INVOLUTIONS ON RANK 16 CENTRAL SIMPLE ALGEBRAS

M.-A. KNUS, R. PARIMALA, AND R. SRIDHARAN

(In memory of Prof. Hansraj Gupta)

(Received May 22, 1990)

Let D be a central division algebra of rank 16 over a field K which represents a 2-torsion element in the Brauer group of K. A classical result of Albert asserts that D splits as a tensor product of quaternion subalgebras. Further, D admits an involution which is trivial on K. We say that an involution σ on D splits if there exist quaternion subalgebras H_t of D with involutions σ_{δ} such that $D = H_1 \otimes H_2$ and $\sigma = \sigma_1 \otimes \sigma_2$. An involution σ is split if and only if D has σ-invariant quaternion subalgebras. A natural question arises as to when an involution o on D splits. Examples of rank 16 division algebras with involutions which admit no invariant quaternion subalgebras were constructed in ([2] and [8]). It was proved in ([7], Theorem B, p. 296) that if σ is of even symplectic type and char $K \neq 2$, then o splits. One can modify easily the arguments in [7] to include the case char K=2 also in the even symplectic case. In ([5], p. 196) an invariant called pfaffian discriminant was attached to any involution on a central simple algebra of even dimension with values in K^*/K^{*2} . It was shown in [6], using quadratic form theory and Clifford algebras that if char $K \neq 2$ and σ is of orthogonal type on a rank 16 algebra, σ splits if and only if the pfaffian discriminant of o is trivial. The aim of this paper is to give a criterion for an involution o on a rank 16 central simple algebra A over a field K to split, without restriction on the characteristic of K. We have included the proofs in the case char $K \neq 2$ to make the discussion selfcontained.

The method of proof is to produce σ -invariant quadratic subalgebras of A using a certain pfaffian adjoint map defined in [5] on the set of alternating elements for σ in A.

§ 1. Generalities on involutions

Let A be a central simple algebra over a field K with an involution of of the first kind. Let φ : $\overline{K} \otimes_K A \simeq M_n(\overline{K})$ be a splitting for A over the algebraic closure K of K. Let o transport 1⊗o to the involution

$$X \longmapsto UX^{i}U^{-1}$$
, $U \in GL_{n}(\overline{K})$, $U^{i} = \varepsilon U$ with $\varepsilon = \pm 1$.

There exists $V \in GL_n(R)$ such that VUV' = I or E where I is the identity matrix and

$$E = \begin{pmatrix} 0 & 1 & & \\ -1 & 0 & & \\ & & 0 & 1 \\ & & -1 & 0 \end{pmatrix}$$

If char $K \neq 2$, the first possibility arises if $\varepsilon = 1$ (in which case, we call σ to be of type 1) and the second possibility arises if $\varepsilon = -1$. (In this case, we call σ to be type-1). If char K = 2, $\varepsilon = 1$, and both cases can arise. We say that an involution is of orthogonal type if it can be split over K as $X \longmapsto X^i$ and is of even symplectic type if it can be split over \overline{K} as $X \longmapsto EX^tE^{-1}$.

§ 2. Pfaffian discriminant

Let A be a central simple algebra of rank 16 over a field K such that the class of A is 2-torsion in Br(K). Let σ be an involution on A of type ϵ . By Albert's theorem, we may write $A = H_1 \otimes H_2$, H_1 denoting quaternion subalgebras of A. Let τ_i denote the standard involution on H_i , viz., $\tau_{n}(x) = \text{Trd } x - x$, Trd denoting the reduced trace. Then $\sigma = \text{Int } u \circ (\tau_{1} \otimes \tau_{2})$ for some unit u of A, Int u denoting the inner automorphism $x_1 \rightarrow uxu^{-1}$. Since type $\tau_1 = -1$, type $(\tau_1 \otimes \tau_2) = 1$ and type $\sigma = \varepsilon$ implies that $(\tau_1 \otimes \tau_2)(u) = \epsilon u$. Let $S_q = \{x - \epsilon \sigma(x), x \in A\}$ be the set of alternating elements for a. Then dimension of So is 6.

