
n
3 ) ⩾ 2n.

4.2. Sets without arithmetic progressions

It is rather natural to attempt to get a feeling for the problem by trying to construct
specific examples of “large” sets which do not contain k-terms in arithmetic progressions.

The simplest example is probably the following:

Example 4.2.1. Let N ⩾ 1 be an integer and let S ⊂ [N] be the set of elements whose
ternary expansion does not involve the digit 2, i.e., the integers n ⩽ N of the form

a0 + 3a1 + · · · + 3kak

with ai ∈ {0, 1}. The set S does not contain any 3-term arithmetic progression: if a, b, c
are elements of S, with ternary digits (ai), (bi) and (ci), then the computation of a+ b as
well as that of 2 can be done “without carry”, so

a+ b =
∑
i

(ai + bi)3
i, 2c =

∑
i

(2ci)3
i.

Since 0 ⩽ ai, bi, ci ⩽ 1, the equality a+ b = 2c is only possible if, whenever ci = 1, we
have ai = bi = 1, and whenever ci = 0, we have ai = bi = 0. But this combines to say
that a = b, proving the assertion.

It was apparently conjectured by Szekeres (as mentioned by Erdős and Turán [29,
p. 263]) that the previous example was best possible, and in particular that a set A ⊂ [N]
with no 3-term progressions has size |A| ≪ Nα, where α = (log 2)/(log 3) (the “dimen-
sion” of the set of integers whose ternary expansion omits the digit 2). This was disproved
by Salem and Spencer [73], who constructed examples showing that no inequality of the
form |A| ≪ N1−δ, with δ > 0 fixed, could hold. Behrend [5] showed how to improve the
construction using a beautiful trick inspired by geometry, providing examples which are
still close to the best known.
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Proposition 4.2.2 (Behrend). For N large enough, we have

F3([N]) ≫ N

exp(c
√

log N)

where c > 0 is an absolute constant, or in other words, for N ⩾ 1 large enough, there
exists a set B ⊂ [N] which contains no 3-term arithmetic progression and satisfies

|B| ≫ N

exp(c
√

log N)
.

Proof. The beautiful idea is to combine an “obvious” construction in a high-rank
group free abelian Zd with a Freiman 2-morphism to Z, and to apply Proposition 4.1.3.

The “obvious” construction is as follows: given any integer d ⩾ 1 and any radius
r > 0, the (euclidean) sphere of radius r in Rd, i.e., the set SRd(r) of all x = (xi)1⩽i⩽d

in Rd such that

∥x∥2 = x21 + · · · + x2d = r2,

contains no 3-term arithmetic progression. This is because the equation x+ y = 2z, with
x, y and z in Rd, implies if x ̸= y that z = 1

2
(x+ y) belongs to the line passing through x

and y, which is not possible if x and y are on the same sphere (so ∥x∥ = ∥y∥) since a line
intersects the sphere in at most two points, and z /∈ {x, y}. (Of course, this can also be
checked easily using the equation of the sphere.)

If we now assume that r2 is a positive integer, then the set SZd(r) = Zd ∩ SRd(r)
contains also no 3-term arithmetic progressions, and may have rather large size if r2 is
suitably chosen. Noting that SZd(r) ⊂ [−r, r]d, the image of this set by any Freiman
2-isomorphism [−r, r]d → X, where X ⊂ [N], is a subset of [N] which does not contain
3-term arithmetic progressions. Behrend’s bound follows by finding suitables choices of
the parameters which are involved.

We do this without looking for any optimality. First, consider d ⩾ 1 arbitrary.
Consider all (xi) ∈ Zd with 1 ⩽ xi ⩽ M for some integer M; there are Md such elements,
and they all have euclidean norm squared ⩽ dM2. By the pigeon-hole principle, we can

find a radius r2 ⩽ dM2 such that |S̃Zd(r)| ⩾ d−1Md−2, where S̃Zd(r) restricts the integral
solutions to ∥x∥2 = r2 to have 1 ⩽ xi ⩽ M. As in Example 2.2.5, (3), we find a Freiman
2-isomorphism f from [M]d to a subset of [N], where N = (2M + 1)d ⩽ (3M)d. Then

F3([N]) ⩾
Md−2

d
.

We need to transcribe this inequality in terms of N: we first have

Md−2

d
⩾

N

d3dM2
⩾

N

4d3dN2/d
≫ N

4dN2/d
.

Since the parameter d is free, and we want the right-hand side to be as large as possible,
we choose d to equalize the negative effect of dividing by 4d with the positive effect of
having N2/d in the denominator. In other words, we select d so that 4d is (approximately)
equal to N2/d, say

d =
⌈(2 log N

log 4

)1/2 ⌉
.

Then

F3([N]) ⩾
Md−2

d
≫ N

42d
≫ N exp(−c

√
log N)

for some suitable c > 0 and N large. □
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Remark 4.2.3. (1) Functions of the type N exp(−c
√

log N) also occur naturally in
number theory in the error term for the prime number theorem and related results (see,
e.g., [53, Th. 5.13, Th. 5.27]). The basic qualitative property of this function is that it is
growing faster than N1−δ for any fixed δ > 0, but slower than N(log N)−A for any A > 0.

(2) One can be much more precise concerning the number of points with integral
coordinates on a sphere of radius r with r2 a positive integer, especially with d large.
This more precise information is however not really needed here.

Exercise 4.2.4. Construct an example of a coloring of the set of positive integers in
two colors, in such a way that there is no infinite arithmetic progression of either color.

4.3. Three-term progressions

The first non-trivial case of Szemerédi’s Theorem is that of 3-term progressions, or in
other words, that of finding an element a of A and an integer d ⩾ 1 such that a+ d and
a+ 2d both belong to A.

An equivalent formulation, which turns out to be convenient, is that if a, b and c are
elements of A with a ̸= b, then a+ b ̸= 2c. (Indeed, there is a bijection

{(a, d) ∈ A ×N | {a, a+ d, a+ 2d} ⊂ A} → {(a, b, c) ∈ A3 | a ⩽ b and a+ b = 2c}
mapping (a, d) to (a, a+2d, a+d), with reciprocal bijection mapping (a, b, c) to (a, c−a),
and the degenerated progressions with d = 0 map to (a, b, c) with a = b.)

Remark 4.3.1. This may suggest that the question is close to that of sum-free sets
discussed in Section 2.8, but we will see that in fact the behavior of those two problems
is completely different.

The first quantitative form of existence of arithmetic progressions in sets of positive
density was found by Roth [68], who in fact then proved in a rather strong form the first
non-trivial case of Szemerédi’s Theorem, when k = 3.

Theorem 4.3.2 (Roth). Let N ⩾ 1 be an integer and let A ⊂ [N] be a set of positive
integers such that A does not contain a 3-term arithmetic progression. We have the bound

|A| ≪ N

log log N
,

where the implied constant is absolute. In particular, we have

lim
N→+∞

F3([N])

N
= 0.

Remark 4.3.3. Numerous successive breakthroughs have led rather recently to spec-
tacular improvements to the understanding of sets without 3-term arithmetic progres-
sions. First, Bloom and Sisask [6] succeeded in proving that

F3([N]) ≪ N

(log N)1+δ

for all N ⩾ 2 and some fixed real number δ > 0, which in particular implies immediately
that any set of prime numbers with positive density (among the primes) contains some
3-term arithmetic progression (a fact which had been first proved, using very different
methods, by Green [44]). Then Kelley and Meka [54, Th. 1.2] obtained the estimate

F3([N]) ≪ N exp(−c(log N)1/12)

for some constant c > 0, thus reaching the “same type” of condition as Behrend’s example.
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The basic ideas of the proof, in the way it is presented in modern texts, are the
following.

Step 1. One can express the “number” of 3-term arithmetic progressions contained
in a subset A ⊂ [N] in terms of Fourier analysis. Here, although Roth used ideas from
the classical circle method of analytic number theory, it can be replaced by discrete
Fourier analysis after applying a Freiman 2-isomorphism to reduce to Z/qZ for a suitable
integer q.

Step 2. Studying the formula obtained in Step 1, one sees that if A does not contain a
3-term arithmetic progression, then some Fourier coefficient of the characteristic function
of A must be relatively large.

Step 3. Going further, one proves that, under the same assumption that A ⊂ [N]
contains no 3-term arithmetic progression, there exist M < N, with log M ≫ log N, a
subset B ⊂ [M] such that B contains no 3-term progressions but the densities β = |B|/M
and α = |A|/N of A and B satisfy

β ⩾ α + cα2

for some (absolute) constant c > 0. This crucial step is known as a density increment
property.

Step 4. The conclusion is now obtained by repeatedly applying the density increment
in Step 3, which cannot be done ad infinitum since the density β must always remain
⩽ 1: after a number of steps, the assumption in Step 2 that the sets we have obtained
do not contain 3-term arithmetic progressions must fail, and it turns out that this leads
to the precise form of Roth’s Theorem that we have given.

We will now proceed to discuss all these steps in turn.

Definition 4.3.4. Let G be a finite abelian group, with additive notation. The
3-term detector is the trilinear map

AP3 : C(G)3 → C

defined by

AP3(f1, f2, f3) = E
a0,a

(f1(a0)f2(a0 + a)f3(a0 + 2a)

=
1

|G|2
∑
a∈G

∑
a0∈G

f1(a0)f2(a0 + a)f3(a0 + 2a).

Note that we perform the summation over all a0 and a, including a = 0, which means
including also the “degenerate” 3-term arithmetic progressions. The contribution of a = 0
is however quite explicit, namely

1

|G|2
∑
a0∈G

f1(a0)f2(a0)f3(a0).

In particular, a subset A of a finite abelian group G contains a 3-term arithmetic
progression if and only if AP3(φA, φA, φA) is different from this contribution, where φA

is the characteristic function of the set A, or in other words, if

AP3(φA, φA, φA) ̸= |A|
|G|2

.
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The crucial starting point of the proof of Roth’s Theorem is that this detector function
has a simple Fourier-theoretic expression. We recall here the definition

f̂(ξ) =
1√
|G|

∑
x∈G

f(x)ξ(x)

of the unitarily normalized Fourier transform of a function f : G → C, where ξ ∈ Ĝ is a
character of G.

Proposition 4.3.5. Let G be a finite abelian group. For f1, f2, f3 ∈ C(G), we have

AP3(f1, f2, f3) =
1

|G|3/2
∑
ξ∈Ĝ

f̂1(ξ)f̂2(ξ
−2)f̂3(ξ).

Proof. We insert the expansion of the functions in terms of their Fourier transforms
in the definition of the detector: since

f(x) =
1√
|G|

∑
ξ∈Ĝ

f̂(ξ)ξ(x)

for any x ∈ G, we have

AP3(f1, f2, f3) =
1

|G|7/2
∑
a0∈G

∑
a∈G

∑
ξ1,ξ2,ξ3∈Ĝ

f̂1(ξ1)f̂2(ξ2)f̂3(ξ3)ξ1(a0)ξ2(a0 + a)ξ3(a0 + 2a).

Summing over a and a0 first, and using the orthogonality relations

1

|G|
∑
a0∈G

(ξ1ξ2ξ3)(a0) =

{
1 if ξ1ξ2ξ3 = 1,

0 otherwise,

1

|G|
∑
a0∈G

(ξ2ξ
2
3)(a0) =

{
1 if ξ2ξ

2
3 = 1,

0 otherwise,

for characters (see (A.7)), we deduce

AP3(f1, f2, f3) =
1

|G|3/2
∑

ξ1,ξ2,ξ3
ξ1ξ2ξ3=1
ξ2ξ23=1

f̂1(ξ1)f̂2(ξ2)f̂3(ξ3).

The set of triples of characters (ξ1, ξ2, ξ3) satisfying the summation conditions can be
parameterized by the single character ξ = ξ3, with ξ2 = ξ−2 (by the last condition) and
ξ1 = ξ (inserting the value of ξ2 in the first equation). Therefore

AP3(f1, f2, f3) =
1

|G|3/2
∑
ξ∈Ĝ

f̂1(ξ)f̂2(ξ
−2)f̂3(ξ),

as claimed. □

The next corollary is immediate, but crucial.

Corollary 4.3.6. Let G be a finite abelian group of odd order. For f1, f2, f3 ∈ C(G),
we have

|AP3(f1, f2, f3)| ⩽
1

|G|1/2
∥f1∥ ∥f2∥ ∥f̂3∥∞
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where ∥f1∥ and ∥f2∥ are the Hilbert space norms in C(G) and

∥f̂3∥∞ = max
ξ∈Ĝ

|f̂3(ξ)|.

Proof. By the triangle inequality followed by the Cauchy-Schwarz inequality, we get

|AP3(f1, f2, f3)| ⩽
1

|G|3/2
∥f̂3∥∞

∑
ξ∈Ĝ

|f̂1(ξ)||f̂2(ξ−2)|

⩽
1

|G|1/2
∥f̂3∥∞

( 1

|G|
∑
ξ∈Ĝ

|f̂1(ξ)|2
)1/2( 1

|G|
∑
ξ∈Ĝ

|f̂2(ξ−2)|2
)1/2

.

Since the Fourier transform is unitary, we have( 1

|G|
∑
ξ∈Ĝ

|f̂1(ξ)|2
)1/2

= ∥f1∥.

Moreover, since |G| is odd, so is |Ĝ|, and this implies that the map ξ 7→ ξ−2 is a

bijection on Ĝ. Thus ( 1

|G|
∑
ξ∈Ĝ

|f̂2(ξ−2)|2
)1/2

= ∥f2∥,

and the inequality above gives the corollary. □

This concludes the first step of the proof. For the second step, we consider an ar-
bitrary subset A ⊂ G (where G is now only assumed to have odd order, so that the
corollary applies). We denote its characteristic function φA and put α = |A|/|G|. We
then apply the Fourier decomposition to the function ψA = φA −α, which is often called
the “balanced” (characteristic) function of A. By definition, it satisfies

ψ̂A(1) =
1

|G|1/2
∑
x∈G

(φA(x) − α) =
1

|G|1/2
( |A|
|G|

− α
)

= 0.

and also

ψ̂A(ξ) = φ̂A(ξ)

if ξ is not the trivial character.

