ON DIVISION ALGEBRAS OF DEGREE 3 WITH INVOLUTION

BY D. HAILE* AND M.-A. KNUS

Introduction.  Let D be a division algebra of degree 3 over its center K and let .JJ be an
involution of the second kind on D. Let F' be the subfield of K of elements invariant under
J. We assume that charF # 3. In the first part of this note we present a simple proof of
Albert’s Theorem ([Az]) on the existence of a maximal subfield of D which is Galois over
F with group S3. The first step is a construction of a subspace of elements u such that
u3 € F, inspired by a similar contruction in [Hp] (for algebras without involution). This
construction was used there to give a short elementary proof of Wedderburn’s Theorem
([W]) that central division algebras of degree 3 are cyclic. In fact the argument given here
yields another proof of Wedderburn’s Theorem.

In [W] Wedderburn, in preparation for his result on the cyclicity of algebras of degree
3, proves that if € is a noncentral element of D with minimal polynomial f(X) (say), then
there is an element ¢ € D such that ¢3 € K and f(X) = (X —£7206%) (X —£710¢Y) (X —0).
In part 2 we prove an analogous theorem for the elements of D symmetric under J. In
part 3 we apply these results to the theory of Clifford algebras. We prove that every
central simple algebra of degree 3 with involution of the second kind is a homomorphic
image (as algebra with involution) of the Clifford algebra of some binary cubic form with
its canonical involution and then show how to classify these images for a given form.

Albert’s Theorem. Let D,K,F and J be as above and let S = (D,J); be the
F-subspace of symmetric elements. Let P,(X) be the reduced characteristic polynomial
of a € D, let Tr be the reduced trace and N the reduced norm on D. By passing to the
algebraic closure of K one easily verifies the following formula for P,(X):

P,(X) = X3~ Tr(a)X?+ N(a)Tr(a" ') X — N(a)1.

If a ¢ K then P,(X) is irreducible and the minimal polynomial of a over K. It follows
that P;J(X) = Py (X). In particular J commutes with Tr and N and if a € S, then
P,(X) € FIX].

We begin with an analog for algebras with involution of the Proposition, p. 317, in [Ha].

PROPOSITION 1. Let L be a separable cubic extension of F' contained in S.
(1) There exists d € S N D* such that Tr(Ld) = 0.
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(2) For d as in (1), the space U = d 'L NKer Tr = {d~ 4|4 € L and Tr(d"¢) = 0} is at
least 2-dimensional over F' and Tr(u) = Tr(u™t) = 0 for all u € U N DX.

(3) The map J' = Int(d=') o J is an involution of second kind on D and U is contained
in (D, Tnt(d~1) 0 J),.

(4) We have u® = N(u) € F for all u € U.

Proof: The proof is very similar to the proof of the result of [Ha] mentioned above. For any
x € S, the form f(x)(£) = Tr(¢x) has values in F since J(Tr(¢x)) = Tr(JxJl) = Tr(zl) =
Tr(4x). Thus we get an F-linear map S — L*, z — f(x). Since dimpgS > dimpL, there
is an element d as wanted. For (2), since the form £ — Tr(d~1¢) has values in F, we
obviously have dimpU > 2 and, by the choice of d,

Tr(d='4) = Tr(¢7'd) = 0 forall d~'¢ € Un DX,

To prove (3) note that J(d=1) = d=!. It follows that Int(d=')o.J is an involution of second
kind on D and that the space of fixed elements under Int(d=!)o.J is d=1S D U. Finally
we prove (4): Because the element u is fixed by the involution J’, the argument presented
immediately preceding the statement of the proposition shows that P,(X) € F[X]. Using
the explicit form of P,(X) given there it follows from (2) that 43> = N(u) € F, as desired.
O

Let D[X] = D ®p F[X]. For any £ € DX, § € D, we have
X — 6706 = 71 THEX — €o)e.
Thus
(+) (X —€7206%) (X — €706 (X — 0) = £7°(6X — €0)°.

We apply this formula to the elements £ = w; and 0 = wl_lwz, where wy,wy € U are
linearly independent over F'. We obtain:

(xx) (w1 X —ws)® = wi(X — w1_20w%)(X — wl_lﬁwl)(X —0).

LEMMA 2. Let0; = 0 = wl_lwg, Oy — wl_lﬁlwl and 03 = wl_lﬁzwl. Then
(1) Int(w;')(0;) = Oiy1, @ mod 3, and

w3 (w1 X — wy)® = (X — 03)(X — 0)(X — 6y)

s the reduced characteristic polynomial of 0;, i=1, 2, 3.