LEMMA 2.1. There exists a K-linear isomorphism $p_a: S_a \to S_a$ satisfying $x \cdot p_{\sigma}(x) = p_{\sigma}(x) \cdot x \in K, \ \forall x \in S_{\sigma}$. The map is unique upto scalars and $p_q^2 \in K^*$

Proof. Suppose first that $A = H_1 \otimes H_2$, $\sigma = \tau = \tau_1 \otimes \tau_2$, τ_1 denoting the standard involutions on H_l . Then type $\tau = 1$ and it is easy to verify that $S_{\pi} = \{x \otimes 1 - 1 \otimes y, x \in H_1, y \in H_2, \operatorname{Trd}_{H_2} x = \operatorname{Trd}_{H_2} y\}, \operatorname{Trd} \text{ denoting}$ the reduced trace. The map $p_{\tau} = 1 \otimes \tau_2$: $S_{\tau} \to S_{\tau}$ is K-linear. Further, for

CENTRAL SIMPLE ALGEBRAS

$$x \in H_1$$
, $y \in H_2$ with Trd $x = \text{Trd } y$, if $z = x \otimes 1 - 1 \otimes y$, then,
$$z \cdot p_{\tau}(z) = p_{\tau}(z) \cdot z = -Nrd \ x + Nrd \ y \in K,$$

$$p_{\tau}^2 = 1_A$$

Let $\sigma = \text{Int } u \circ \tau \text{ with } \tau u = \varepsilon u$, ε being the type of σ . If $x \in S_{\sigma}$, then $u^{-1}x \in S_{\tau}$. We define $p_{\sigma}: S_{\sigma} \to S_{\sigma}$ to be the map $p_{\sigma}(x) = p_{\tau}(u^{-1} x) \cdot u^{-1}$. We have, for $x \in S_{\sigma}$,

$$xp_{\sigma}(x) = x \cdot p_{\tau}(u^{-1} x)u^{-1}$$

= $u\{(u^{-1} x) p_{\tau}(u^{-1} x)\} u^{-1} \in K$

The uniqueness upto scalars of p_0 as well as the fact that $p_0^2 \in K^*$ may be verified by going over to a splitting of A. Therefore we assume that $\sigma: M_4(K) \to M_4(K)$ is the involution given by $X \longmapsto UX^tU^{-1}$, $U^t = \varepsilon U$. Let $p: S_{\sigma}, \to S_{\sigma}$, be a K-linear map satisfying $X \cdot p(X) \in K \ \forall X \in S_{\sigma}$. For $X \in S_a$, $U^{-1}X \in Alt_a(K)$ = the set of alternating matrices in $M_a(K)$. The map \tilde{p} : Alt₄(K) \rightarrow Alt₄(K) defined by $\tilde{p}(Y) = p(UY)U$ satisfies $\tilde{p}(Y)Y \in K$, $\forall Y \in Alt_d(K)$. Then, upto a scalar, \tilde{p} must coincide with the pfaffian adjoint map (cf [5])

$$\text{pfad} \begin{pmatrix}
 0 & x & y & z \\
 -x & 0 & u & v \\
 -y & -u & x & t \\
 -z & -v & -t & 0
 \end{pmatrix} = \begin{pmatrix}
 0 & -t & v & -u \\
 t & 0 & -z & y \\
 -v & z & 0 & -x \\
 u & -y & x & 0
 \end{pmatrix}$$

Further, $(pfad)^2 = 1$. Thus $p(X) = \lambda \cdot pfad(U^{-1}X) \cdot U^{-1}$ for $\lambda \in K$. This proves the uniqueness of p_{σ} upto scalars. The formulae

pfaffian
$$(UXU^t) = \det U \cdot \text{pfaffian } (X),$$

pfad $(UXU^t) = (\det U) (U^t)^{-1} (\text{pfad } X) U^{-1},$

for $X \in Alt_4(K)$ yield, for $X \in S_{\sigma}$,

$$p_{\sigma}^{2}(X) = \text{pfad } (U^{-1} \text{ pfad } (U^{-1} X) U^{-1}) U^{-1}$$

= $(\det U)^{-1} X$.

This completes the proof of the lemma.

Definition. The scalar $p_{\alpha}^2 \in K^*$ modulo squares is defined to be the pfaffiian discriminant of o, denoted by pf disc o.

Remark 2.2. If $\sigma = \text{Int } u \circ \tau \text{ on } H_1 \otimes H_2$, $\tau = \tau_1 \otimes \tau_2$, τ_i denoting the standard involutions on H_t it is easily verified that pf disc $\sigma = \operatorname{Nrd} u$, where Nrd denotes the reduced norm,

Remark 2.3. (cf [5], Prop. 3.4, p. 197) The pfaffian discriminant of an even symplectic involution is trivial.

