
ON DIVISION ALGEBRAS OF DEGREE 3 WITH INVOLUTION

by D. HAILE* and M.-A. KNUS

Introduction. Let D be a division algebra of degree 3 over its center K and let J be an
involution of the second kind on D. Let F be the sub�eld of K of elements invariant under
J . We assume that charF 6= 3. In the �rst part of this note we present a simple proof of
Albert's Theorem ([A2]) on the existence of a maximal sub�eld of D which is Galois over
F with group S3. The �rst step is a construction of a subspace of elements u such that
u3 2 F , inspired by a similar contruction in [H2] (for algebras without involution). This
construction was used there to give a short elementary proof of Wedderburn's Theorem
([W]) that central division algebras of degree 3 are cyclic. In fact the argument given here
yields another proof of Wedderburn's Theorem.

In [W] Wedderburn, in preparation for his result on the cyclicity of algebras of degree
3, proves that if � is a noncentral element of D with minimal polynomial f(X) (say), then
there is an element � 2 D� such that �3 2 K and f(X) = (X���2��2)(X���1��1)(X��).
In part 2 we prove an analogous theorem for the elements of D symmetric under J . In
part 3 we apply these results to the theory of Cli�ord algebras. We prove that every
central simple algebra of degree 3 with involution of the second kind is a homomorphic
image (as algebra with involution) of the Cli�ord algebra of some binary cubic form with
its canonical involution and then show how to classify these images for a given form.

Albert's Theorem. Let D;K; F and J be as above and let S = (D; J)+ be the
F -subspace of symmetric elements. Let Pa(X) be the reduced characteristic polynomial
of a 2 D, let Tr be the reduced trace and N the reduced norm on D. By passing to the
algebraic closure of K one easily veri�es the following formula for Pa(X):

Pa(X) = X3 � Tr(a)X2 + N(a)Tr(a�1)X � N(a)1:

If a 62 K then Pa(X) is irreducible and the minimal polynomial of a over K. It follows
that P J

a (X) = PJ(a)(X). In particular J commutes with Tr and N and if a 2 S, then
Pa(X) 2 F [X].

We begin with an analog for algebras with involution of the Proposition, p. 317, in [H2].

Proposition 1. Let L be a separable cubic extension of F contained in S.
(1) There exists d 2 S \D� such that Tr(Ld) = 0.
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(2) For d as in (1), the space U = d�1L \KerTr = fd�1` j ` 2 L and Tr(d�1`) = 0g is at
least 2-dimensional over F and Tr(u) = Tr(u�1) = 0 for all u 2 U \D�.
(3) The map J 0 = Int(d�1) Æ J is an involution of second kind on D and U is contained
in (D; Int(d�1) Æ J)+.
(4) We have u3 = N(u) 2 F for all u 2 U .

Proof: The proof is very similar to the proof of the result of [H2] mentioned above. For any
x 2 S, the form f(x)(`) = Tr(`x) has values in F since J(Tr(`x)) = Tr(JxJ`) = Tr(x`) =
Tr(`x). Thus we get an F -linear map S ! L�; x 7! f(x). Since dimFS > dimFL, there
is an element d as wanted. For (2), since the form ` 7! Tr(d�1`) has values in F , we
obviously have dimFU � 2 and, by the choice of d,

Tr(d�1`) = Tr(`�1d) = 0 for all d�1` 2 U \D�:

To prove (3) note that J(d�1) = d�1. It follows that Int(d�1)ÆJ is an involution of second
kind on D and that the space of �xed elements under Int(d�1) Æ J is d�1S � U . Finally
we prove (4): Because the element u is �xed by the involution J 0, the argument presented
immediately preceding the statement of the proposition shows that Pu(X) 2 F [X]. Using
the explicit form of Pu(X) given there it follows from (2) that u3 = N(u) 2 F , as desired.
�

Let D[X] = D 
F F [X]. For any � 2 D�; � 2 D, we have

X � ��i��i = ��1�i(�X � ��)�i:

Thus

(�) (X � ��2��2)(X � ��1��1)(X � �) = ��3(�X � ��)3:

We apply this formula to the elements � = w1 and � = w�11 w2, where w1; w2 2 U are
linearly independent over F . We obtain:

(��) (w1X � w2)
3 = w3

1(X � w�21 �w2
1)(X � w�11 �w1)(X � �):

Lemma 2. Let �1 = � = w�11 w2, �2 = w�11 �1w1 and �3 = w�11 �2w1. Then
(1) Int(w�11 )(�i) = �i+1, i mod 3, and

w�31 (w1X � w2)
3 = (X � �3)(X � �2)(X � �1)

is the reduced characteristic polynomial of �i, i=1, 2, 3.
(2) Tr(�i) = �1 + �2 + �3 and N(�i) = �i+2�i+1�i = w�31 w3

2.
(3) For the involution J 0 = Int(d�1)ÆJ , where d is as in Proposition 1, we have J 0(�2) = �2
and J 0(�1) = �3.
(4) There exist w1; w2 2 U linearly independent over F such that Tr(w�11 w2) = 0. For
such a choice we have �1 + �2 + �3 = 0.
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Proof: The �rst part of (1) is clear. By Proposition 1, (4), (w1��w2)
3 2 F for all � 2 F .