Proposition 4.3.7. Let G be a finite abelian group of odd order. Let A ⊂ G be a
subset which does not contain a proper 3-term arithmetic progression. Let α = |A|/|G|.

Either we have

(4.1) |G| < 2

α2
,

or there exists a character ξ ̸= 1 of G such that

(4.2) |ψ̂A(ξ)| ⩾ |G|1/2α
2

24
.

Proof. As a first step, we show that the assumption implies either (4.1) or that
there exist functions f1, f2, both bounded by 1, such that

AP3(f1, f2, ψA) ⩾
α3

24
.
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To see this, we apply Proposition 4.3.5 with all functions equal to φA. The assumption
means that

AP3(φA, φA, φA) =
|A|
|G|2

=
α

|G|
,

because the only improper 3-term arithmetic progressions in a group of odd order are the
those progressions {a0, a0 + a, a0 + 2a} with a = 0 (indeed, if a ̸= 0, then a0 ̸= a0 + a and
a0 + a ̸= a0 + 2a, but also a0 ̸= a0 + 2a because |G| is odd).

On the other hand, if we write fi = φA + α and use the trilinearity of AP3, then
AP3(φA, φA, φA) is the sum of eight terms. One of these is

AP3(α, α, α) = α3

while (by symmetry) the others are equal to AP3(f1, f2, ψA) for f1 and f2 either equal to
ψA or to the constant function α.

If the inequality (4.1) is not true, then α3 −α/|G| ⩾ 1
2
α3, so for some choice of f1, f2

either α or ψA, we must have

AP3(f1, f2, ψA) ⩾
1

7
× α3

2
⩾
α3

24
.

We note that ∥f1∥ ⩽
√
α and ∥f2∥ ⩽

√
α in all cases: indeed, the norm of the constant

function α is α and

∥ψA∥2 =
1

|G|
∑
x∈G

|φA(x) − α|2 = α− α2 ⩽ α

(by a simple computation), so ∥f1∥ ∥f2∥ ⩽ α. Corollary 4.3.6 implies that

α3

24
⩽

1

|G|1/2
∥f1∥ ∥f2∥ ∥ψ̂A∥∞ ⩽

α

|G|1/2
∥ψ̂A∥∞,

hence

∥ψ̂A∥∞ ⩾
|G|1/2α2

24
,

which concludes the proof. □

Remark 4.3.8. (1) The situation of groups G of even order is (in general) genuinely
different. Indeed, if G = (Z/2Z)d for some integer d ⩾ 1, then a 3-term progression is of
the form {a0, a0 + a, a0 + 2a}, so it is never a proper progression.

On the Fourier side, this is reflected in the fact that every character ξ satisfies ξ2 = 1,
so that for functions f1, f2 and f3 on G, we have

AP3(f1, f2, f3) =
f̂2(1)

|G|3/2
∑
ξ∈Ĝ

f̂1(ξ)f̂3(ξ).

If f1 = f2 = f3 is the characteristic function of a set A, then this gives

AP3(φA, φA, φA) =
( |A|
|G|

)2

.

(2) We can express the conclusion of Proposition 4.3.7 in the form∣∣∣∑
x∈A

ξ(x)
∣∣∣ ⩾ α2

24
|G| =

|A|2

16|G|
.

In particular, this shows that although Roth’s Theorem concentrates on relatively
dense sets, as is necessary to avoid examples like Behrend’s, there are nevertheless many
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rather interesting smaller sets which contain 3-term progressions, namely any set A such
that

max
ξ∈Ĝ {1}

∣∣∣∑
x∈A

ξ(x)
∣∣∣ < |A|2

16|G|
.

We then come to the key “density increment” step. We switch to the case of the
group G = Z/NZ for some odd integer N. In this case, recall that the characters ξ
are parameterized by the elements a of Z/NZ, where a corresponds to the character
x 7→ e(ax/N). We identify this way the Fourier transform of a function f : Z/NZ → C
with a function Z/NZ → C.

Proposition 4.3.9. Let N ⩾ 1 be an integer and β > 0 a real number. Let f be a
function in C(Z/NZ) which is bounded by 1 in modulus and which satisfies

f̂(0) = 0, max
a∈Z/NZ

|f̂(a)| ⩾ βN1/2.

There exists an arithmetic progression P ⊂ Z/NZ with |P| ⩾ β
26

N1/2 such that∣∣∣∑
x∈P

f(x)
∣∣∣ ⩾ β|P|

2
.

If f is real-valued, then we can find P such that∑
x∈P

f(x) ⩾
β|P|

4
.

Proof. The assumption means that there exists a ∈ Z/NZ such that∣∣∣ ∑
x∈Z/NZ

f(x)e
(ax

N

)∣∣∣ ⩾ βN,

and a must be non-zero (since the left-hand side vanishes when a = 0).
Let M < N be a positive integer to be determined later. According to Dirichlet’s

approximation theorem (see Theorem A.1.1), we can find integers q and r, with 1 ⩽ m ⩽
M such that ∣∣∣ a

N
− r

m

∣∣∣ ⩽ 1

mM
.

Consider then the arithmetic progressions of the form P = n+m[I] in Z/NZ, where I ⩾
1 is another parameter and n varies.1 The point is that for suitable choice of I, the
character x 7→ e(ax/N) is close to being constant on these progressions, and consequently
the sum of f(x)e(ax/N) over P is very close to the sum of f(x) over P.

Precisely, for x = n+mi ∈ P, we have by definition

ax

N
=
an

N
+
ami

N
=
an

N
+ ri+mi

( a
N

− r

m

)
and since e(ri) = 1, we get

e
(ax

N

)
= e

(an
N

)
e
(
mi

( a
N

− r

m

))
.

The choice of m and the fact that 1 ⩽ i ⩽ I ensure that∣∣∣mi( a
N

− r

m

)∣∣∣ ⩽ I

M
,

1 Here, the multiplication by m indicates dilation.
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from which it follows that ∣∣∣e(ax
N

)
− e

(an
N

)∣∣∣ ⩽ 2πI

M
for all x ∈ n+m[I]. It follows next that

(4.3)
∣∣∣ ∑
x∈n+m[I]

f(x)e
(ax

N

)
− e

(an
N

) ∑
x∈n+m[I]

f(x)
∣∣∣ ⩽ 2πI2

M
,

since |f(x)| ⩽ 1 for all x.
If we assume that the arithmetic progression m[I] ⊂ Z/NZ is a proper progression

(of length I), then summing over all n ∈ Z/NZ, the sets n + m[I] cover each element x
exactly I times: ∑

n∈Z/NZ

∑
x∈n+m[I]

f(x)e
(ax

N

)
=

∑
x∈Z/NZ

f(x)e
(ax

N

) ∑
x∈n+m[I]

1,

so that
1

I

∑
n∈Z/NZ

∑
x∈n+m[I]

f(x)e
(ax

N

)
=

∑
x∈Z/NZ

f(x)e
(ax

N

)
.

The assumption combined with (4.3) therefore implies that∣∣∣1
I

∑
n∈Z/NZ

e
(an

N

) ∑
x∈n+m[i]

f(x)
∣∣∣ ⩾ βN − 2πIN

M
.

If we also pick I so that 2πI ⩽ 1
2
βM, this implies that

(4.4)
∣∣∣1
I

∑
n∈Z/NZ

e
(an

N

) ∑
x∈n+m[I]

f(x)
∣∣∣ ⩾ βN

2
,

and it follows that there exists some n ∈ Z/NZ such that

(4.5)
∣∣∣1
I

∑
x∈n+m[I]

f(x)
∣∣∣ ⩾ β

2
.

In order to ensure that m[I] is a proper arithmetic progression modulo N, it suffices to
ensure that MI < N. Since we also want I to be as large as possible (to get a progression
n +m[I] which is also as large as possible), we take M and I of size comparable to N1/2,
for instance

M = ⌊N1/2⌋, I =
⌊βM

4π

⌋
.

The conclusion (4.5) then gives the first assertion of the proposition with P = n+m[I],
since |P| = |I| ⩾ βN1/2/26 (say, if N large enough). If f is real-valued, then define

F(n) =
1

I

∑
x∈n+m[I]

f(x),

for n ∈ Z/NZ, and observe that from f̂(0) = 0, it follows that∑
n∈Z/NZ

F(n) = 0,

so that (4.4) leads to ∑
n∈Z/NZ

(F(n) + |F(n)|) ⩾ βN

2
,
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which implies the existence of some n for which F(n) ⩾ β/4. □

Remark 4.3.10. One can argue that the need to restrict to “short intervals” in Z/NZ,
and essentially reducing these to intervals in Z, means that the argument might better
have been framed from the start in the group of integers. Indeed, this is how it is presented
in [84, Lemma 10.25]. (The reader should note that if we sum over all n+m[I], then the
multiplicity of covering is equal to N instead of I, which means that the final steps do
not achieve the desired result.)

We summarize the outcome of the previous steps in the following corollary.

Corollary 4.3.11. Let N be an odd integer. Let A ⊂ Z/NZ be a subset and let
α = |A|/N. One of the following statements holds:

(1) We have N ⩽ 2α−2.

(2) The set A contains a proper 3-term arithmetic progression.

(3) There exists an odd integer M ⩾ α2

210
N1/2 and a subset B ⊂ Z/MZ which contains

no 3-term arithmetic progressions such that β = |B|/M satisfies

β ⩾ α +
α2

26
.

Proof. Let ψA = φA−α. Proposition 4.3.7 states that, if both (1) and (2) are false,
then we can find a ∈ Z/NZ non-zero such that∣∣∣ ∑

x∈Z/NZ

ψA(x)e
(ax

N

)∣∣∣ ⩾ α2

24
.

We then apply Proposition 4.3.9 to ψA and β = α2/24; we obtain an arithmetic
progression P ⊂ Z/NZ of size ⩾ α2N1/2/210 such that∑

x∈P

ψA(x) ⩾
α2|P|

26
,

which translates to
|P ∩ A|
|P|

⩾ α +
α2

26
.

The arithmetic progression P is Freiman 2-isomorphic to Z/MZ for some integer
M ⩾ |P|, which we may assume to be odd (by adding an extra element if needed), and
the subset P ∩ A is then identified with a subset B of Z/MZ without proper 3-term
arithmetic progression, which shows that the third statement holds. □

Remark 4.3.12. If α is sufficiently close to 1 (so that α2/26 + α > 1, which happens
for α > 99/100, for instance), we already see that the last alternative is impossible.

We finally complete the proof of Roth’s Theorem. Using a Freiman 2-isomorphism,
it is enough to prove that

F3(Z/NZ) ≪ N

log log N
for N odd.

Let N ⩾ 1 be an odd integer and A ⊂ Z/NZ a subset which does not contain a
proper 3-term arithmetic progression. In Corollary 4.3.11, this means that the possible
outcomes are the first and third statements. Whenever the third applies, we can apply
the corollary to the subset B ⊂ Z/MZ thus provided, and continue this process. The
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next lemma shows that this can only be done finitely many times, because the density β
given by the corollary must be ⩽ 1.

Lemma 4.3.13. Let c > 0 be a real number. Let (αi)1⩽i⩽k be a finite family of real
numbers such that 0 < α1 ⩽ 1 and αi+1 ⩾ αi + cα2

i for i ⩾ 1. If αk ⩽ 1, then
k ⩽ ⌈2(cα1)

−1⌉.

Proof. For 0 ⩽ j ⩽ k − 1, the assumption implies by induction that

α1+j ⩾ α1 + jcα2
1,

and in particular
α1+j ⩾ 2α1

if j ⩾ (cαi)
−1.

By induction again, this first step gives α1+j ⩾ 2mα1 for 0 ⩽ j ⩽ k − 1 such that

j ⩾
1

cαi

(
1 +

1

2
+ · · · +

1

2m−1

)
.

Since 2mα1 > 1 for m = ⌈log(α−1
1 )/ log 2⌉, the assumption implies that the corre-

sponding inequality cannot hold, which means that

k ⩽
1

cα1

(
1 +

1

2
+ · · · +

1

2m−1

)
⩽ ⌈2(cα1)

−1⌉,

as claimed. □

We denote by k the number of times the corollary can be applied with the third
alternative occuring; by the lemma, with c = 28, we have

k ⩽ ⌈(2−7α)−1⌉ ⩽ c

α
We then have a sequence of odd integers (Ni)1⩽i⩽k and subsets Ai ⊂ Z/NiZ of density

αi = |Ai|/Ni , with N1 = N, A1 = A, such that

Ni ⩾ α2
i 2

−10N
1/2
i−1, αi ⩾ αi−1 + 2−6α2

i−1,

for 2 ⩽ i ⩽ k and

Nk ⩽
2

α2
k

.

Noting simply that αi ⩾ α1 = α for all i ⩽ k, these properties imply by induction
that

βkN2−k

⩽ Nk ⩽
2

α2
⩽ β−1,

where β = α22−10, and hence

−k log 2 + log log N ⩽ log log(β−k−1) = O(log k).

Since k ⩽ cα−1, this translates to

α = O
( 1

log log N

)
,

which concludes the proof of the theorem.

Exercise 4.3.14. For positive integers n0, n and k, we write Pn0,n(k) for the k-term
arithmetic progression {n0, n0 + n, . . . , n0 + (k − 1)n} in positive integers.

(1) Let γ > 0 be a real number. Show that there exists an integer N1 ⩾ 1 with the
following property: if N ⩾ N1 and A ⊂ [N] satisfies |A| ⩾ γN, then A contains
elements a, b and c with a+ c = 2b and a ̸= c.

117



(2) Let A be a set of positive integers. Let k ⩾ 1 be an integer and γ > 0 a real
number. Show that there exists an integer K ⩾ 1 such that any proper k-term
arithmetic progression P of positive integers with k ⩾ K and |P ∩ A| ⩾ γk
contains a proper 3-term progression which is also contained in A.

In the remainder of the exercise, we fix a real number δ > 0, an integer N ⩾ 1 and a
subset A ⊂ [N] such that |A| ⩾ δN.

(3) Let k ⩾ 1 be an integer. Show that if a is such that kn < δN/k, then we have∑
n0⩾1

n0+(k−1)n⩽N

|Pn0,n(k) ∩ A| ⩾ δk
(

1 − 2

k

)
N.