Remark 2.4. Let $A=H_1 \otimes H_2$ and $\sigma=\sigma_1 \otimes \sigma_2$ σ_i denoting involutions on H_i . Then the pfaffian discriminant of σ is trivial. In fact, if $\sigma_i=\text{Int }u_i\circ\tau_i$, u_i denoting units in H_i , τ_i denoting the standard involutions of H_i , then $\sigma=\text{Int }(u_1\otimes u_2)\circ(\tau_1\otimes \tau_2)$ and by (2.2), pf disc σ is the class of Nrd $(u_1\otimes u_2)$ in K^*/K^*_2 . We have,

$$\operatorname{Nrd}(u_1 \otimes u_2) = (\operatorname{Nrd}u_1 \operatorname{Nrd}u_2)^2 \in K^{*2}.$$

§ 3. Main Theorem

We prove the following

THEOREM 3.1. Let A be a rank 16 central simple algebra over a field K with an involution σ of the first kind. Then (A, σ) splits as

$$(H_1 \otimes H_2, \sigma_1 \otimes \sigma_2),$$

 H_t denoting quaternion subalgebras of A, if and only if the pfaffian discriminant of σ is trivial.

We begin with the following special case of the theorem for even symplectic involutions, which is already contained in [7] for char $K \neq 2$. We include it here for the sake of completeness and to cover the case char K = 2 as well.

Proposition 3.2. Let σ be an even symplectic involution on a division algebra D of rank 16. Then σ has an invariant quaternion subalgebra.

Proof. Every element $x \in S_0$ satisfies a quadratic polynomial over K. In fact, in a splitting of σ as $X \to EX^{\sigma}E^{-1}$, x looks like EY where Y is an alternating matrix and x satisfies the equation

pfaffian
$$(E^{-1}T + Y) = 0$$

which is quadratic in T. Further, not every element of S_{σ} has its square a scalar. For, otherwise, the same would be true for $E \cdot \operatorname{Alt}_4(\overline{K})$. This however is not true since there are elements in $E \cdot \operatorname{Alt}_4(\overline{K})$ whose squares do not belong to \overline{K} . We choose $x \in S_{\sigma}$ which generates a separable quadratic algebra K(x) over K. The involution σ restricts to identity on K(x) since $\sigma(x) = x$. Let α be the nontrivial automorphism of K(x) over

K. Let $u \in D^*$ be such that Int u extends α to D. The element u^{-1} σu commutes with x so that if $u + \sigma u \neq 0$, Int $(u + \sigma u) \mid K(x) = \text{Int } u \mid K(x)$. The element $y = u + \sigma u$ belongs to S_{σ} so that K(y)/K is quadratic. Further, $yxy^{-1} = \alpha(x)$. Thus (x, y) generate a quaternion subalgebra of D invariant under σ . Suppose $u + \sigma u = 0$. Since u may be replaced by $u\lambda$ for any $\lambda \in D_1$ where D_1 is the commutant of K(x) in D, it is enough to show that there exists $\lambda \in D_1$ such that $u\lambda + \sigma(u\lambda) \neq 0$. Suppose not. Then $u\lambda u^{-1} = \sigma(\lambda) \forall \lambda \in D_1$; i.e. $u(\lambda \mu)u^{-1} = \sigma(\lambda \mu)$, $\forall \lambda$, $\mu \in D_1$; i.e.,

$$\sigma(\lambda) \ \sigma(\mu) = \sigma(\mu) \ \sigma(\lambda) \ \forall \lambda, \mu \in D_1.$$

This implies that D_1 is commutative, contradicting $[D_1: K] = 8$. Thus, one may choose $\lambda \in D_1$ such that $u\lambda + \sigma(u\lambda) \neq 0$. We set $y = u\lambda + \sigma(u\lambda)$. Then (x, y) generate a σ -invariant quaternion subalgebra of D.

PROPOSITION 3.3. Let A be a central simple algebra of rank 16 over a field K with an even symplectic involution σ . Then A has σ -invariant quaternion subalgebras.

Proof. We need only to consider the case $A = M_2(H)$, where H is a quaternion (not necessarily division) algebra over K. Let bar on H denote the standard involution on H and bar on $M_2(H)$ denote the involution

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \longmapsto \begin{pmatrix} \bar{a} & \bar{c} \\ \bar{b} & \bar{d} \end{pmatrix}.$$

Then any even symplectic involution σ on $M_2(H)$ is of the form $\sigma(A) = U\bar{A}^tU^{-1}$, where $U = \begin{pmatrix} \lambda & \mu \\ \bar{\mu} & \delta \end{pmatrix}$, λ , $\delta \in K$, $\mu \in H$. There exists $V \in GL_2(H)$ such that

$$VU\overline{V}^{I} = \begin{pmatrix} \mathbf{v} & 0 \\ 0 & \mathbf{\eta} \end{pmatrix},$$

ν, η∈ K. Therefore, σ is conjugate to the involution

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \longmapsto \begin{pmatrix} v & 0 \\ 0 & \eta \end{pmatrix} \begin{pmatrix} \overline{a} & \overline{c} \\ \overline{b} & \overline{d} \end{pmatrix} \begin{pmatrix} v^{-1} & 0 \\ 0 & \eta^{-1} \end{pmatrix}$$

which clearly fixes both $M_2(K)$ and H.