Since the �eld F is in�nite it follows that (w1X�w2)
3 2 F [X]. Because �1 is a root of the

right hand side of (��) we get the desired formula for its reduced characteristic polynomial.
Thus Tr(�1) = �3 + �2 + �1 and N(�1) = �3�2�1 = w�31 w3

2. Conjugating with w�i1 , i =
1; 2, gives the other formulae of (2). The claims in (3) follow from �2 = w�31 (w1w2w1),
�1 = w�31 (w2

1w2) and �3 = w�31 (w2w
2
1), because J

0 �xes U by Propostion 1, (3). Finally
we check (4). Let w1 be a nonzero element of U . The form x 7! Tr(w1x) on U has values
in F . Since U is at least 2{dimensional, there exists w2 6= 0 2 U with Tr(w�11 w2) = 0.
Since Tr(�) = 3� 6= 0 for � 6= 0 2 F , w1 and w2 are linearly independent over F . It then
follows from (2) that �1 + �2 + �3 = 0. �

To prove Albert's theorem we begin with a separable cubic extension of F contained
in S (for example the F{subalgebra generated by any noncentral element of S). We then
obtain a space U as in Proposition 1 and choose linearly independent elements w1; w2 2 U
with Tr(w�11 w2) = 0, as in Lemma 2, (4). We then let �1 = � = w�11 w2, �2 = w�11 �1w1

and �3 = w�11 �2w1 as in Lemma 2.

Theorem 3. Let E = K(��12 �3) if ��12 �3 62 K or E = K(�2) if ��12 �3 2 K. Then E � D
is cyclic over K and is a Galois extension over F with group S3.
Proof: Assume �rst that ��12 �3 62 K, so that dimKK(��12 �3) = 3: Since

Int(w�11 )(��12 �3) = ��13 �1 = ���13 (�3 + �2) = �1� (��12 �3)
�1 2 K(��12 �3);

Int(w�11 ) restricts to a K-automorphism � of K(��12 �3). If � is the identity, the element
��12 �3 satis�es the equation y2 + y + 1 = 0. The algebra D being of degree 3, this implies
that ��12 �3 2 K, in contradiction to the assumption. Thus � is nontrivial of order 3. We
further have for the involution J 0 given in Lemma 2

J 0(��12 �3) = �1�
�1
2 = �2(�

�1
2 �1)�

�1
2 = ��2(1 + ��12 �3)�

�1
2

so the involution J 00 = Int(��12 ) Æ J 0 satis�es J 00(��12 �3) = �(1 + ��12 �3) and so de�nes an
automorphism of order 2 of K(��12 �3). To show that Int(w�11 ) and J 00 generate a group
isomorphic to S3, it suÆces to verify that J 00 Æ Int(w�11 ) = Int(w�21 ) Æ J 00. We check it on
the generator ��12 �3:

J 00 Æ Int(w�11 )(��12 �3) = (��12 �3)(�
�1
1 �2) = (��11 �2)(�

�1
2 �3) = ��11 �3

where the next to last equality follows from the fact that ��11 �2 = Int(w�21 )(��12 �3) 2
K(��12 �3) and so commutes with ��12 �3. On the other hand we have

Int(w�21 ) Æ J 00(��12 �3) = Int(w�21 ��12 ) Æ J 0(��12 �3) = ��11 �3

as claimed.
Assume now that ��12 �3 = y 2 K. By Lemma 2, (2), we must have y3 = 1. If

y = 1, we get �2 = �3 = �1, a contradiction to �2 + �3 + �1 = 0. Thus y 2 K is a
primitive cubic root of 1. It follows from �3 = y�2 that �1 = y�3 and �2 = y�1. Thus
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N(�2) = �1�3�2 = �32 and �32 2 K. Since J 0(�2) = �2, we even have �32 2 F . Further we
deduce from J 0(�1) = �3 and �1 = y�3 that �3 = J 0(y)�1, so that J

0(y) = y2 and K = F (y).
Thus we have K(�2) = K(�3) = K(�1) and the restriction � of Int(w�11 ) to K(�2) is given
by �2 7! �3 = y�2. It is then easy to check that fJ 0; �g generates a group of automorphisms
of K(�2) isomorphic to S3. �

Remarks. (1) The argument used in the proof of Theorem 3 is largely inspired by the
very last part of Albert's proof in ([A2]). The use of Lemma 2 allows to avoid most of the
computations in the �rst part of his proof.
(2) As we remarked in the introduction the analog of Proposition 1 given in [H2] is used
to give a proof of Wedderburn's Theorem on the cyclicity of a central division algebra
of degree 3 (without involution) over K. In fact, Albert's Theorem also holds (with the
same proof) for D of the form A � Aop, A a central division algebra over F with the
twist involution, so that Wedderburn's Theorem can be viewed a special case of Albert's
Theorem. Thus we get another elementary proof of Wedderburn's Theorem. A similar
remark applies to the next proposition.