(2) T‘I‘(Q,) = 91 + 92 + 93 and N(Q,) = 91'4_29,'4_191' = w1_3w§’

(3) For the involution J' = Int(d=1)o.J, where d is as in Proposition 1, we have J'(02) = 02
and J/(gl) = 93.

(4) There exist wy,wy € U linearly independent over F such that Tr(w] 'wy) = 0. For
such a choice we have 01 + 65 + 03 = 0.



Proof: The first part of (1) is clear. By Proposition 1, (4), (wia —w2)® € F for all a € F.
Since the field F is infinite it follows that (w; X —ws)3 € F[X]. Because 6 is a root of the
right hand side of (xx) we get the desired formula for its reduced characteristic polynomial.
Thus Tr(0,) = 03 + 03 + 0, and N(61) = 05020, = wl_?’w%. Conjugating with wl_i, i =
1, 2, gives the other formulae of (2). The claims in (3) follow from 0y = wi®(wiwow,),
01 = wy>(wiws) and O3 = wi?(wew?), because J' fixes U by Propostion 1, (3). Finally
we check (4). Let wy be a nonzero element of U. The form x — Tr(wix) on U has values
in F. Since U is at least 2-dimensional, there exists wy # 0 € U with Tr(w; 'ws) = 0.
Since Tr(\) = 3X # 0 for A # 0 € F, wy and wy are linearly independent over F. It then
follows from (2) that 61 + 02 + 03 = 0. O

To prove Albert’s theorem we begin with a separable cubic extension of F' contained
in S (for example the F-subalgebra generated by any noncentral element of S). We then
obtain a space U as in Proposition 1 and choose linearly independent elements w1, ws € U
with Tr(w] *ws) = 0, as in Lemma 2, (4). We then let §; = 0 = w] *ws, 0 = w] 61w,
and 03 = wflﬁzwl as in Lemma 2.

THEOREM 3. Let E = K(05'03) if 0503 ¢ K or E = K(03) if 0,03 € K. Then E C D
is cyclic over K and is a Galois extension over F' with group Ss.

Proof: Assume first that 65 '03 ¢ K, so that dimg K (05 '03) = 3. Since
Int(wy')(05103) = 05101 = =051 (03 + 62) = —1 — (A5 '63) ™" € K (65 '63),

Int(wy ') restricts to a K-automorphism p of K (A5 '03). If p is the identity, the element
05 195 satisfies the equation y2 + y + 1 = 0. The algebra D being of degree 3, this implies
that 05 19; € K, in contradiction to the assumption. Thus p is nontrivial of order 3. We
further have for the involution J’ given in Lemma 2

J(05105) = 0,051 = 0,(050,)051 = —0,(1 + 051605)05*

so the involution .J” = Int(05 1) o J’ satisfies J" (05 '03) = —(1 4+ 65 '03) and so defines an
automorphism of order 2 of K (05 '03). To show that Int(w] ") and J” generate a group
isomorphic to Ss, it suffices to verify that J” o Int(wy ') = Int(w?) o J”. We check it on
the generator 6 19,

J" o Int(wy ) (605 103) = (65 03) (07 '02) = (67 62) (05 '63) = 0705

where the next to last equality follows from the fact that 6716y = Int(w]?)(0;'03) €
K (05'03) and so commutes with 5 '03. On the other hand we have

Int(wi?) o J"(0503) = Int(w; 205 1) o J'(05103) = 67105

as claimed.

Assume now that 6;'0s = y € K. By Lemma 2, (2), we must have y> = 1. If
y = 1, we get #3 = A3 = f1, a contradiction to 03 + 03 + 0, = 0. Thus y € K is a
primitive cubic root of 1. It follows from 03 = yfy that 6, = yf3 and #; = yb;. Thus
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N(0s) = 01050, = 03 and 03 € K. Since J'(f3) = 05, we even have 03 € F. Further we
deduce from J'(01) = 03 and 01 = y03 that 03 = J'(y)01, so that J'(y) = y*> and K = F(y).
Thus we have K (#y) = K (#3) = K(6;) and the restriction p of Int(w; ') to K (6y) is given
by 2 — 03 = yfs. It is then easy to check that {.J', p} generates a group of automorphisms
of K(63) isomorphic to Ss. O

REMARKS. (1) The argument used in the proof of Theorem 3 is largely inspired by the
very last part of Albert’s proof in ([Ag]). The use of Lemma 2 allows to avoid most of the
computations in the first part of his proof.