Lemma 3.4. (cf [4], Lemma 2.1) Let σ be an involution on a rank 16 central simple algebra A. Let $x \in A$ be such that K(x)/K is a separable quadratic subalgebra and σ restricts to the nontrivial automorphism of K(x) over K. Then there is a quaternion subalgebra H of A such that σ restricts to the standard involution on H.

Praof. Let D_1 be the commutant of K(x) in A. Then σ restricts to an involution on the quaternion algebra D_1 which is nontrivial on its centre K(x). Thus by [1, p. 161] which is valid even if $K(x) \xrightarrow{\sim} K \times K$, there exists a quaternion algebra $H_1 \subset D_1$ such that $D_1 = K(x) \cdot H_1 \simeq K(x) \otimes H_1$ and σ restricted to D_1 is simply $\alpha \otimes \tau$, α denoting the nontrivial automorphism of K(x) over K and τ the standard involution on H_1 . The quaternion subalgebra H_1 is the required one.

Let σ be an involution on a rank 16 central simple algebra A with pf disc σ trivial. Then one can chose $p_{\sigma} \colon S_{\sigma} \to S_{\sigma}$ such that $p_{\sigma}^2 = 1$. Let $W^+ = \{x + p_{\sigma}(x), x \in S_{\sigma}\}, W^- = \{x - p_{\sigma}(x), x \in S_{\sigma}\}.$ If char K = 2, $W^+ = W^-$. Let $x \in W^+$, $x = y + p_{\sigma}(y)$, $y \in S_{\sigma}$. Then

$$x^{2} = (y + p_{\sigma}(y)) \cdot (y + p_{\sigma}(y))$$

$$= (y + p_{\sigma}(y)) (p_{\sigma}^{2}(y) + p_{\sigma}(y))$$

$$= (y + p_{\sigma}(y)) p_{\sigma}(y + p_{\sigma}(y)) \in K$$

Thus W^+ is a K subspace of D such that every element of W^+ has its square in K.

PROPOSITION 3.5 Let char $K \neq 2$ and σ an involution of orthogonal type on a rank 16 central-simple algebra A with pf disc σ trivial. Then there exist quaternion subalgebras H_4 of A such that $A = H_1 \otimes H_2$, $\sigma = \tau_1 \otimes \tau_2$, τ_1 denoting the standard involutions on H_4 .

Proof. Let $p_{\sigma} \colon S_{\sigma} \to S_{\sigma}$ be such that $p_{\sigma}^2 = 1$. Since σ is of orthogonal type, for $x \in S_{\sigma}$, $\sigma(x) = -x$. Thus, $W^+ \cap K = \{0\}$. In fact dim $W^+ = 3$ is seen from the fact that over the algebraic closure K of K, if σ is split as $X \to X^*(\sigma)$ being orthogonal), the space $K \otimes W^+$ is simply the space

$$\left\{ \begin{pmatrix}
0 & \lambda & \mu & \nu \\
-\lambda & 0 & \nu & \mu \\
-\mu & -\nu & 0 & \lambda \\
-\nu & -\mu & -\lambda & 0
\end{pmatrix}, \lambda, \mu, \nu \in \overline{K} \right\}$$

Thus, we may choose $x \in W^+$, $x \neq 0$. Since $x^2 \in K$ and char $K \neq 2$, K(x)/K is a separable quadratic algebra. Since $x \in W^+ \subset S_0$, $\sigma(x) = -x$ so that σ restricts to the nontrivial automorphism of K(x) over K. Hence by (3.2) there exists a quaternion subalgebra H_1 of A such that σ restricts to the standard involution τ_1 of H_1 . Let H_2 be the commutant of H_1 in A and σ_2 the restriction of σ to H_2 . Then $A = H_1 \otimes H_2$, $\sigma = \tau_1 \otimes \tau_2$. Since type $\sigma = 1$ and type $\tau_1 = -1$, it follows that type $\sigma_2 = -1$. The unique involution of symplectic type on a quaternion algebra is the standard involution so that $\sigma_2 = \tau_2$ and $\sigma = \tau_1 \otimes \tau_2$.