Wedderburn Factorization of symmetric elements. Let D;K; J; S and F be as
above. We want to show that one can obtain the full \symmetric" version of Wedderburn's
Factorization Theorem (described in the introduction).

Proposition 4. Let � 2 D�F with minimal polynomial f 2 F [X]. There is an involution
J 0 on D such that � 2 S0 = (D; J 0)+ and there is an element � 2 S0 such that �3 2 F�

and
f(X) = (X � ��2��2)(X � ��1��1)(X � �):

Proof: We �rst show there is an involution �xing �. This is a special case of a result
of Albert ([A1],p. 157). For completeness we provide a proof. The elements � and J(�)
have the same minimal polynomials, hence are conjugates in D. Let J(�) = Int(g)(�). If
g+J(g) 6= 0, then Int(g+J(g))(�) = J(�) and so the involution J 00 = Int((g+J(g))�1)ÆJ
�xes �. If g = �J(g), then J 00 = Int(g�1) Æ J �xes �.

We proceed as in the proof of Proposition 1 to �nd a 2{dimensional subspace W of
L = F (�) � S00 = (D; J 00)+ and d 2 S00 \ D� such that y3 2 F for all y 2 d�1W . Let
Y = F + F� � L. We claim that there exists ` 2 L such that `W = Y . In fact it was
shown in [H2] that for any 2-dimensional subspaces U1 and U2 of L, there is ` 2 L such
that `U1 = U2. Again for completeness we recall the argument: let f; g 2 L� be such
that U1 = Ker f and U2 = Ker g. The claim then follows from the fact that L� is a
1{dimensional L{space (through the operation (f`)(x) = f(`x)). So let ` 2 L be such that
`W = Y and let � = (`d)�1; then �Y = d�1`�1Y = d�1W , so that x3 2 F for all x 2 �Y .
As in the proof of Lemma 2, (1), it follows that (�X � ��)3 2 F [X] and hence, applying
(�), that (X � ��2��2)(X � ��1��1)(X � �) is the reduced characteristic polynomial of �.
It follows that f(X) = (X � ��2��2)(X � ��1��1)(X � �). Moreover J 0 = Int(`) Æ J 00 �xes
� and �. �

Cli�ord Algebras. The foregoing results may be applied to the theory of Cli�ord
algebras of binary cubic forms. Recall that if g(u1; : : : ; um) is a form of degree d in m
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variables over a �eld F , then the Cli�ord algebra Cg of g is the algebra FfX1; : : : ; Xmg=I
where FfX1; : : : ; Xmg is the free algebra on m variables and I is the ideal generated by
the set

f(�1X1 + : : : �mXm)
d � g(�1; : : : ; �m); �1; : : : ; �m 2 Fg

(See Roby [Ro], Revoy [Re1], Childs [C]). If g is a binary cubic form it has been shown
(Heerema [He], Revoy [Re2], Haile [H1]) that Cg is an Azumaya algebra over its center Z
and that Z is isomorphic to the aÆne coordinate ring F [E] of the elliptic curve E given
by the equation S2 = R3 � 27Æ where Æ 2 F is the discriminant of g. In particular each
simple image A of Cg is of degree 3 over its center and the simple images with center F are
in one-to-one correspondence with the F -rational points on E. This correspondence gives
rise to a function from E(F ), the group of F -rational points on E, to B(F ), the Brauer
group of F , and it is shown in Haile [H1], that this map is a group homomorphism.

Now let g(u; v) be a binary cubic form over F . The free algebra FfX;Y g admits a
unique involution �xing X and Y and this involution preserves I. We let � denote the
induced involution on Cg and call it the canonical involution on Cg.

Proposition 5. Let A be a simple algebra of degree 3 with involution of the second kind
having �xed �eld F . There is an involution J on A and a binary form g(u; v) over F such
that (A; J) is a homomorphic image of (Cg; �). Moreover, if A is a division algebra and
f(x) 2 F [x] is irreducible of degree 3 with a root � 2 D, then there is an element a 2 F�

and an involution J on D such that (Cg; �) maps onto (D; J), where g(u; v) = av3f(u=v).