(2) As we remarked in the introduction the analog of Proposition 1 given in [Ha| is used
to give a proof of Wedderburn’s Theorem on the cyclicity of a central division algebra
of degree 3 (without involution) over K. In fact, Albert’s Theorem also holds (with the
same proof) for D of the form A x A°P, A a central division algebra over F' with the
twist involution, so that Wedderburn’s Theorem can be viewed a special case of Albert’s
Theorem. Thus we get another elementary proof of Wedderburn’s Theorem. A similar
remark applies to the next proposition.

Wedderburn Factorization of symmetric elements. Let D, K,J,S and F be as
above. We want to show that one can obtain the full “symmetric” version of Wedderburn’s
Factorization Theorem (described in the introduction).

PROPOSITION 4. Let 0 € D—F with minimal polynomial f € F[X]. There is an involution
J" on D such that 0 € S" = (D,J’), and there is an element £ € S’ such that €3 € F*
and

F(X) = (X = €£720€") (X - £710¢") (X — 0).

Proof: We first show there is an involution fixing #. This is a special case of a result
of Albert ([A1],p. 157). For completeness we provide a proof. The elements 6 and .J(f)
have the same minimal polynomials, hence are conjugates in D. Let J(0) = Int(g)(6). If
g+J(g) # 0, then Int(g+.J(g))(0) = J(0) and so the involution J” = Int((g+.J(g)) 1) oJ
fixes 0. If g = —J(g), then J” = Int(g~1) o J fixes 0.

We proceed as in the proof of Proposition 1 to find a 2-dimensional subspace W of
L=F@®) cS8” = (D,J"), and d € " N D* such that y> € F for all y € d~'W. Let
Y = F + F6 C L. We claim that there exists £ € L such that /W =Y. In fact it was
shown in [Hz| that for any 2-dimensional subspaces U; and Us of L, there is £ € L such
that U; = Uy. Again for completeness we recall the argument: let f,g € L* be such
that U; = Ker f and Uy = Ker g. The claim then follows from the fact that L* is a
1-dimensional L—space (through the operation (f¢)(xz) = f(£z)). So let £ € L be such that
(W =Y and let £ = (/d)™1; then Y = d=14~1Y = d='W, so that 23 € F for all z € £Y.
As in the proof of Lemma 2, (1), it follows that (£X — £0)3 € F[X] and hence, applying
(%), that (X — £720€%)(X — £€719¢1) (X — 0) is the reduced characteristic polynomial of 6.
It follows that f(X) = (X — £720£2)(X — £710¢Y) (X — 0). Moreover J' = Int(£) o J" fixes
0 and &. O

Clifford Algebras. The foregoing results may be applied to the theory of Clifford
algebras of binary cubic forms. Recall that if g(uq,...,u,) is a form of degree d in m

4



variables over a field F', then the Clifford algebra C; of g is the algebra F{X1,..., X, }/I
where F{Xy,..., X,,} is the free algebra on m variables and I is the ideal generated by
the set

{(a1X1+...ame)d—g(a1,...,am), A1y .ey Oy € F}

(See Roby [Ro], Revoy [Rei], Childs [C]). If g is a binary cubic form it has been shown
(Heerema [He|, Revoy [Res], Haile [H;]) that Cy is an Azumaya algebra over its center Z
and that Z is isomorphic to the affine coordinate ring F[E] of the elliptic curve E given
by the equation S?2 = R? — 27§ where § € F is the discriminant of ¢g. In particular each
simple image A of C is of degree 3 over its center and the simple images with center F' are
in one-to-one correspondence with the F-rational points on F. This correspondence gives
rise to a function from E(F'), the group of F-rational points on E, to B(F'), the Brauer
group of F', and it is shown in Haile [Hy|, that this map is a group homomorphism.

Now let g(u,v) be a binary cubic form over F. The free algebra F{X,Y} admits a
unique involution fixing X and Y and this involution preserves I. We let * denote the
induced involution on Cy and call it the canonical involution on Cj.

PRrROPOSITION 5. Let A be a simple algebra of degree 3 with involution of the second kind
having fixed field F'. There is an involution .J on A and a binary form g(u,v) over F' such
that (A, J) is a homomorphic image of (Cy, *). Moreover, if A is a division algebra and
f(z) € F[z] is irreducible of degree 3 with a root § € D, then there is an element a € F'*
and an involution J on D such that (Cy,*) maps onto (D, .J), where g(u,v) = av®f(u/v).