(Hint: for given a ∈ A, show that if kn ⩽ a ⩽ N−kn, then a belongs to k among
those arithmetic progressions, then estimate how many a satisfy this property.)

(4) For given n ⩾ 1, let Gn be the set of integers n0 ⩾ 1 such that

|Pn0,n(k) ∩ A| ⩾ δk

2
.

Show that ∑
n0⩾1

n0+(k−1)n⩽N

|Pn0,n(k) ∩ A| ⩽ δkN

2
+ k|Gn|.

(5) Deduce that if kn < δN/k, then we have

|Gn| ⩾
δN

4
.

(6) Show that the number of values of (n0, n) such that |Pn0,n(k) ∩ A| ⩾ δk/2 is at
least δ2N2/(4k2).

(7) Let (a, b, c) be elements of A such that a+ c = 2b and a < c. Show that if (n0, n)
are such that {a, b, c} ⊂ Pn0,n(k), then b− a divides n.

(8) Deduce that the number of (n0, n) such that {a, b, c} ⊂ Pn0,n(k) is bounded by
a constant depending only on k.

(9) Conclude that there exists N2 ⩾ 1 and c > 0, depending only on δ, such that
if N ⩾ N2, then A contains at least cN2 different arithmetic progressions of
length 3. (Hint: apply the preceeding results for a value k = K given by an
application of (b).)

The result of this exercise is known of Varnavides’s Theorem (see [85]); a similar ar-
gument applies to Szemerédi’s Theorem, and shows that a “weak” statement of existence
of at least one k-term progression in any suitably dense set in fact implies the existence
of many progressions.

4.4. Gowers norms

The success of Roths’s approach to 3-terms arithmetic progressions, in contrast with
the intricacy of Szemerédi’s work, and the quantitative weaknesses of Furstenberg’s ap-
proach, lead naturally to wonder if some variant of his methods based on Fourier analysis
could possibly work with 4-term and longer arithmetic progressions. A basic example
shows that this can certainly not be straightforward, in the sense that classical Fourier
analysis is unable to capture the corresponding analytic quantities.
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Example 4.4.1. Let p ⩾ 5 be a prime number. Consider the quadrilinear form

AP4 : C(Fp)
4 → C

given by

AP4(f1, . . . , f4) =
1

p2

∑
a0∈Fp

∑
a∈Fp

f1(a0)f2(a0 + a)f3(a0 + 2a)f4(a0 + 3a)

which one wants to use to count arithmetic progressions of length 4. We claim that there
is no inequality of the type

|AP4(f1, . . . , f4)| ⩽ C∥f1∥ ∥f2∥ ∥f3∥ ∥f̂4∥∞
for some C independent of p, so that Corollary 4.3.6 has no direct analogue. This follows
from the simple example of

f1(x) = e(x2/p), f2(x) = e(−3x2/p), f3(x) = e(3x2/p), f4(x) = e(−x2/p).
Indeed, since

(a20 − 3(a0 + a)2 + 3(a0 + 2a)2 − (a0 + 3a)2 = 0

for all choices of a0 and a, we have

f1(a0)f2(a0 + a)f3(a0 + 2a)f4(a0 + 3a) =

e
(1

p
(a20 − 3(a0 + a)2 + 3(a0 + 2a)2 − (a0 + 3a)2)

)
= 1

and therefore
AP4(f1, f2, f3, f4) = 1.

On the other hand, we have ∥fi∥ = 1 for 1 ⩽ i ⩽ 3, but

∥f̂4∥∞ = O(p−1/2).

Gowers [43] has also described examples of sets whose characteristic functions have
small norm, and for which the number of 4-terms arithmetic progressions is significantly
smaller than for random sets of the same density (a possibility which he had in fact
previously conjectured not to be possible, see [41, Conj. 4.1]).

Definition 4.4.2 (Gowers norms). Let G be a finite abelian group.
(1) Let h ∈ G. The h-translation operator γh is the linear map C(G) → C(G) defined

by
γh(f)(x) = f(x+ h),

for all f ∈ C(G) and x ∈ G. The discrete multiplicative h-derivative on G is the map
τh : C(G) → C(G) such that

τh(f)(x) = f(x+ h)f(x) = γh(f)(x)f(x)

for all f ∈ C(G) and x ∈ G.
(2) The family of Gowers functionals is the family of maps f 7→ ∥f∥(k) on C(G) defined

inductively for integers k ⩾ 1 by

∥f∥(1) = |E(f)| =
∣∣∣ 1

|G|
∑
x∈G

f(x)
∣∣∣

for f ∈ C(G) and

∥f∥2k+1

(k+1) = E
h

(
∥τh(f)∥2k(k)

)
=

1

|G|
∑
h∈G

∥τh(f)∥2k(k),
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for k ⩾ 1 and f ∈ C(G)

As we will see, the Gowers functionals are norms for k ⩾ 2 (and the definition shows
that the Gowers functional for k = 1 is a seminorm), but this is not completely obvious,
so we will soon change the name to reflect this fact.

Example 4.4.3. (1) For k = 2, spelling out the definition, we obtain the formula

∥f∥4(2) =
1

|G|
∑
h∈G

∥τh(f)∥2(1)

=
1

|G|
∑
h∈G

∣∣∣ 1

|G|
∑
x∈G

f(x+ h)f(x)
∣∣∣2.

Expanding the square, this expression gives

∥f∥4(2) =
1

|G|3
∑
x,y∈G

∑
h∈G

f(y + h)f(y)f(x+ h)f(x).

It is customary to rewrite the formula by changing the variables from (x, y, h) to
(x, h1, h2) where h2 = h and y = x+ h1; this gives

(4.6) ∥f∥4(2) =
1

|G|3
∑
x∈G

∑
h1,h2∈G

f(x+ h1 + h2)f(x+ h1)f(x+ h2)f(x),

which is interpreted as a sum (or weighted count) over all “rectangles” in G, i.e., all sets
of the form {x, x+ h1, x+ h2, x+ h1 + h2}.

We can also interpret the definition as an average of inner products of f with its
translates:

∥f∥4(2) =
1

G

∑
h∈G

|⟨γh(f), f⟩|2.

This immediately suggests an expression in terms of the Fourier transform: by uni-

tarity, we have ⟨τhf, f⟩ = ⟨τ̂hf, f̂⟩, and since

γ̂hf(χ) =
1

|G|1/2
∑
x∈G

f(x+ h)χ(x) =
∑
y∈G

f(y)χ(y − h) = χ(h)f̂(χ)

for any χ ∈ Ĝ and h ∈ G, it follows that

⟨γhf, f⟩ =
1

|G|
∑
χ∈Ĝ

χ(h)|f̂(χ)|2

hence

∥f∥4(2) =
1

G

∑
h∈G

∣∣∣ 1

|G|
∑
χ

χ(h)|f̂(χ)|2
∣∣∣2

=
1

|G|2
∑

χ1,χ2∈Ĝ

|f̂(χ1)|2|f̂(χ2)|2
1

|G|
∑
h∈G

χ1(h)χ2(h) =
1

|G|2
∑
χ∈Ĝ

|f̂(χ)|4.(4.7)

This shows that the second Gowers functional of a function f is the same as the L4-
norm of its Fourier transform (up to normalization); in particular, it already shows that
the second Gowers functional is in fact a norm on C(G).

From the point of view of arithmetic progressions, this computation will also reveal
that the approach through Gowers norms, in the case of progressions of length 3, is
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equivalent to the approach through Fourier analysis. This link will however also be
shown to disappear for the higher Gowers seminorms.

(2) The formula (4.6) can be generalized by induction to give a formula for the Gowers
functional as a weighted count for (product of values of) the function f over “hypercube
patterns” in G. To define these, we will denote by Bk the set {0, 1}k ⊂ Zk, which we
interpret as the set of binary strings of length k. A k-dimensional hypercube in G is a
subset of the form

x+ Bk · h

for some x ∈ G and some h ∈ Gk, where we denote

c · h = c1h1 + · · · + ckhk.

Thus, for instance, if k = 2, a 2-dimensional cube is a set of the form

{x, x+ h1, x+ h2, x+ h1 + h2},

corresponding to the expressions appearing in formula (4.6).
If f is real-valued, the general formula for ∥f∥(k) takes the form

∥f∥2k(k) =
1

|G|k+1

∑
x∈G

∑
h∈Gk

∏
c∈Bk

f(x+ c · h),

where |c| = c1 + · · · + ck for c ∈ Bk.
If f is not necessarily real-valued, we must handle the fact that sometimes conjugates

of values of f appear. Let σ : C → C be the complex conjugation function z 7→ z̄. Then
one gets

(4.8) ∥f∥2k(k) =
1

|G|k+1

∑
x∈G

∑
h∈Gk

∏
c∈Bk

σ|c|(f(x+ c · h)).

(3) For some functions, one can compute exactly the Gowers functionals. For instance,
note that ∥1∥(k) = 1 for all k in the case of the constant function 1. Moreover, it is
straightforward (by induction) that when f is bounded by 1 in modulus, then we have
also ∥f∥(k) ⩽ 1 for all k ⩾ 1.

Exercise 4.4.4. Let χ ∈ Ĝ be a non-trivial character of G. Show that ∥χ∥(1) = 0
and ∥χ∥(k) = 1 for k ⩾ 2.

The basic properties of Gowers functionals and their link with arithmetic progressions
are given by the next propositions.

Proposition 4.4.5 (Gowers). Let G be a finite abelian group.

(1) For any integer k ⩾ 1 and f ∈ C(G), we have

∥f∥(k) ⩽ ∥f∥(k+1).

(2) For any k ⩾ 2, the Gowers functional f 7→ ∥f∥(k) is a norm on C(G).

In order to prove this, it is convenient to use the map

Gk : C(G)Bk → C(G)
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(which we call the k-th Gowers operator) defined by

Gk((fc)c∈Bk
) =

1

|G|k+1

∑
x∈G

∑
h∈Gk

∏
c∈Bk

σ|c|(fc(x+ c · h))

= E
x,h

(∏
c∈Bk

σ|c|(fc(x+ c · h)
)

for any (fc)c∈Bk
in C(G)Bk . This map is linear with respect to each variable fc such that |c|

is even, and conjugate-linear with respect to the other variables. In particular, it is linear
in each variable when only linear combinations with real coefficients are considered.

By the formula (4.8) above, we have ∥f∥2k(k) = Gk(f), where on the right-hand side,

we consider the family (fc) with fc = f for all c.

Lemma 4.4.6 (Gowers–Cauchy–Schwarz inequality). Let k ⩾ 1 be an integer. For
any family (fc)c∈Bk

, we have

|Gk((fc))| ⩽
∏
c∈Bk

∥fc∥(k).

Proof. For a set X and x ∈ Xk, we will denote here by x′ = (x1, . . . , xk−1) the
projection of x to the first k − 1 coordinates.

Let 1 ⩽ j ⩽ k be fixed. For any c ∈ Bk and i ∈ {0, 1}, write c̃i for the binary string
identical to c except that the j-th digit, counted from the left, is replaced by i. (So, for
instance, if k = 5, c = 00101 and j = 3, then c̃0 = 00001 and c̃1 = 00101.)

Let f = (fc) ∈ C(G)Bk . The key step is the inequality

(4.9) |Gk(f)| ⩽
√

Gk(f 0)Gk(f 1),

where f i = (fc̃i)c∈Bk
. Note that these new families depend on j, but we omit this from

the notation for simplicity. The point is that, even if all fc are distinct functions, both
f 1 and f 2 have at most 2k−1 distinct coordinates, and that each fc appears in a single
one of these families.

To prove (4.9), we assume j = k to simplify the notation, leaving to the reader to
check the other cases (it amounts to using below the j-th variable hj instead of hk). By
rearranging the definition, we see that Gk(f) is equal to

1

|G|k+1

∑
h′∈Gk−1

∑
x∈G

∏
c′∈Bk−1

σ|c′|(fc′,0(x+ c′ · h′))
∑
hk∈G

∏
c′∈Bk−1

σ|c′|+1(fc′,1(x+ c′ · h′ + hk)).

For each value of h′ and x, we make the change of variable y = x+hk in the last sum,
and this gives

1

|G|k+1

∑
h′∈Gk−1

∑
x∈G

∏
c′∈Bk−1

σ|c′|(fc′,0(x+ c′ · h′))
∑
y∈G

∏
c′∈Bk−1

σ|c′|+1(fc′,1(y + c′ · h′)).

We can then apply the Cauchy–Schwarz inequality to the sum over h′, and this leads
to the inequality |Gk(f | ⩽

√
A0A1, where

Ai =
1

|G|k+1

∑
h′∈Gk−1

∣∣∣∑
x∈G

∏
c′∈Bk−1

σ|c′|(fc′,0(x+ c′ · h′))
∣∣∣2,

for i ∈ {0, 1}.
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Using |z|2 = zz̄, we have∣∣∣∑
x∈G

∏
c′∈Bk−1

σ|c′|(fc′,0(x+c′ ·h′))
∣∣∣2 =

∏
c′∈Bk−1

σ|c′|(fc′,0(x+c′ ·h′))
∏

c′∈Bk−1

σ|c′|+1(fc′,0(y+c′ ·h′))

for each h′ ∈ Gk−1. Now note that

x+ c′ · h′ = x+ (c′, 0) · (h′, y − x), y + c′ · h′ = x+ (c′, 1) · (h′, y − x)

for any given (x, y) ∈ G2, h′ ∈ Gk−1 and c′ ∈ Bk−1. If we define hk = y − x and write
h = (h′, hk), this gives∏

c′∈Bk−1

σ|c′|(fc′,0(x+ c′ · h′))
∏

c′∈Bk−1

σ|c′|+1(fc′,0(y + c′ · h′)) =

∏
c′∈Bk−1

σ|c′|(fc′,0(x+ (c′, 0) · h))
∏

c′∈Bk−1

σ|c′|+1(fc′,0(y + (c′, 1) · h))

=
∏
c∈Bk

σ|c|(fc′,0(x+ c · h)).