Proof: Let K denote the center of A. First assume A is a division algebra. By Proposition
4 there is a involution J 0 such that J 0(�) = � and an element � 2 A �xed by J 0 such that
�3 = a 2 F� and

f(X) = (X � ��2��2)(X � ��1��1)(X � �) = a�1(�X � ��)3:

Hence the binary cubic form g(u; v) = av3f(u=v) satis�es g(u; v) = (u� + v(���))3 2
A[u; v]. If we let J = Int(�)ÆJ 0, then J(�) = �, J(��) = ��. Hence the mapX 7! �; Y 7! ��
induces a homomorphism from (Cg; �) onto (A; J).

If A = M3(K), let J 0 = Int(u) Æ � with u = diag(1; (01
1
0)), �(xij) = (�xij)

t, where
x 7! �x is conjugation in K and t is transpose. If K = F (�) with �2 = a, let g(u; v) =
(u� v)(u2 � av2). There is a homomorphism � of (Cg; �) onto (M3(K); J) sending

X to

0
@
0 0 1
1 0 0
0 1 0

1
A and Y to

0
@
0 0 ��
1 0 0
0 � 0

1
A ;

where J = Int(�(X)) Æ J 0. �

If A is a simple image of Cg arising from the maximal ideal m of Z then � will induce
an involution on A if and only if m� = m. Moreover, because the center of A is Z=m we
see that the �xed �eld of � on A is F if and only if m has residue degree 2. In fact we can
describe such maximal ideals quite precisely:
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Theorem 6. The simple images of Cg on which � induces an involution of the second
kind with �xed �eld F are in one to one correspondence with the pairs of points (r;�s)
on the curve S2 = R3 � 27Æ such that r 2 F; s 62 F . The center of the resulting algebra is
F (s), a quadratic extension of F .

Proof: Let Cg = FfX;Y g=I. We use the results of the discussion beginning section 2 of
[H3]. By making a linear change of variables we may assume that g(u; v) = au3+3cuv2+dv3

in F [u; v]. Let r = ac; 2s = ad; t = �c2, and Æ = s2�rt = a2d2

4 +ac3, the discriminant of g.

Let L = F [
p
Æ; !] where ! is a primitive third root of one. LetX = (

p
Æ+s)X�rY and Y =

(
p
Æ�s)X+rY in Cg
F L, the Cli�ord algebra of g over L. If we let � = Y X�!X Y and

� = Y X�!2X Y , then the elements ��;
p
Æ(�3+�3) are in Cg and Z = F [��;

p
Æ(�3+�3)].

Morever Z is isomorphic to the coordinate ring of E : S2 = R3 � 27Æ via the map

R 7! ��

4r2Æ
; S 7!

p
Æ(�3 + �3)

16r3Æ2
:

Now the map � 
 1 is the canonical involution on Cg 
 L and an easy computation shows
that ��
1 = �!�. It follows that �� in Cg is �xed by �. Hence the action of � on Z = F [E]
is given by R� = R and S� = �S.

Now let A be a simple image of Cg on which � induces an involution of second kind with
�xed �eld F . As we have seen A = Cg=mCg where m is a maximal ideal of Z of residue
degree 2 such that m� = m. Let K = Z=m. The involution � induces the nontrivial
automorphism of K over F . Hence in the coordinate ring K[E] there are 2 maximal
ideals lying over m in F [E]. These maximal ideals are given by K-rational points and are
conjugate under �. If (r; s) is one such point we have seen that r� = r and s� = �s. Hence
r 2 F; s 62 F and K = F (s).

Conversely, if (r; s) is a point on E such that r 2 F; s 62 F then K = F (s) is a quadratic
extension of F . Moreover (r;�s) is another point on E and these two points lie over
the same maximal ideal m of F [E]. Clearly m� = m and m has residue degree 2, so, as
we have seen, � induces an involution of the second kind on Cg=mCg with �xed �eld F .

�

COROLLARY 7. Let K = F (
); 
2 2 F be a quadratic extension of F . The simple
images of Cg with center K on which � induces an involution of second kind with �xed
�eld F are in one to one correspondence with the pairs (�;��) of F{rational points on
the elliptic curve S2 = R3 � 27(Æ=
3).

Proof: By the theorem the simple images of Cg with center K on which � induces an
involution of second kind with �xed �eld F are in one to one correspondence with the
pairs of points (r;�s) on the curve S2 = R3 � 27Æ such that r 2 F and F (s) = K. Since
s2 = r3 � 27Æ 2 F , it follows that s=
 2 F . But then the points (r=
2;�s=
3) are F{
rational and lie on S2 = R3 � 27(Æ=
3). Conversely if (�;��) are F{rational points on
S2 = R3�27(Æ=
3), then the points (�
2;��
3) lie on S2 = R3�27Æ and satisfy �
2 2 F ,
F (�
3) = K. �
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