Proof: Let K denote the center of A. First assume A is a division algebra. By Proposition
4 there is a involution J" such that J'(f) = 6 and an element ¢ € A fixed by .J' such that
€3 =a€ F* and

FX) = (X = £7206%) (X — €710¢N) (X — 0) = a~H(€X — €0)°.

Hence the binary cubic form g(u,v) = av3f(u/v) satisfies g(u,v) = (u€ + v(—£0))3 €
Alu,v]. If welet J = Int(§)oJ’, then J(§) = &, J(€0) = £0. Hence the map X +— &, Y +— &0
induces a homomorphism from (Cy, x) onto (A4, J).

If A = M3(K), let J' = Int(u) o7 with u = diag(1,(? ¢)), 7(zi;) = (%i;)", where
x — T is conjugation in K and ¢ is transpose. If K = F(3) with 82 = a, let g(u,v) =
(u — v)(u? — av?®). There is a homomorphism ¢ of (C,, *) onto (M3(K), J) sending

0 0 1 0 0 —p
X to 1 0 0 and Y to 1 0 O ,
0 1 0 0 8 O
where J = Int(¢(X)) o J . O

If A is a simple image of C arising from the maximal ideal m of Z then x will induce
an involution on A if and only if m* = m. Moreover, because the center of A is Z/m we
see that the fixed field of x on A is F' if and only if m has residue degree 2. In fact we can
describe such maximal ideals quite precisely:
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THEOREM 6. The simple images of C; on which x induces an involution of the second
kind with fixed field F' are in one to one correspondence with the pairs of points (r, £s)
on the curve S? = R3 — 276 such that r € F,s ¢ F. The center of the resulting algebra is
F(s), a quadratic extension of F.

Proof: Let Cy = F{X,Y}/I. We use the results of the discussion beginning section 2 of
[H3]. By making a linear change of variables we may assume that g(u,v) = au®+3cuv?+dv3
in Flu,v]. Let r = ac,2s = ad,t = —c?, and § = s> —rt = #+a03, the discriminant of g.
Let L = F[\/0,w] where w is a primitive third root of one. Let X = (v/d+5)X —rY and Y =
(V6 —5)X +rY in Cy,®r L, the Clifford algebra of g over L. If welet p =Y X —wX Y and
v =Y X —w?X Y, then the elements pv, V6 (> +v?) are in C, and Z = Fluv, vV (u+v3)].
Morever Z is isomorphic to the coordinate ring of E : S2 = R3 — 276 via the map

v V(4%
R 472§’ S 167352

Now the map * ® 1 is the canonical involution on Cj ® L and an easy computation shows
that p*®! = —wv. It follows that pv in C,, is fixed by *. Hence the action of x on Z = F[E]|
is given by R* = R and S* = —§.

Now let A be a simple image of C'; on which * induces an involution of second kind with
fixed field F'. As we have seen A = Cy/mCy where m is a maximal ideal of Z of residue
degree 2 such that m* = m. Let K = Z/m. The involution * induces the nontrivial
automorphism of K over F. Hence in the coordinate ring K|[E] there are 2 maximal
ideals lying over m in F[E]. These maximal ideals are given by K-rational points and are
conjugate under . If (r, s) is one such point we have seen that r* = r and s* = —s. Hence
reF,s¢ Fand K = F(s).

Conversely, if (r, s) is a point on F such that r € F, s ¢ F then K = F(s) is a quadratic
extension of F. Moreover (r,—s) is another point on E and these two points lie over
the same maximal ideal m of F[E]. Clearly m* = m and m has residue degree 2, so, as
we have seen, * induces an involution of the second kind on C,/mC, with fixed field F'.

O

COROLLARY 7. Let K = F(v),7y% € F be a quadratic extension of F. The simple
images of C; with center K on which * induces an involution of second kind with fixed
field F' are in one to one correspondence with the pairs («, +3) of F-rational points on

the elliptic curve S? = R3 — 27(5/3).

Proof: By the theorem the simple images of C, with center K on which * induces an
involution of second kind with fixed field F' are in one to one correspondence with the
pairs of points (r, £s) on the curve S% = R — 27§ such that r € F and F(s) = K. Since
s? =13 —275 € F, it follows that s/ € F. But then the points (r/v2, +s/v3) are F—
rational and lie on S% = R3 — 27(6/~3). Conversely if (o, +3) are F-rational points on
S? = R3—27(6/~3), then the points (ay?, +£373) lie on S% = R3—276 and satisfy ay? € F,
F(67) = K. .
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