Thus

Ai =
1

|G|k+1

∑
h′∈Gk−1

∑
x∈G

∑
y∈G

∏
c′∈Bk−1

σ|c′|(fc′,0(x+ c′ · h′))
∏

c′∈Bk−1

σ|c′|+1(fc′,0(y + c′ · h′))

=
1

|G|k+1

∑
h∈Gk

∑
x∈G

∏
c∈Bk

σ|c|(fc′,0(x+ c · h)) = Gk(f i),

which concludes the proof of (4.9), in the case j = k.
We now iterate (4.9), but apply it in order with j = k, then j = k − 1, and so on.

This leads to an inequality

|Gk(f)| ⩽
∏
c∈Bk

Gk(f c)
2−k

,

where each tuple f c ∈ C(G)Bk has all coefficients the same, and one checks that they
are equal to the function fc. Using ∥fc∥(k) = Gk(f c) then concludes the proof of the
lemma. □

Proof of Proposition 4.4.5. (1) We consider (fc) ∈ C(G)Bk defined by fc′,0 = f
and fc′,1 = 1 for all c ∈ Bk, and apply Lemma 4.4.6. The right-hand side of the inequality

is then ∥f∥2k−1

(k) (since ∥1∥(k) = 1). On the left-hand side, note that

σ|c|(fc(x+ c · h)) =

{
σ|c′|(f(x+ c′ · h) if c = (c′, 0)

1 if c = (c′, 1),

so that
Gk((fc)) = ∥f∥2k−1

(k−1),

by the formula (4.8) again. The bound follows.
(2) Suppose that k ⩾ 2. Let f ∈ C(G). It is straightforward to check by induction

that ∥λf∥(k) = |λ|∥f∥(k) for any λ ∈ C. Moreover, ∥f∥(k) ⩾ 0, and if equality holds,
we deduce from (1) by induction that ∥f∥(2) = 0. But then the L4-norm of the Fourier

transform of f is zero by (4.7), so f̂ = 0, and hence f = 0.
It remains only to check the triangle inequality to conclude that the Gowers seminorms

are norms for k ⩾ 2. Let f and g be elements of C(G). Then, denoting also by f + g the
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family in C(G)Bk with all coefficients equal to f + g, we know that ∥f + g∥2k(k) is equal

to Gk(f + g). Using the multilinearity of Gk (note that we have a linear combination
with integral coefficients, so the fact that the Gowers operator is conjugate-linear in some
variables has no consequence), we get

∥f + g∥2k(k) = Gk(f + g) =
∑
I⊂Bk

Gk(fI),

where fI = (fI,c) is such that fI,c = f if c ∈ I and fI,c = g otherwise. From Lemma 4.4.6,
we have

|Gk(fI)| ⩽
∏
c∈Bk

∥fI,c∥(k)

for each I ⊂ Bk, and therefore∑
I⊂Bk

Gk(fI) ⩽
∑
I⊂Bk

∥fI,c∥(k) = (∥f∥(k) + ∥g∥(k))|Bk|,

from which the desired inequality follows. □

We can now prove the relation between Gowers norms and counting arithmetic pro-
gressions. We first define the k-linear function APk : C(G)k → C by

APk(f1, . . . , fk) = E
a0,a

(f1(a0) · · · fk(a0 + (k − 1)a)

=
1

|G|2
∑
a∈G

∑
a0∈G

f1(a0)f2(a0 + a) · · · fk(a0 + (k − 1)a).

Proposition 4.4.7. Let G be a finite abelian group. Let k ⩾ 1 be an integer. Assume
that G contains no element of order ⩽ k − 1. For any (f1, . . . , fk) ∈ C(G)k, and any
j ∈ [k], we have

APk(f1, . . . , fk) ⩽
(∏

i ̸=j

∥fi∥∞
)
∥fj∥(k−1).

Remark 4.4.8. (1) The numerology is thus that the Gowers k-norm controls progres-
sions of length k − 1.

(2) The assumption on G and k is equivalent to asking that |G| has no prime factor
⩽ k − 1, or to asking that |G| is coprime to (k − 1)!.

This assumption implies that an arithmetic progression {a0, a0 +a, . . . , a0 + (k− 1)a}
is proper if and only if a ̸= 0. (Indeed, if the progression is not proper, we have an
equality a0 + ia = a0 + ja with 0 ⩽ i, j ⩽ k − 1; it follows that (i − j)a = 0, and since
|i− j| ⩽ k − 1, we then deduce that a = 0.)

It also implies that for any integer j with 1 ⩽ j ⩽ k − 1, the map x 7→ jx on G is
bijective (since it is then injective).

Proof. The proof is by induction on k.
Suppose first that k = 2. For functions f1, f2 in C(G), we then have

AP2(f1, f2) =
1

|G|2
∑

a0,a∈G

f1(a0)f2(a0 + a) =
1

|G|2
∑

a0,b0∈G

f1(a0)f2(b0),

by the change of variable from (a0, a) to (a0, a0 + a). Thus

|AP2(f1, f2)| = ∥f1∥(1)∥f2∥(1) ⩽ ∥f1∥∞∥f2∥(1).
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We now assume that k ⩾ 3 and that the bound holds for k − 1. We will then prove
the result for APk, assuming that j = k and leaving to the reader the care of checking
that the argument extends to all j.

We write

1

|G|2
∑
a∈G

∑
a0∈G

f1(a0)f2(a0 + a) · · · fk(a0 + (k − 1)a) =
1

|G|
∑
a0∈G

∑
a∈G

g(a0, a)f1(a0)

where

g(a0, a) =
1

|G|
f2(a0 + a) · · · fk(a0 + (k − 1)a).

We can recognize here a special case of the type of sums appearing in the bilinear
forms of Lemma 1.6.1 (with N = |G| and all βn equal to 1 there), and the reader can check
that the next steps is just a repetition of the general argument. By the Cauchy–Schwarz
inequality, we deduce that

|APk(f1, . . . , fk)|2 ⩽
( 1

|G|
∑
a0∈G

|f1(a0)|2
) ( 1

|G|
∑
a0∈G

∣∣∣∑
a∈G

g(a0, a)
∣∣∣2).

The first term on the right-hand side ∥f1∥ ⩽ ∥f1∥∞. Opening the square, the second
is equal to

1

|G|
∑
a,b∈G

∑
a0∈G

g(a0, a)g(a0, b) =
1

|G|
∑
a,h∈G

∑
a0∈G

g(a0, a)g(a0, a+ h).

We now observe that, for any (a0, a, h), we have

g(a0, a)g(a0, a+ h) =
1

|G|2
f2(a0 + a) · · · fk(a0 + (k − 1)a)×

f2(a0 + a+ h) · · · fk(a0 + (k − 1)(a+ h))

=
1

|G|2
f2(a0 + a)f2(a0 + a+ h) · · · fk(a0 + (k − 1)a)fk(a0 + (k − 1)(a+ h)),

which we recognize as equal to

1

|G|2
k∏

j=2

(τ(j−1)hfj)(a0 + ja).

This implies that

1

|G|
∑
a,b∈G

∑
a0∈G

g(a0, a)g(a0, b) =
1

|G|3
∑
a,b∈G

∑
a0∈G

k∏
j=2

(τ(j−1)hfj)(a0 + ja)

=
1

|G|3
∑
a,b∈G

∑
b0∈G

k−1∏
j=1

(τ(j−1)hfj)(b0 + ja)

by putting b0 = a0 + a, and we now recognize here the average

1

|G|
∑
h∈G

APk−1(τhf2, . . . , τ(k−1)hfk).
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Applying the induction hypothesis, and noting that ∥τ(j−1)hfj∥∞ ⩽ ∥fj∥2∞ for all j,
we deduce that∣∣∣ 1

|G|
∑
h∈G

APk−1(τhf2, . . . , τ(k−1)hfk)
∣∣∣ ⩽ 1

|G|
∑
h∈G

(k−1∏
j=2

∥fj∥∞
)2

∥f̃k,h∥(k−2).

We then observe that
1

|G|
∑
h∈G

∥f̃k,h∥(k−2) =
1

|G|
∑
h∈G

∥τ(k−1)hfk∥(k−2) =
1

|G|
∑
h∈G

∥τhfk∥(k−2),

because k− 1 is coprime to the size of G. Applying Hölder’s inequality and the inductive
definition of Gowers norms gives

1

|G|
∑
h∈G

∥f∥(k−2) ⩽
( 1

|G|
∑
h∈G

∥f∥2k−2

(k−2)

)2−(k−2)

= ∥f∥2(k−1),

and gathering the previous steps leads to

|APk(f1, . . . , fk)| ⩽
k−1∏
j=1

∥fj∥∞ ∥fk∥(k−1),

as claimed. □

We have then an analogue of the trichotomy concerning arithmetic progressions which
appeared previously in the case k = 3.

Corollary 4.4.9. Let G be a finite abelian group. Let k ⩾ 2 be an integer. Assume
that G has no element of order ⩽ k − 1. Let A ⊂ G be a subset of G, and denote
α = |A|/|G|.

Then at least one of the following properties holds:

(1) We have

|G| < 2

αk−1
.

(2) We have

∥ψA∥(k−2) ⩾
αk

2k+1
,

where ψA = φA − α is the balanced characteristic function of G.

(3) There exists a proper k-term arithmetic progression in A.

Proof. This is similar to the proof of Proposition 4.3.7. If A does not contain a
k-term proper arithmetic progression, then we have

APk(φA, . . . , φA) =
α

|G|
,

because the assumption implies that the only improper k-term arithmetic progressions
in G are those with common difference 0 (if ia = ja with 1 ⩽ i ̸= j ⩽ k, then (i− j)a = 0
implies that a = 0).

Writing φA = α + ψA, and using the multilinearity of APk, we therefore have
α

|G|
= APk(α + ψA, . . . , α + ψA)

= αk +
∑
I⊂[k]
I ̸=∅

APk(ψI,1, . . . , ψI,k)
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with ψI,j = ψA if j ∈ I and ψI,j = α otherwise. If αk ⩾ 2α/|G|, then this implies that∣∣∣∑
I⊂[k]
I ̸=∅

APk(ψI,1, . . . , ψI,k)
∣∣∣ ⩾ αk

2
,

hence there exists a subset I ̸= ∅ such that

|APk(ψI,1, . . . , ψI,k)| ⩾ αk

2k+1
.

and therefore some j ∈ [k] and functions fi for i ̸= j with |fi| ⩽ 1 such that

|APk(f1, . . . , fj−1, ψA, fj+1, . . . , fk)| ⩾ αk

2k+1
.

By Proposition 4.4.7, we conclude that

∥ψA∥(k) ⩾
αk

2k+1
.

In summary, if neither property (2) nor property (3) is valid, we have must have
α/|G| ⩽ 1

2
αk, which translates to the validity of (1), thus finishing the proof. □

This corollary shows that the problem of proving Szemerédi’s Theorem for cyclic
groups G = Z/NZ is related to the inverse problem for Gowers norms : for k ⩾ 2 and
β > 0 fixed, given a function f ∈ C(Z/NZ) which is bounded by one and satisfies

∥f∥(k) ⩾ β,

what kind of structural information concerning f can one deduce? In the case k = 2
(corresponding to 3-term progressions), a suitable consequence was found in the course
of proving (4.2), namely the existence of a large Fourier coefficient. This we interpret
now as saying that there exists a non-zero a ∈ Z/NZ such that∣∣∣∑

x∈G

f(x)e
(
−ax

N

)∣∣∣
is very large, so that f correlates very strongly with a character of Z/NZ.

The following example shows that, at the very least, there are quite a few bounded
functions on Z/NZ for which ∥f∥(k) is large.

Example 4.4.10. Let N ⩾ 1 be an integer and let P ∈ Z/NZ[X] be a polynomial of
degree d ⩾ 0. Define a function f ∈ C(Z/NZ) by

f(x) = e
(P(x)

N

)
,

which has modulus 1. We claim that ∥f∥(k) = 1 for all k ⩾ d+ 1.
The point is that for a function of this type, the function τh(f) is of the same kind,

but for a polynomial Ph of degree ⩽ d − 1, reflecting the fact that τh is similar to a
(discrete) derivative; after d iterations of the differentiation process, we get a constant
polynomial, for which the corresponding function has modulus 1.

To be precise, we proceed by induction on d. For d = 0, the function f is constant
so ∥f∥(1) = |f | = 1. Assume now that d ⩾ 1 and that the result holds when f is defined
using a polynomial of degree ⩽ d− 1. For any h ∈ Z/NZ and x ∈ Z/NZ, we have

τh(f)(x) = e
(P(x+ h) − P(x)

N

)
= e

(Ph(x)

N

)
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where Ph = P(X+h)−P(X) is a polynomial of degree at most d−1 (the terms of degree d
cancel out in the difference). If k ⩾ d+ 1, then k − 1 ⩾ d, so that by induction we have
∥τh(f)∥(k−1) = 1, hence

∥f∥2k(k) =
1

N

∑
h∈Z/NZ

∥τh(f)∥2k−1

(k−1) = 1.

The threshold k ⩾ d + 1 is sharp, in the sense that for k ⩽ d, the k-th Gowers norm
of a function like f is quite small. More precisely, one can show that

∥f∥(k) ⩽ ∥f∥(d) ⩽ cdN
−γd

if k ⩽ d, for some constants cd and γd > 0. If N = p is a prime number and d < p, one
can be even more precise, and prove that

∥f∥(k) ⩽ (5(d+ 1))k+1p−2−k

(in other words, γd = 2−d is possible). This was proved by Fouvry, Kowalski and Michel
(see [34, Ex. 1.8]); the bound

∥f∥(k) ⩽ ∥f∥(d) ⩽ (d− 1)2
−d

p−2−d

,

which is only slightly weaker, can be proved elementarily (see for instance [84, Exer-
cise 11.1.12]).

The various estimates also show clearly that the various Gowers norms are really
different: for each k, there are functions f with ∥f∥(k) small, but ∥f∥(k+1) large.

Example 4.4.11. Results like those mentioned in the previous example lead to non-
trivial cases where the trichotomy can be used to prove the existence of proper k-term
arithmetic progressions in some interesting subsets of Z/pZ. In particular, the results
of Fouvry, Kowalski and Michel can be used to prove that if A ⊂ Z/pZ is “uniformly
algebraically defined” for an infinite sequence of prime numbers p, and satisfies |A| ≫
p1−γk for some (very small) constant γk > 0, then A contains a k-term progression if p is
large enough.