Lemma 3.6. Let A be a rank 16 algebra over K with char K=2. Let σ be an involution on A with pf disc σ trivial. Let W^+ be as defined earlier. If σ is even symplectic, $W^+=K$. If σ is orthogonal, $K+W^+$ is a maximal commutative subalgebra of A which is purely inseparable of index 2 over K. In particular it is a commutative Frobenius subalgebra of dimension 4 in A.

Proof. To prove the lemma, we may assume that $A = M_4(K)$ and σ given by $X \longmapsto UX^tU^{-1}$ with det U = 1. We have $S_{\sigma} = U \cdot \text{Alt}_4(K)$ and $p_{\sigma} \colon S_{\sigma} \to S_{\sigma}$ is given by $p_{\sigma}(Y) = \text{pfad} \ (U^{-1} \ Y)U^{-1}$, pfad: $\text{Alt}_4(K) \to \text{Alt}_4(K)$ being the usual pfaffian adjoint map. One can explicitly compute W^+ . Suppose σ is even symplectic and U = E, then, $W^+ = K$. If σ is given by $X \to X^t$, then,

$$W^{+} = \left\{ \begin{pmatrix} 0 & \lambda & \mu & \mathbf{v} \\ \lambda & 0 & \mathbf{v} & \mu \\ \mu & \mathbf{v} & 0 & \lambda \\ \mathbf{v} & \mu & \lambda & 0 \end{pmatrix}, \ \lambda, \mu, \mathbf{v} \in K \right\}$$

In this case, dim $W^+=3$, $W^+\cap K=0$ and one can verify directly that $K+W^+$ is a maximal commutative subalgebra of $M_4(K)$.

PROPOSITION 3.7. Let A be an algebra of rank 16 over a field K of characteristic 2. Let σ be an involution on A with pfdisc σ trivial. Then, A has a σ -invariant quaternion subalgebra.

Proof. In view of (3.3), we may assume that σ is of orthogonal type. In this case, $L=K+W^+$ is a maximal commutative subalgebra of A of dimension 4 over K which is purely inseparable of index 2 over K. Let $x, y \in L$ be genarators of L over K with $x^2=a, y^2=b, a, b \in K$. Since A is a commutative Frobenius subalgebra of A of dimension 4, by ([3], Th. 3, p. 223), the K-derivation $d:L \to L$ defined by dx=x, dy=0 extends to an inner derivation on A, i.e. $\exists \xi \in A$ such that $\xi x + x \xi = x$, $\xi y = y \xi$. The element $\xi^2 + \xi$ commutes with L and L being maximal commutative, $\xi^2 + \xi \in L$ and hence $(\xi^2 + \xi)^2 = c \in K$. Let $\eta = \xi^2$. Then $\eta^2 + \eta = c$ and $x\eta + \eta x = x$. Thus (x, η) generate a quaternion subalgebra of A. We show that this is invariant under σ . The element $\sigma \eta + \eta$ commutes with L and hence belongs to L so that $(\sigma \eta + \eta)^2 = d \in K$; i.e., $\sigma \eta = \eta + d$. This completes the proof of the proposition.

The propositions 3.3, and 3.5 and 3.7 lead to the theorem.

REFERENCES

- Albert, A.A. Structure of Algebras, AMS Colloquium publications, Vol 24, 1939.
- Amittsur, A.S., L.H. Rowen and J.P. Tignol, Division algebras of degrees 4 and 8 with involutions, Israel J. Math. Vol. 33, 133-148 (1979).
- JACORSON, N. Generation of separable and central simple algebras, J. Math. Pures Appl. Vol. 36, 217-227 (1957).
- CHACRON, M., H. DHERTE, J.P. TIGNOL and A. WADSWORTH, Stable decomposition of division algebras with involutions, Preprint.
- Knus, M.A., R. Parimala and R. Sridharan. A classification of rank 6 quadraric spaces via pfaffians, J. Reine u. Angew. Math. 398, 187-218 (1996).
- Knus, M.A., R. Parimala and R. Sridharan, Pfaffians, Central simple algebras and similitudes, to appear in Math. Z.
- 7. ROWEN, L.H. Central Simple Algebras, Israel J. Math. Vol. 29, 285-301

 SCHARLAU, W., Zur Existenz von Involutionen auf einfachen Algebren II, Math. Z. Vol. 176, 399-404 (1981).

Mathematik ETH-Zentrum Ramistrasse 74, CH-8092 Zürich Switzerland

School of Mathematics
Tata Institute of Fundamental Research
Bombay 400005
India