The precise definition of “uniformly algebraically defined” is somewhat technical, but
the following are examples of suitable sets A:

– A is the set of squares modulo p;

– More generally, A = P(Fp) for some fixed integral polynomial P ∈ Z[X] of
degree ⩾ 1 (for instance, the set of x ∈ Fp such that x = y3 + y + 1 for some y
also in Fp).

The point is that, in each of these examples (and many others), the balanced charac-
teristic function of A has a description as a linear combination with “small” coefficients of
functions f ∈ C(Fp) of very special algebraic nature, the so-called “tame trace functions”

over finite fields. For such a function f , it is proved in [34, Cor. 1.6] that ∥f∥(k) ≪ p−2−k

for all values of k, where the implied constant depends only on a complexity invariant
of f . The latter is uniformly bounded as p varies when A is one of the sets above, and
the consequence is that we then obtain an estimate of the form

∥ψA∥(k) ≪ p−2−k

for all primes p, where the implied constant depends only on the way the sets A ⊂ Fp

are “uniformly” defined.
From the point of view above, these examples are highly suggestive, because the

proof goes through showing that either a function f of “algebraic type” satisfies the
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bound ∥f∥(k) ≪ p−2−k
, or there exists a polynomial P ∈ Fp[X], of degree d ⩽ k− 1, such

that ∣∣∣∑
x∈Fp

f(x)e
(
−P(x)

p

)∣∣∣ ≫ p.

In other words, for such functions, we have essentially a “perfect” inverse theorem,
where having large Gowers norm is exactly equivalent to having high correlation with a
function of the simplest type which itself has large Gowers norms, namely with g(x) =
e(P(x)/N) for some polynomial P. The estimate for ∥ψA∥(k) mentioned above follows
then from the fact that, in this case, one can prove that ψA does not correlate with such
functions.

(As a last remark, the results of [34] rely ultimately on extremely deep results, namely
Deligne’s most general form of the Riemann Hypothesis over finite fields [20], one of the
most sophisticated and important result in number theory of the 20th Century.)
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APPENDIX A

Reminders

We summarize here, with precise references when needed, a number of elementary
facts that are used in the rest of the text.

A.1. Dirichlet’s Theorem

The following result is one of the first and most useful applications of the pigeon-hole
principle (see [21, p. 636], where already the higher-dimensional version is proved this
way).

Theorem A.1.1 (Dirichlet). Let x ∈ [0, 1] be a real number. For any integer Q ⩾ 1,
there exists a positive integer q ⩾ Q and an integer a such that∣∣∣x− a

q

∣∣∣ ⩽ 1

qQ
⩽

1

Q2
.

Proof. Among the fractional parts of the Q + 1 numbers 0, x, . . . , Qx, at least two
must fall in the same of the Q intervals

[0,Q−1[, [Q−1, 2Q−1[, . . . , [(Q − 1)Q−1, 1[,

say {ix} and {jx} with 0 < leqi < j ⩽ Q satisfy

k

Q
⩽ {ix} ⩽

k + 1

Q
,

k

Q
⩽ {jx} ⩽

k + 1

Q
.

Let q = j − i, so that 1 ⩽ j ⩽ Q. We have {ix} = ix− u and {jx} = jx− v for some
integers u and v, and so the inequality |{jx} − {ix}| ⩽ 1/Q leads to

|(j − i)x− (v − u)| ⩽ 1

Q

from which the result follows with a = v − u by dividing by q. □

Remark A.1.2. By dividing through common factors, if need be, one can also assume
in Dirichlet’s Theorem that a is coprime to q.

A.2. Summation by parts

The following lemmas are variants of the standard formula of integration by parts,
and are often known as “summation by parts”.

Lemma A.2.1. (1) Let (an)n⩾1 be a sequence of complex number and define

A(x) =
∑

1⩽n⩽x

an.

for x ⩾ 0. Let f : [0,+∞[→ C be a function of class C1. For x ⩾ 0, we then have

(A.1)
∑

1⩽n⩽x

anf(n) = A(x)f(x) −
∫ x

1

A(t)f ′(t)dt.
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(2) Let N ⩾ 1 be an integer and let (an)1⩽n⩽N and (bn)1⩽n⩽N be sequences of complex
numbers. Define

Ak =
k∑

n=1

an

for 0 ⩽ k ⩽ N, in particular A0 = 0. We then have

(A.2)
N∑

n=1

anbn = aNbN −
N−1∑
n=1

An(bn+1 − bn).

Proof. We leave the first statement as an exercise to the reader. For the second,
just observe that an = An − An−1, hence

N∑
n=1

anbn =
N∑

n=1

(An − An−1)bn

=
N∑

n=1

Anbn −
N−1∑
n=0

Anbn+1 = ANbN −
N−1∑
n=1

An(bn+1 − bn),

as claimed. □

A.3. Probability theory

We use frequently the basic Markov and Chebychev inequalities.
Another useful, somewhat less standard, inequality is the following:

Lemma A.3.1. Let X be a bounded non-negative random variable. Let M ⩾ 0 be such
that X ⩽ M and α ⩾ 1 such that

E(X) ⩾
M

α
.

We have

(A.3) P
(

X ⩾
M

2α

)
⩾

1

2α
.

Proof. Let φ be the characteristic function of the event {X ⩾ 1
2
α−1M}. Using the

bounds

0 ⩽ (1 − φ)X ⩽
M

2α
, 0 ⩽ φX ⩽ Mφ,

and the fact that E(φ) = P(M ⩾ 1
2
α−1M), we obtain the inequalities

M

α
⩽ E(X) = E((1 − φ)X) + E(φX) ⩽

M

2α
+ MP(M ⩾ 1

2
α−1M),

from which the conclusion follows. □

The inclusion-exclusion principle (in probability theory, this probably goes back to
the study of the “problème des rencontres” in the early 18th Century, by de Montfort,
N. Bernoulli II and de Moivre, see [82]) is often useful, as well as its truncated versions
which give upper or lower bounds only.

Proposition A.3.2. Let µ be a positive measure on a set X, and let (Xi)i∈I be a finite
family of measurable subsets of X. We have

µ
(⋃

i∈I

Xi

)
=

∑
J⊂I
J ̸=∅

(−1)|J|−1µ
(⋃
j∈J

Xj

)
.

131



Moreover, if j ⩾ 1 is an odd integer, then

(A.4) µ
(⋃

i∈I

Xi

)
⩽

∑
J⊂I

1⩽|J|⩽j

(−1)|J|−1µ
(⋃
j∈J

Xj

)
,

whereas if j ⩾ 1 is even, then

(A.5) µ
(⋃

i∈I

Xi

)
⩽

∑
J⊂I

1⩽|J|⩽j

(−1)|J|−1µ
(⋃
j∈J

Xj

)
.

Proof. Let φi be the characteristic function of Xi, and for any subset J of I, let φJ

be the characteristic function of the intersection of the sets Xj for j ∈ J. Consider the
function

φ̃ =
∑
J⊂I
J ̸=∅

(−1)|J|−1φJ.

We will show that φ̃ coincides with the characteristic function φ of the union of the
Xi for i ∈ I; computing then the integral with respect to µ, the formula follows.

To check the claim, take x ∈ X. Define K ⊂ I to be the set of those k ∈ I such that
x ∈ Xk. If K is empty, then we have φ(x) = 0, and also φ̃(x) = 0 since φJ(x) = 0 for any
subset J. On the other hand, if K is not empty, then φ(x) = 1, and we have φJ(x) = 1 if
and only if J ⊂ K, so that

φ̃(x) =
∑
J⊂K
J̸=∅

(−1)|J|−11 = −
(∑
J⊂K

(−1)|J| − 1
)

= −
( |K|∑

j=0

(
|K|
j

)
(−1)j − 1

)
= 1 = φ(x)

by the binomial theorem.
(Another version of the proof goes as follows: with the same notation, the character-

istic function 1 − φ of the complement of the union of the Xi’s satisfies

1 − φ =
∏
i∈I

(1 − φi) =
∑
J⊂I

(−1)|J|φJ,

and since φ∅ = 1, we get again

φ = −
∑
J⊂I
J ̸=∅

(−1)|J|φJ,

and conclude as before.)
We also see from this proof that (A.4) and (A.5) result from the inequalities∑

0⩽i⩽j

(−1)i
(
k

i

)
⩽ 0, if j ⩽ k is odd,

∑
0⩽i⩽j

(−1)i
(
k

i

)
⩾ 0, if j ⩽ k is even,

which hold for alternating sums of binomial coefficients with k ⩾ 0. These follow imme-
diately from the exact formula∑

0⩽i⩽j

(−1)i
(
k

i

)
= (−1)j

(
k − 1

j

)
,

for 0 ⩽ j ⩽ k. This last statement may be proved, for instance, by induction on k. □
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Example A.3.3. In the simplest example where Xi are finite sets and µ is the counting
measure on X, we get∣∣∣⋃

i∈I

Xi

∣∣∣ =
∑
i∈I

|Xi| −
∑

{i,j}⊂I
i ̸=j

|Xi ∩ Xj| +
∑

{i,j,k}⊂I
i,j,k distinct

|Xi ∩ Xj ∩ Xk| + · · · ,

and the first two truncations lead to the inequalities∑
i∈I

|Xi| −
1

2

∑
i,j∈I

|Xi ∩ Xj| ⩽
∣∣∣⋃
i∈I

Xi

∣∣∣ ⩽ ∑
i∈I

|Xi|.

Remark A.3.4. The truncated form of the inclusion and exclusion principle is only
the simplest possible refinement of the exact formula. Variants of this idea are at the
source of the fundamental sieve methods in analytic number theory, which provide one
of the most powerful techniques in multiplicative number theory, and especially in the
study of prime numbers. For further information on this topic, the best source is the
book [36] of Friedlander and Iwaniec.

A.4. Polynomials

The following standard fact will be used in the proof of Dvir’s Theorem.

Proposition A.4.1. Let E be a field. Let d ⩾ 1 and k ⩾ 0 be integers. The vector
space Xd,k(E) of homogeneous polynomials of degree k in d variables over E has dimension(

d+ k − 1

d− 1

)
=

(
d+ k − 1

k

)
.

For instance, for d = 1, the space X1,k(E) is generated by Xk, hence has dimension 1 =(
k
0

)
, and for d = 2, the space X2,k(E) is spanned by

Xk, Xk−1Y, · · · , XYk−1, Yk,

and has dimension k + 1 =
(
k+1
1

)
.

Proof. The question is to count the number of tuples (k1, . . . , kd) of non-negative
integers which satisfy

k1 + · · · + kd = k,

since these correspond bijectively to the monomials

Xk1
1 · · ·Xkd

d

of degree k which form a basis of Xd,k(E).
There are different ways to do this. We can for instance consider the generating series

f(z) =
∑
k⩾0

dim(Xd,k(E))zk,

as a formal power series with integer coefficients. Using the above observation, we can
express the dimension as the sum ∑

k1+···+kd=k
ki⩾0

1,

and by inserting it into the generating function, we obtain the expression

f(z) =
(∑

k⩾0

zk
)d

=
1

(1 − z)d
.

133



If we denote g(z) = (1 − z)−1, we have then the equality

f(z) =
1

(d− 1)!
g(d−1)(z),

which, by computing the derivative, is equal to

1

(d− 1)!

∑
k⩾0

(k + d− 1) · · · (k + 1)zk,

so that by equating coefficients we obtain the formula

dim(Xd,k(E)) =
(k + d− 1) · · · (k + 1)

(d− 1)!
=

(
k + d− 1

d− 1

)
,

as claimed. □

Another extremely useful result concerning polynomials is the Schwarz–Zippel Lemma,
which controls the number of possible zeros of multivariable polynomials in certain sets,
generalizing the fact that a non-zero one-variable polynomial has at most as many zeros
in a field as its degree.

Proposition A.4.2. Let E be a field. Let S ⊂ E be a finite subset of E. For any
integer d ⩾ 1 and any non-zero polynomial f ∈ E[X1, . . . ,Xd], we have

|{x ∈ Sd | f(x) = 0}| ⩽ deg(f)|S|d−1.

Proof. The proof proceeds by induction on the number d of variables. For d = 1,
the result is just the statement that a non-zero polynomial of degree k ⩾ 0 has at most
k zeros in E.

We now assume that d ⩾ 2 and that the statement is valid for polynomials in d − 1
variables. We write

f =
k∑

j=0

ajX
j
d

where aj ∈ E[X1, . . . ,Xd−1] and ak ̸= 0. For a given x′ ∈ Sd−1, the equation f(x′, xd) = 0
with unknown xd ∈ S has at most k roots if ak(x′) ̸= 0, and at most |S| roots if ak(x′) = 0.
Thus

|{x ∈ Sd | f(x) = 0}| ⩽ k|S|d−1 + |S| |{x′ ∈ Sd−1 | ak(x′) = 0}|.
By induction, we get

|{x′ ∈ Sd−1 | ak(x′) = 0}| ⩽ deg(ak)|S|d−2,

and we conclude that

|{x ∈ Sd | f(x) = 0}| ⩽ k|S|d−1 + deg(ak)|S|d−1 ⩽ deg(f)|S|d−1,

since k + deg(ak) ⩽ deg(f), which completes the induction. □

A.5. Graphs

We use only simple undirected graphs in this book.

Definition A.5.1 (Graph). A graph is a pair (V,E) of sets, called vertices and edges,
respectively, such that E is a set of subsets of V with |e| = 2 for any e ∈ E.

A graph is said to be finite if V is finite, in which case E is also finite.
Given a vertex x ∈ V, the neighbours of x are the y ∈ V such that {x, y} is an edge

of the graph. The degree of the graph at x is the number of neighbours of x, and is
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Figure A.1. A graph with crossing number 4.

denoted deg(x). If all vertices have the same degree, say k ⩾ 0, then the graph is said to
be k-regular.

In the proof of the Szemerédi–Trotter Theorem, we use a result concerning planar
graphs. How to define this in general would require some care if one allows curved
realizations of the edges, but we will only need the simplest examples, and we can restrict
to the following definition.

Definition A.5.2. Let γ = (V,E) be a graph. A planar realization of γ is a subset
P ⊂ R2 given with a bijection f : V → P such that, for any distinct edges {u, v} and
{x, y} of γ, the open segments ]f(u), f(v)[ and ]f(x), f(y)[ in R2 are either disjoint or
intersect in a single point.

The crossings of the planar realization are the pairs of edges for which the corre-
sponding open segments intersect.

Remark A.5.3. We allow the possibility that the segments corresponding to three
(or more) edges intersect at a single point; in that case, the intersection point contributes
as many crossings as there are pairs of edges involved (for instance, 3 for a triple point,
6 for a quadruple point), see Figure A.1 for an illustration.

Theorem A.5.4 (Crossing number inequality). Let γ = (V,E) be a finite graph such
that |E| ⩾ 4|V|. Any planar realization of γ has at least 2−6|E|3|V|−2 crossings.

This is due to Ajtai, Chvátal, Newborn and Szemerédi and to Leighton, independently;
see for instance [84, Th. 8.1] for a proof. The key fact linking the combinatorics of graphs
with the geometry is Euler’s formula for the Euler–Poincaré characteristic of a finite
planar graph: in any planar realization of a finite graph γ, we have

|F| − |E| + |V| = 2

where F is the number of “faces” of the planar realization.

A.6. Finite fields

We review here the basic theory of finite fields. The main facts are summarized in
the following theorem, where we recall that for any field E, finite or not, there is a unique
integer p, which is either 0 or a prime number, such that p · 1 = 0. This integer is called
the characteristic of the field.

Theorem A.6.1 (Finite fields). (1) For any prime number p, the ring Z/pZ is a
finite field, which is denoted Fp; it has characteristic p.
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(2) For any prime number p and any integer ν ⩾ 1, there exists a finite field E with
|E| = pν. Conversely, if E is a finite field, its order is of the form pν for some prime p
and some integer ν ⩾ 1; the prime p is the characteristic of the field E.

(3) For any finite field of size pν for some prime p and some integer ν ⩾ 1, the map
x 7→ xp from E to itself is a field automorphism. In fact, this holds for any field of
characteristic p.

(4) If E and F are finite fields of the same size, then they are isomorphic.

(5) If E is a finite field of size pν for some prime p and some integer ν ⩾ 1, then E
contains a unique subfield F of size pd for any positive integer d dividing ν, and contains
no other subfields. Moreover we have

F = {x ∈ E | xpd = x}.

We sketch the classical argument very quickly, using basic abstract algebra to do
so. Readers who are not fully familiar with such ideas can find a detailed elementary
discussion in the book [78, Ch. 4, 5] of Soundararajan.

Sketch of proof. We first note that (1) is valid; since it is clear from the definition
that p · 1 = 0 in Z/pZ, we only need to check that this is a field. Two ways to see this
are:

(1) (abstractly) because of the general fact that the quotient of a commutative ring
with unit by a maximal ideal is a field, and pZ is a maximal ideal in Z;

(2) (concretely) because one can deduce from the euclidean algorithm for the com-
putation of the gcd of two integers that for any integer a not divisible by p, there
exist integers u and v such that

au+ pv = 1

(Bezout’s equation), hence the class of u modulo p is a multiplicative inverse of
the class of a modulo p. Since proving that every non-zero element of Z/pZ is
the only axiom of fields really requiring a proof for this ring, this proves that it
is a field.

Next, we recall that (3) holds because, defining f(x) = xp for x in a field E, we obtain
a map E → E such that f(0) = 0, f(1) = 1 and f(xy) = f(x)f(y) for all x and y in E,
without restrictions on E. Moreover, we know that the binomial coefficient

(
p
a

)
is divisible

by p for any integer a not divisible by p, so the binomial theorem gives

(x+ y)p = xp +

p−1∑
j=1

(
p

j

)
xjyp−j + yp = xp + yp

for all x, y in E, whenever p · 1 is zero in a field E, i.e., whenever E has characteristic p.
We will now show that (1) and (3) imply all other parts of the statement, using one

abstract fact from algebra: any field E is contained in an algebraically closed field F,
which is unique up to isomorphism.

We fix a prime number p and apply this fact to E = Fp, obtaining an algebraic
closure F of E. The field F also has characteristic p, and we denote by f : F → F the
automorphism x 7→ xp. Then, for any integer ν ⩾ 1, composition of f with itself ν times
(i.e., the map f ν : x 7→ xp

ν
on F) is also an automorphism of fields, and it follows formally

that the set of fixed points

Eν = {x ∈ F | f ν(x) = x}
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is a subfield of F containing E. Crucially, the equation f ν(x) = x is equivalent to
xp

ν −x = 0, hence is a polynomial equation of degree pν . It follows that |Eν | ⩽ pν , and in
fact that there is equality, because F is algebraically closed, and the polynomial Xpν −X
is separable (i.e., it does not have multiple roots, which can be checked by noting that its
derivative is −1, which is never zero). This establishes the existence part in (2).

For the converse, we just observe that any finite field containing E is an E-vector
space; it has finite dimension if it is finite, and if this dimension is ν ⩾ 1, then looking at
the expansion in a fixed basis, it is elementary that it has size pν . This gives the second
assertion in (2).

(TODO) □

This abstract theorem does not by itself provide a way to describe concretely a finite
field with a given number q = pν of elements, and to perform computations in it (e.g.,
to solve polynomials equations in the field). In order to this, the usual method is to
find a polynomial f ∈ Fp[X] which is irreducible of degree ν, and to observe that basic
algebra implies then that the quotient ring E = Fp[X]/fFp[X] (of the polynomial ring
with coefficients in Fp by the principal ideal generated by f) is then a finite field with pν

elements, hence gives a model of such a field. If we write

f = Xν + aν−1X
ν−1 + · · · + a1X + a0,

with coefficients ai ∈ Fp, and denote by α a root of this polynomial (this can be seen
formally as the class of the indeterminate X in the quotient ring Fp[X]/fFp[X], or as a
root in some algebraic closure of Fp), then any element x of E have a unique expression
of the form

x = λ0 + λ1α + · · · + λν−1α
d−1,

with λi ∈ Fp. These expressions can be added and multiplied using the usual rules of
algebra and the unique extra property that

αν = −(aν−1α
ν−1 + · · · + a1α + a0),

which reflects the fact that f(α) = 0.

Remark A.6.2. It is often customary to denote by Fq a finite field with q elements.
One must be careful when using this notation that although such a field is well-defined
up to isomorphism, this isomorphism is not unique. This means that “concrete” compu-
tations performed by two different mathematicians using two different representations of
a field with q elements might not be identical. Since one can show quite easily that the
number of irreducible polynomials of degree ν ⩾ 2 with coefficients in Fp is about pν/d,
there are many ways to represent finite fields.

Example A.6.3. We consider some computations in a field E with 8 elements. To do
this as described above, we need a polynomial f of degree 3 with coefficients in F2 = Z/pZ
which is irreducible. It is not too hard to find such an f , since a reducible polynomial of
degree 3 has a root, and in F2, only two elements can be such a root. So for instance,
the polynomial

f = X3 + X + 1

will do, since f(0) = 1 and f(1) = 1 + 1 + 1 = 1 in F2. Denoting by α a root of f , we
can represent the elements of E as combinations

x = a0 + a1α + a2α
2

with ai ∈ F2. For instance, we can then compute

(1 + α2)(1 + α) = 1 + α + α2 + α3 = 1 + α + α2 + (1 + α) = α2,
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since α3 = −(1 + α) = 1 + α (remember that the coefficients are in F2 to −1 = 1).
How do we compute the inverse of some non-zero element x of E? A systematic way

(applicable in general finite fields) is to find an equation satisfied by x with coefficients
in F2. There is always such an equation of degree at most 3 (in general, at most ν if the
field has pν elements), and if it has the form

b0 + b1x+ b2x
2 + b3x

3 = 0,

with bi ∈ F2 and b0 non-zero (which is not a restriction since we would otherwise divide as
often as needed by the non-zero element x to obtain another equation, of smaller degree
even, with this property), then we get

x(b3x
2 + b2x+ b1) = −b0, so

1

x
= −b3

b0
x2 − b2

b0
x− b1

b0
,

which we can further express in terms of α.
For instance, let x = 1 + α. We have

x2 = 1 + α2, x3 = (1 + α)(1 + α2) = α2

(by the computation done before), so we get the equation

x3 + x2 + 1 = 0,

which gives

1

x
= −x2 − x = (1 + α2) + 1 + α = α + α2.

Exercise A.6.4. (1) Find a concrete “model” of a finite field E with 25 = 52

elements, using a root α of a quadratic equation with coefficients in F5.

(2) Find the expression of (α − 3)−1 and α3 in terms of α; determine if α4 + 1 is
invertible or not, and if Yes, compute (3α + 2)/(α4 + 1). (Note that whether
α4 + 1 is invertible or not will depend on the choice of the quadratic polynomial
chosen to “compute” in E.)

(3) Determine if the equation X3 + 3X + 2 = 0 has a root in E, or not. (The answer
to this question will not depend on the choice of defining equation.)

It is also useful and important to know the group structure of finite fields and their
groups of invertible elements.

Proposition A.6.5. Let E be a finite field.

(1) The group E× = E {0} of invertible elements of E is cyclic of order |E| − 1.

(2) Writing |E| = pν for some prime number p and some integer ν ⩾ 1, the additive
group of E is isomorphic to (Z/pZ)ν.

Proof. (1) The key point is that, for any integer n ⩾ 1, the number of elements of
order dividing n in E× is the number of solutions of the equation xn − 1 = 0; since this
is a polynomial equation of degree n with unknown in a field, this number must be ⩽ n.
One can then check that a finite abelian group with this property is necessarily cyclic.
(Abstractly, this is because a non-cyclic group always contains a subgroup H isomorphic
to (Z/dZ)2 for some integer d ⩾ 2, and all d2 elements of H satisfy xd = 1.)

(2) is simply because E is a vector space of dimension ν over the field Fp. □
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A.7. Harmonic analysis on finite abelian groups

We summarize in this section the basic properties of characters of finite abelian groups,
and the resulting discrete form of the Fourier transform and Fourier analysis.

Definition A.7.1. Let G be a group. A character of G is a group morphism from G
to the group C× of non-zero complex numbers.

The set of characters of G is denoted Ĝ.

The set Ĝ has itself a group structure, and in fact it is abelian: for any characters χ1

and χ2, the product x 7→ χ1(x)χ2(x) is also a character, since

χ1(xy)χ2(xy) = χ1(x)χ1(y)χ2(x)χ2(y) = (χ1χ2)(x)(χ1χ2)(y),

and we have χ1χ2 = χ2χ1 because the product in C is commutative.
Since moreover the function 1 on G is a character such that 1 · χ = χ for any charac-

ter χ, and since χ−1 : x 7→ χ(x)−1 is a character such that χ · χ−1 = 1, we have checked

all required properties to see that Ĝ is an abelian group. When G itself is commutative,
it is called the dual group.

We will consider mostly finite groups. In this case, since any element x has finite
order (we have xr = 1 for some r ⩾ 1), the values χ(x) of any character of G are roots

of unity, and in particular have modulus 1. This also implies that χ−1(x) = χ(x) for any

x ∈ G and χ ∈ Ĝ.

Example A.7.2. Let q ⩾ 1 be a positive integer, and let G = Z/qZ be the cyclic
group of order q. The characters of G are then easy to determine: since G is generated
by a single element (by the class of 1, for instance), a morphism χ : G → C× is uniquely
determined by the image χ(1) ∈ C× (we then have χ(n) = χ(1)n for all n). This image
cannot be arbitrary: since the generator has order q, we have also χ(1)q = 1, i.e., χ(1)
must be a q-th root of unity. So there exists an integer h such that χ(1) = exp(2iπh/q),
and the character is then given by

χ(n (mod q)) = χ(1)n = e
(nh
q

)
for all n ∈ Z.

Conversely, it is elementary that the right-hand side, as a function of n, is actually
well-defined for n taken modulo q (i.e., it doesn’t change when n is replaced by n + kq
for any k ∈ Z), and it defines a character of G. Moreover, the characters defined by two
integers h1 and h2 are equal if and only if h1 and h2 are equal modulo q (since the q-th
roots of unity are equal only under this condition).

We conclude that the characters of G = Z/qZ are parameterized uniquely by Z/qZ.
In other words, the dual group of G is isomorphic to G.

The key fact of harmonic analysis on finite abelian groups is the following statement:

Theorem A.7.3. Let G be a finite abelian group. The set of characters of G is an
orthonormal basis of the space C(G) of complex-valued functions on G, with the inner
product

⟨f, g⟩ = E
x∈G

fḡ =
1

|G|
∑
x∈G

f(x)g(x).

In particular, we have |Ĝ| = dim C(G) = |G|.
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In order to prove this, we need one fundamental lemma, which informally means that
there are “enough” characters. Note that in this proof, although G is abelian, we usually
write the group operation multiplicatively.

Lemma A.7.4. Let G be a finite abelian group and let y ̸= 1 be a non-trivial element
of G. There exists a character χ of G such that χ(y) ̸= 1.

Proof. We first give a proof assuming that G has the form

G = Z/q1Z× · · · × Z/qkZ,

for some integer k ⩾ 1 and integers qi ⩾ 2. (This is in fact no restriction, since every
finite abelian group is isomorphic to a group of this type, but the proof of this is rather
more complicated; the point is however that many abelian groups will be given a priori
as such a product.)

Writing y = (y1, . . . , yk) with yi ∈ Z/qiZ, we select i such that yi ̸= 0 (in Z/qiZ).
Then we can define

χ(x) = e
(xi
qi

)
for any x = (xi) ∈ G. Indeed, it is straightforward that this is a character of G (see
Example A.7.2), and χ(y) = e(yi/qi) ̸= 1.

Now we give a general proof, which is a bit more abstract, but also relies essentially
on Example A.7.2. We define H to be the largest subgroup (in size) of G containing y

such that there exists a character η ∈ Ĥ with η(y) ̸= 1. This is well-defined, because
there is at least one such subgroup: y is in the cyclic subgroup that it generates, and if
we denote by q the order of y in G, then we can define η on the subgroup generated by y
by η(yn) = e(n/q) for n ∈ Z; this is again more or less the same as Example A.7.2.

The goal is now to show that in fact H = G. Indeed, if this is not the case, then we
could find z ∈ G that is not in H. Let H′ be the subgroup generated by H and z; we have
|H′| > |H|, and we will get a contradiction by extending the character η of H to H′.

Let Z be the subgroup generated by z, and let q be its order. We first consider the
product group H×Z, and observe that for any q-th root of unity θ, there is a character η̃
of H × Z defined by

η̃(x, zn) = η(x)θn

for any n ∈ Z. This satisfies η̃(x, 1) = η(x) for any x ∈ H. There is furthermore a
surjective “product” morphism f : H × Z → H′ sending (x, zn) to xzn. So to construct a
character of H′ extending η, it suffices to find a value of θ for which ker(f) ⊂ ker(η̃), as
this will ensure that η̃ “descends” to a character η′ of H′ such that η′(f(x, zn)) = η̃(x, zn),
and in particular η′(y) = η(y) ̸= 1.

But we can find such a θ: indeed, ker(f) is the set of (x, zn) such that xzn = 1, so
it is isomorphic to H ∩ Z (by sending x ∈ H ∩ Z to (h, h−1)), in particular to a subgroup
of Z. Such a subgroup is cyclic of some order d dividing q, and taking θ to be a d-th root
of unity will give the desired property. - □

Proof of Theorem A.7.3. We first prove that the characters form an orthonormal
system in the space C(G).

Let χ ∈ Ĝ. Since χ has modulus 1, as we observed above, we get

⟨χ, χ⟩ =
1

|G|
∑
x∈G

|χ(x)|2 = 1.
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Let now χ1 ̸= χ2 be distinct characters of G. We have

⟨χ1, χ2⟩ =
1

|G|
∑
x∈G

χ1(x)χ2(x),

and we need to show that this is zero. Since χ1 ̸= χ2, the character χ = χ1χ2 = χ1χ
−1
2 is

not the trivial character. Picking an element x0 such that χ1(x0) ̸= χ2(x0), and making
the (bijective) change of variable x = x0y (with inverse y = x−1

0 x, we get

1

|G|
∑
x∈G

χ1(x)χ2(x) =
χ1(x0)χ2(x0)

|G|
∑
y∈G

χ1(y)χ2(y).

This is only possible if the sum ⟨χ1, χ2⟩ is zero, hence this inner product vanishes.
In order to conclude the proof of the theorem, it only remains to prove that the set

of characters is a generating set for C(G). Among various possibilities, we do this by
showing that the ⟨f, χ⟩ “compute” the norm square of a function f ∈ C(G). Namely, we
compute ∑

χ∈Ĝ

|⟨f, χ⟩|2 =
∑
χ∈Ĝ

∣∣∣ 1

|G|
f(x)χ(x)

∣∣∣2
=

1

|G|2
∑
x,y∈G

f(x)f(y)
∑
χ∈Ĝ

χ(x)χ(y).

We consider the inner sum over characters

(A.6)
∑
χ∈Ĝ

χ(x)χ(y) =
∑
χ∈Ĝ

χ(xy−1).

If x ̸= y, then Lemma A.7.4 provides some character χ0 such that χ0(xy
−1) ̸= 1. We

make the change of variable χ = ηχ0, and get∑
χ∈Ĝ

χ(xy−1) = χ0(xy
−1)

∑
η∈Ĝ

η(xy−1),

which implies that the sum vanishes in that case. Hence only the terms with x = y

remain, in which case the sum over χ is equal to |Ĝ|, so that∑
χ∈Ĝ

|⟨f, χ⟩|2 =
|Ĝ|
|G|2

∑
x∈G

|f(x)|2.

This equality, valid for any f ∈ C(G), proves that the space of functions orthogonal to
all characters is reduced to the zero function. Hence the characters span C(G), and form

an orthonormal basis (and since the dimension of C(G) is |G|, we get |Ĝ| = dim C(G) =
|G|). □

The following formulas occured in the proof, and are worth emphasizing separately.

Corollary A.7.5 (Orthogonality relations). Let G be a finite abelian group.

(1) For any characters χ1 and χ2, we have

(A.7)
∑
x∈G

χ1(x)χ2(x) =

{
|G| if χ1 = χ2

0 otherwise.
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(2) For any elements x and y of G, we have

(A.8)
∑
χ∈Ĝ

χ(x)χ(y) =

{
|G| if x = y

0 otherwise.

Proof. The first relation re-states the fact that the characters form an orthonormal
basis of C(G). The second re-states the formula for the quantity (A.6), combined with

the fact that |G| = |Ĝ|. □

The theorem means that for any f : G → C, we have an equality

f =
∑
χ∈Ĝ

⟨f, χ⟩χ

between functions. The collection of inner products ⟨f, χ⟩, which therefore character-
izes f , can be seen as a function on the dual group. It is often convenient to normalize
these differently, and to define the (unitary) Fourier transform of f , which is the function

f̂ : Ĝ → C such that

f̂(χ) =
1√
|G|

∑
x∈G

f(x)χ(x) =
√
|G| ⟨f, χ⟩.

The point of the normalization is the following result.

Theorem A.7.6. Let G be a finite abelian group. The Fourier transform f 7→ f̂ is

an isometry from the space C(G) to the space C(Ĝ).

Proof. Let f ∈ C(G). According to Theorem A.7.3, we have

∥f∥2 =
∑
χ∈Ĝ

|⟨f, χ⟩|2.

The left hand side is

1

|G|
∑
χ∈Ĝ

|G| |⟨f, χ⟩|2 =
1

|G|
∑
χ∈Ĝ

|f̂(χ)|2 = ∥f̂∥2,

hence the result. □

Concretely, as displayed in the proof, this means that for any function f ∈ C(G), we
have the discrete Plancherel formula

(A.9)
∑
x∈G

|f(x)|2 =
∑
χ∈Ĝ

|f̂(χ)|2.

Similarly, by construction, the Fourier transform satisfies the Fourier inversion for-
mula:

f(x) =
∑
χ∈Ĝ

⟨f, χ⟩χ(x) =
1√
|G|

∑
χ∈Ĝ

f̂(χ)χ(x)

for f ∈ C(G) and for all x ∈ G.
This result gives a natural motivation for another important operation on C(G).

Indeed, since the Fourier transform is bijective, given two functions f , g on G, there

exists a unique function with Fourier transform equal to the product f̂ · ĝ of the Fourier
transforms. What is it?
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Proposition A.7.7. Let G be a finite abelian group. For any functions f , g : G → C,

we have f̂ ∗ g = ĥ where the function h is defined by

h(x) =
1

|G|1/2
∑
y∈G

f(y)g(y−1x)

for all x ∈ G.

Proof. By Fourier inversion, the unique function with Fourier transform f̂ ĝ sends
x ∈ G to

1√
|G|

∑
χ∈Ĝ

f̂(χ)ĝ(χ)χ(x).

We replace in this expression the Fourier transforms by their values, and obtain

1

|G|3/2
∑
χ∈Ĝ

(∑
y∈G

f(y)χ(y)
)(∑

z∈G

g(z)χ(z)
)
χ(x).

Exchanging the order of the sums, this is equal to

1

|G|1/2
∑
y∈G

∑
z∈G

f(y)g(z)
1

|G|
∑
χ∈Ĝ

χ(yz)χ(x) =
1

|G|1/2
∑

y∈G, z∈G
yz=x

f(y)g(z),

which is the formula which we claimed. □

The function h is one possible definition of the convolution of g and g. There are
however other normalizations which may be used to define precisely the convolution
product. We will use the following:

Definition A.7.8. Let f and g be functions in C(G). The convolution f ∗ g of f
and g is defined by

(f ∗ g)(x) =
1

|G|
∑
y∈G

f(y)g(y−1x),

and the normalized convolution is defined by

(f ⋆ g)(x) =
1

|G|1/2
∑
y∈G

f(y)g(y−1x).

Remark A.7.9. (1) According to the proposition, the normalized convolution satisfies

f̂ · ĝ = f̂ ⋆ g

for any two functions f and g, and therefore

f̂ ∗ g =
1

|G|1/2
f̂ · ĝ.

On the other hand, by comparing with the relation between the Fourier transform
and the expansion in the basis of characters of C(G), we otain the relation

⟨f ∗ g, χ⟩ = ⟨f, χ⟩ ⟨g, χ⟩
for any character χ of G.

(2) A third common normalization of the convolution is given by the function

(A.10) x 7→
∑
y∈G

f(y)g(y−1x).
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Its behavior with respect to Fourier expansions is not as nice as the previous ones,
but it interacts well with representation functions for product sets: given sets A and B
with characteristic functions φA and φB, we have

rA,B(x) =
∑
y∈G

φA(y)φB(y−1x),

which is the formula (A.10) applied to φA and φB.
All three choices can be justified, and are natural from a certain point of view. For

instance:

(1) The value (f ∗ g)(x) of the convolution at x can be interpreted as the inner

product in C(G) of the functions f and y 7→ g(y−1x), so we can for instance
deduce immediately that its value at x is at most ∥f∥ ∥g∥ by the Cauchy-Schwarz
inequality.

(2) The normalized convolution f ⋆ g has the feature that the convolution of two
“random” functions with roughly constant values on average will have the same
property (this is because the sum∑

y∈G

f(y)g(y−1x)

for such functions will be a sum of |G| complex numbers with oscillating phases
and roughly constant modulus, which on probabilistic grounds is of size roughly
|G|1/2 in general).

(3) From a certain point of view (motivated by aspects of arithmetic geometry, as
in work of Katz and Forey, Fresán and Kowalski, explained in [32]), it would pay to
introduce somewhat systematically a family of operations (f, g) 7→ f ∗[k] g, for k ⩾ 0
in R, defined by

(f ∗[k] g)(x) =
1

|G|k
∑
y∈G

f(y)g(y−1x),

so that for instance f ⋆ g = f ∗[1/2] g.

From Proposition A.7.7, or by direct computations, it is straightforward that, for
instance, the convolution product is commutative and associative, in the sense that

f ∗ (g ∗ h) = (f ∗ g) ∗ h, f ∗ g = g ∗ f

for all f , g and h in C(G). The same applies to the normalized convolution.
Moreover, the function δ1 equal to |G| on the neutral element and to 0 elsewhere is a

unit, in the sense that

δ1 ∗ f = f ∗ δ1 = f

for all f ∈ C(G) (this reflects the fact that the function always equal to 1 is the unit for
multiplication of functions).

Example A.7.10. We translate the previous results and notation in the case of a cyclic
group G = Z/qZ (with additive notation). In Example A.7.2, we saw that the character
group can also be identified with Z/qZ, with the element h ∈ Z/qZ corresponding to the
character

χh(x) = e
(hx
q

)
.
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Thus, the Fourier transform of f : Z/qZ → C can be identified with the function

f̂ : Z/qZ → C given by

f̂(h) =
√
q⟨f, χn⟩ =

1
√
q

∑
x∈Z/qZ

f(x)e
(
−hx
q

)
.

The function f is then recovered from f̂ by

f(x) =
1
√
q

∑
h∈Z/qZ

f̂(h)e
(hx
q

)
,

and the Plancherel formula is ∑
x∈Z/qZ

|f(x)|2 =
∑

h∈Z/qZ

|f̂(h)|2.

The convolution is defined by

f ∗ g(x) =
1

q

∑
y∈Z/qZ

f(y)g(x− y).

Remark A.7.11. The theory of characters of finite abelian group and the correspond-
ing applications to Fourier transform and convolution has a generalization to all locally
compact abelian groups (i.e., abelian groups which are also topological spaces in a com-
patible manner, and where the topology is locally compact), provided only continuous
characters are considered. This is the topic of Pontryagin duality ; see, for instance, [8,
Ch. 2].

Two important special cases appear in classical Fourier analysis: the case of G = R/Z
(or equivalently of the group of complex numbers of modulus 1, which is isomorphic by
x 7→ e(x)), and that of G = R.

In both cases, there are now restrictions (such as integrability, etc) to impose on
functions so that the inner product

⟨f, g⟩ =

∫
G

f(x)g(x)dx

of functions f : G → C is defined, where the integral is taken in the Lebesgue sense
usually (for G = R/Z, it can be viewed as an integral from 0 to 1).

In the first case, one can check that the characters are the complex exponentials
en : x 7→ e(nx), parameterized by n ∈ Z. The expansion

f(x) =
∑
n∈Z

⟨f, en⟩en(x),

when it holds, is the expansion of f in Fourier series, with coefficients

⟨f, en⟩ =

∫ 1

0

f(x)e(−nx)dx.

The usual Parseval formula is the identity∫ 1

0

|f(x)|2dx =
∑
n∈Z

|⟨f, en⟩|2,

valid when the integral makes sense. The convolution of two functions is defined by

f ∗ g(x) =

∫ 1

0

f(t)g(x− t)dt,
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again when the integral exists.
In the second case, the group of characters can be identified again with R, with y ∈ R

corresponding to the character x 7→ e(xy), and the Fourier transform of f : G → C is the
function on R such that

f̂(y) =

∫
R

f(x)e(−xy)dx,

at least when these integrals make sense. Other normalizations are sometimes used, but
the one above satisfies the isometry property∫

R

|f(x)|2dx =

∫
R

|f̂(y)|2dy,

without extra constant factor.
The Fourier inversion formula takes the form

f(x) =

∫
R

f̂(y)e(xy)dy,

but there are various conditions required to ensure its validity.

A.8. Harmonic analysis on finite groups

It is possible to extend much of the results of the previous section to all finite groups,
not necessarily abelian, but this requires new ideas. Indeed, although characters can
be defined for arbitrary groups, there exist many interesting finite groups which have
no non-trivial character (for instance, any finite simple group which is not abelian); in
any case, if G is not commutative, there are “not enough” characters, in the sense that
Lemma A.7.4 fails to hold in that case.

Certain notions are however easily adapted. The most straightforward is in fact the
convolution operation, whose definition makes sense for any finite group.

Definition A.8.1. Let G be a finite group and C(G) the vector space of complex-
valued functions on G. The convolution of f and g is defined by

(f ∗ g)(x) =
1

|G|
∑
y∈G

f(y)g(y−1x) =
∑
yz=x

f(y)g(z),

for all x ∈ G.

Even without the interpretation of Proposition A.7.7, one can check directly that the
convolution product is associative, so that f ∗ (g ∗ h) = (f ∗ g) ∗ h for all f , g and h in
C(G), and that the function δ1 equal to |G| on the neutral element and to 0 elsewhere is
a unit. However, the convolution is commutative only if the group itself is commutative.

We will present briefly (some of) the basic facts of Fourier analysis on a finite group;
our approach is a bit unusual, but is chosen to be accessible and suggestive for readers
with a less algebraic background.

The point of view we take is that of trying to decompose the finite-dimensional Hilbert
space C(G) in suitable orthogonal subspaces, one of which should be the one-dimensional
space of the constant functions.

Definition A.8.2. Let E be a non-zero finite-dimensional Hilbert space. The model
space associated to E is the finite-dimensional Hilbert spaces H such that H equal to the
space of linear transformations on E, with the inner product given by

⟨u, v⟩ = dim(E) Tr(uv∗),

for u and v linear maps from E to itself, where v∗ is the Hilbert space adjoint of v.

146



Example A.8.3. Concretely, one should think of E = Cd for some integer d ⩾ 1, and
then H can be identified with the space of complex matrices of type d× d, equipped with
the hermitian inner-product such that

∥A∥2H = d
∑
i,j

|ai,j|2

for any matrix A = (ai,j)1⩽i,j⩽d in H. Indeed, the (i, j)-coefficient of AA∗ is

d∑
k=1

ai,kaj,k,

hence the trace of AA∗ is equal to

d∑
i=1

d∑
k=1

ai,kai,k =
∑
i,k

|ai,k|2.

This example, after choosing an orthonormal basis of E, shows that every model
space can be thought of having this form for some d, which shows in particular that this
is indeed a Hilbert space (i.e., the hermitian form is positive definite).

The simplest case is d = 1, in which case the model space is also 1-dimensional,
and can be identified with C, with the scalar product (w, z) 7→ wz̄, the norm being the
modulus of complex numbers.

Remark A.8.4. Given a finite-dimensional Hilbert space E, the norm u 7→ Tr(uu∗)
on the space of linear maps on E is also called the Hilbert–Schmidt norm.

The existence of an orthonormal basis for a finite-dimensional Hilbert space E can be
interpreted as stating that E is isometric to an orthogonal direct sum of model spaces of
dimension 1. However, if the space E has additional structure, it may be more convenient
to find a “rougher” decomposition which respects this structure. In the case of interest in
this section, the space is C(G) for some finite group G, with the Hilbert space structure
defined by

⟨f, g⟩ =
1

|G|
∑
x∈G

f(x)g(x),

and the additional structure is the convolution product (f, g) 7→ f ∗ g. Having a compat-
ible decomposition of C(G) means finding an orthogonal decomposition

C(G) =
⊕
i∈I

Hi,

where each space Hi, viewed as a subspace of C(G), is stable by the convolution product,
in the sense that if we decompose

f =
∑
i∈I

fi, g =
∑
i∈I

gi,

with fi, gi ∈ Hi, then we should have

f ∗ g =
∑
i∈I

fi ∗ gi,

with fi ∗ gi ∈ Hi also. In fact, if Hi is a model space associated to Ei, then fi and gi can
also be thought of as linear maps on Ei, and we may want to also have fi ∗ gi correspond
to the composition fi ◦gi of linear maps (concretely, if we view fi and gi as matrices, then
fi ∗ gi should correspond to their product).
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It turns out that such a decomposition does exist.

Theorem A.8.5 (Fourier analysis on G). Let G be a finite group. There exists a

finite set Ĝ and a family (Eϱ)ϱ∈Ĝ of finite-dimensional Hilbert spaces, with associated
model spaces Hϱ, such that

(1) The cardinality of Ĝ is the number of conjugacy classes in H.

(2) We have an isometric isomorphism

C(G) =
⊕
ϱ∈Ĝ

Hϱ,

where the direct sum is orthogonal, allowing us to view each model space Hϱ as a subspace
of C(G).

(3) For any f and g in C(G), represented as the sums

f =
∑
ϱ∈Ĝ

fϱ, g =
∑
ϱ∈Ĝ

gϱ,

with fϱ and gϱ in Hϱ, we have

f ∗ g =
∑
ϱ∈Ĝ

fϱ ∗ gϱ,

with the function fϱ ∗ gϱ also identified to the linear map fϱ ◦ gϱ in the model space Hϱ.

(4) There exists ϱ0 ∈ Ĝ such that Eϱ0 is one-dimensional, and such that, for any
f ∈ C(G), we have

fϱ0 =
1

|G|
∑
x∈G

f(x) ∈ Hϱ0 = C.

(5) For any ϱ ∈ Ĝ, f ∈ C(G) and x ∈ G, we have

|fϱ(x)| ⩽ ∥fϱ∥ϱ,
where on the left we view fϱ as an element of C(G) and on the right as a linear transfor-
mation, and the norm is the model norm.

Proof. Since this is an unusual formulation of the theory, we explain how to deduce
this from basic representation theory, taking [58, Ch. 4] as reference (among many suitable
texts). We assume therefore some familiarity with this language.

We denote by Ĝ a set of representative of isomorphism classes of irreducible unitary
representations of G, and by ϱ0 the trivial one-dimensional representation. Each ϱ is a
group morphism from G to the unitary group of some finite-dimensional Hilbert space Eϱ,
which we use to define the model space Hϱ. The subspace of C(G) corresponding to Hϱ

is the space of matrix coefficients of ϱ, i.e., the space of functions of the form

f(x) = ⟨v, ϱ(g)w⟩, x ∈ G

for some v and w in Eϱ, where the inner product is the one on that space. The isomorphism
with Hϱ is obtained by mapping a linear map u : Eπ → Eπ to the function fu ∈ Hϱ defined
by

fu(x) = ⟨ϱ(x), u⟩ = dim(Eπ) Tr(ϱ(x)u∗)

for x ∈ G. □

Remark A.8.6. For ϱ ∈ Ĝ, we denote by deg(ϱ) the dimension of the Hilbert space Eπ,
and call it the degree of ϱ.
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Example A.8.7. Let f ∈ C(G). Concretely, after isolating the term corresponding
to ϱ0, the above means that we have a decomposition

(A.11) f =
1

|G|
∑
x∈G

f(x) +
∑
ϱ∈Ĝ
ϱ ̸=ϱ0

fϱ

where fϱ is in the space Hϱ, and with the following properties:
(1) The Parseval formula:

(A.12) ∥f∥2 =
1

|G|
∑
x∈G

|f(x)|2 =
∑
ϱ∈Ĝ

∥fϱ∥2 =
∑
ϱ∈Ĝ

deg(ϱ) Tr(fϱf
∗
ϱ ).

(2) The pointwise estimates:

|fϱ(x)| ⩽ ∥fϱ∥ϱ.

for any ϱ and any x ∈ G.
(3) The convolution property: if f = f1 ∗ f2 for some functions fi ∈ C(G), then

fϱ = f1,ϱ ◦ f2,ϱ
in the sense that the ϱ-component of f , as a linear map, is the composition of the ϱ-
components of f1 and f2.

Example A.8.8. Suppose that G is commutative. The Fourier decomposition of
Theorem A.8.5 corresponds in the following way to the discussion of Section A.7: the

set Ĝ can be identified with the set of characters, with ϱ0 corresponding to the trivial
character, and for each χ, the corresponding model space has dimension 1; in fact, the
subspace of C(G) which is associated to Hχ can be identified with the one-dimensional
space spanned by χ itself (since χ ∈ C(G)), and for f : G → C, we have

fχ(x) = ⟨f, χ⟩ χ(x),

so that the decomposition

f =
∑
χ

fχ

is identical with the expansion of f in the orthonormal basis of characters.
This means, for instance, that the convolution property reflects the identity

⟨f ∗ g, χ⟩ = ⟨f, χ⟩ ⟨g, χ⟩,

which can be checked straightforwardly:

⟨f ∗ g, χ⟩ =
1

|G|2
∑
x∈G

(∑
ab=x

f(a)g(b)
)
χ(x)

=
1

|G|2
∑
a,b∈G

f(a)g(b)χ(ab)

= ⟨f, χ⟩ ⟨g, χ⟩

(where we see that the crucial fact is that χ(ab) = χ(a)χ(b)).
The pointwise estimate is also elementary here: for any x ∈ G, we have in fact

|fχ(x)| = |⟨f, χ⟩| = ∥fχ∥χ.
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It may be surprising to see how far one can go in using Fourier analysis in concrete
problems with nothing more than the previous properties. We add to these some useful
estimates which only concern the model spaces. We recall that given Hilbert (or Banach
spaces) E and F and a linear map u : E → F, the operator norm of u is defined by

∥u∥ = sup
x∈E
x ̸=0

∥u(x)∥F
∥x∥E

.

By definition, this means that we have

∥u(x)∥ ⩽ ∥u∥ ∥x∥

for any x ∈ E and u : E → F.

Proposition A.8.9. Let H be a model space associated to a finite-dimensional Hilbert
space E. Denote by u 7→ ∥u∥H its model norm, and by u 7→ ∥u∥ the operator norm on
linear maps on E.

(1) For any u ∈ H, we have

∥u∥ ⩽ dim(E)−1/2∥u∥H.
(2) For any u ∈ H, we have ∥u∥H = ∥u∗∥H.
(3) For any u1 and u2 in H, we have

∥u1 ◦ u2∥H ⩽ ∥u1∥ ∥u2∥H,

and

∥u1 ◦ u2∥H ⩽ ∥u1∥H ∥u2∥.

Proof. (1) Since ∥u∥2H = dim(E)1/2 Tr(uu∗), it is enough to prove that the inequality
∥u∥ ⩽ Tr(uu∗)1/2 holds. But if we pick an orthonormal basis (ei)i∈I of E, we obtain

(A.13) Tr(uu∗) = Tr(u∗u) =
∑
i∈I

⟨u∗u(ei), ei⟩ =
∑
i∈I

∥u(ei)∥2.

Now let x ∈ E {0}. We can find an orthonormal basis which contains the vector
x/∥x∥, and therefore

∥u(x)∥2

∥x∥2
⩽

∑
i∈I

∥u(ei)∥2 ⩽ Tr(uu∗).

Since x is arbitrary, we obtain the bound ∥u∥H ⩽ Tr(uu∗)1/2 by taking the square-root
and the supremum over x ̸= 0.

(2) We get ∥u∗∥H = ∥u∥H from the equalities Tr(uu∗) = Tr(u∗u) and (u∗)∗ = u.
(3) From the definition again, it is enough to prove the bounds

Tr((u1 ◦ u2)(u1 ◦ u2)∗) ⩽ ∥u1∥2 Tr(u2u
∗
2),

Tr((u1 ◦ u2)(u1 ◦ u2)∗) ⩽ ∥u2∥2 Tr(u1u
∗
1).

For the first one, we apply (A.13) to u = u1 ◦ u2 and any orthonormal basis (ei)i∈I,
and we get

Tr((u1 ◦ u2)(u1 ◦ u2)∗) =
∑
i∈I

∥u1(u2(e1))∥2 ⩽ ∥u1∥2
∑
i∈I

∥u2(e1)∥2 = ∥u1∥2 Tr(u2u
∗
2),

by the defining property of the operator norm and (A.13) again.
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For the second, we combine (2) and the first inequality applied to u∗2 and u∗1, together
with the fact that ∥u∗2∥ = ∥u2∥, to obtain

∥u1 ◦ u2∥H = ∥(u∗2 ◦ u∗1)∗∥H = ∥u∗2 ◦ u∗1∥ ⩽ ∥u∗2∥ ∥u∗1∥H = ∥u1∥H ∥u2∥.
□
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[41] T. Gowers: A new proof of Szemerédi’s Theorem, Geom. Funct. Analysis 11 (2001), 465–588.
[42] T. Gowers: Quasirandom groups, Comb. Probab. Comp. 17 (2008), 363–387.
[43] T. Gowers: A uniform set with fewer than expected arithmetic progressions of length 4, Acta

Math. Hungar. 161 (2020) 756–767.
[44] B.J. Green: Roth’s Theorem in the primes, Annals of Math. 161 (2005), 1609–1636.
[45] B.J. Green and T. Tao: The primes contain arbitrarily long arithmetic progressions, Annals of

Math. 167 (2008), 481–547.
[46] B.J. Green, T. Tao and T. Ziegler: An inverse theorem for the Gowers Us+1[N] norms, Annals

of Math. 176 (2012), 1231–1372.
[47] L. Guth: Polynomial methods in combinatorics, University Lectures Series 64, A.M.S, 2016.
[48] G.H. Hardy and E.M. Wright: An introduction to the theory of numbers, 5th edition, Oxford,

1979.
[49] H. Helfgott: Growth and generation in SL2(Z/pZ), Annals of Math. 167 (2008), 601–623.
[50] H. Helfgott: Growth in groups: ideas and perspectives, Bull. Amer. Math. Soc. 52 (2015),

357–413.
[51] S. Hoory, N. Linial and A. Wigderson: Expander graphs and their applications, Bull. Amer.

Math. Soc. 43 (2006), 439–561.
[52] D. R. Hughes: Planar division neo-rings, Transactions of the AMS 80 (1955), 502–527.
[53] H. Iwaniec and E. Kowalski: Analytic Number Theory, Colloquium Publ. 53, A.M.S, 2004.
[54] Z. Kelley and R. Meka: Strong bounds for 3-progressions, preprint (2023), arXiv:2302.05537.
[55] A. Khintchine: Three pearls of number theory, Dover Publications (1998); available at https:

//archive.org/details/khinchin-three-pearls-of-number-theory.
[56] S. Konyagin: A sum-product estimate in fields of prime order, preprint (2003), arXiv:0304217.
[57] E. Kowalski: Explicit growth and expansion for SL2(Fp), IMRN 2013, 5645–5708.
[58] E. Kowalski: An introduction to the representation theory of groups, Graduate Studies in Math.

155, A.M.S, 2014.
[59] E. Kowalski: An introduction to expander graphs, Cours Spécialisés 26, Soc. Math. France, 2019.
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