ON DIVISION ALGEBRAS OF DEGREE 3 WITH INVOLUTION

by D. HAILE* and M.-A. KNUS

Introduction. Let D be a division algebra of degree 3 over its center K and let J be an involution of the second kind on D. Let F be the subfield of K of elements invariant under J. We assume that char $F \neq 3$. In the first part of this note we present a simple proof of Albert's Theorem ($\left[\mathrm{A}_{2}\right]$) on the existence of a maximal subfield of D which is Galois over F with group \mathcal{S}_{3}. The first step is a construction of a subspace of elements u such that $u^{3} \in F$, inspired by a similar contruction in $\left[\mathrm{H}_{2}\right]$ (for algebras without involution). This construction was used there to give a short elementary proof of Wedderburn's Theorem ([W]) that central division algebras of degree 3 are cyclic. In fact the argument given here yields another proof of Wedderburn's Theorem.

In [W] Wedderburn, in preparation for his result on the cyclicity of algebras of degree 3 , proves that if θ is a noncentral element of D with minimal polynomial $f(X)$ (say), then there is an element $\xi \in D^{\times}$such that $\xi^{3} \in K$ and $f(X)=\left(X-\xi^{-2} \theta \xi^{2}\right)\left(X-\xi^{-1} \theta \xi^{1}\right)(X-\theta)$. In part 2 we prove an analogous theorem for the elements of D symmetric under J. In part 3 we apply these results to the theory of Clifford algebras. We prove that every central simple algebra of degree 3 with involution of the second kind is a homomorphic image (as algebra with involution) of the Clifford algebra of some binary cubic form with its canonical involution and then show how to classify these images for a given form.

Albert's Theorem. Let D, K, F and J be as above and let $S=(D, J)_{+}$be the F-subspace of symmetric elements. Let $P_{a}(X)$ be the reduced characteristic polynomial of $a \in D$, let Tr be the reduced trace and N the reduced norm on D. By passing to the algebraic closure of K one easily verifies the following formula for $P_{a}(X)$:

$$
P_{a}(X)=X^{3}-\operatorname{Tr}(a) X^{2}+\mathrm{N}(a) \operatorname{Tr}\left(a^{-1}\right) X-\mathrm{N}(a) 1
$$

If $a \notin K$ then $P_{a}(X)$ is irreducible and the minimal polynomial of a over K. It follows that $P_{a}^{J}(X)=P_{J(a)}(X)$. In particular J commutes with Tr and N and if $a \in S$, then $P_{a}(X) \in F[X]$.

We begin with an analog for algebras with involution of the Proposition, p. 317, in [H_{2}].
Proposition 1. Let L be a separable cubic extension of F contained in S.
(1) There exists $d \in S \cap D^{\times}$such that $\operatorname{Tr}(L d)=0$.

[^0](2) For d as in (1), the space $U=d^{-1} L \cap \operatorname{Ker} \operatorname{Tr}=\left\{d^{-1} \ell \mid \ell \in L\right.$ and $\left.\operatorname{Tr}\left(d^{-1} \ell\right)=0\right\}$ is at least 2-dimensional over F and $\operatorname{Tr}(u)=\operatorname{Tr}\left(u^{-1}\right)=0$ for all $u \in U \cap D^{\times}$.
(3) The map $J^{\prime}=\operatorname{Int}\left(d^{-1}\right) \circ J$ is an involution of second kind on D and U is contained in $\left(D, \operatorname{Int}\left(d^{-1}\right) \circ J\right)_{+}$.
(4) We have $u^{3}=\mathrm{N}(u) \in F$ for all $u \in U$.

Proof: The proof is very similar to the proof of the result of $\left[\mathrm{H}_{2}\right]$ mentioned above. For any $x \in S$, the form $f(x)(\ell)=\operatorname{Tr}(\ell x)$ has values in F since $J(\operatorname{Tr}(\ell x))=\operatorname{Tr}(J x J \ell)=\operatorname{Tr}(x \ell)=$ $\operatorname{Tr}(\ell x)$. Thus we get an F-linear map $S \rightarrow L^{*}, x \mapsto f(x)$. Since $\operatorname{dim}_{F} S>\operatorname{dim}_{F} L$, there is an element d as wanted. For (2), since the form $\ell \mapsto \operatorname{Tr}\left(d^{-1} \ell\right)$ has values in F, we obviously have $\operatorname{dim}_{F} U \geq 2$ and, by the choice of d,

$$
\operatorname{Tr}\left(d^{-1} \ell\right)=\operatorname{Tr}\left(\ell^{-1} d\right)=0 \text { for all } d^{-1} \ell \in U \cap D^{\times} .
$$

To prove (3) note that $J\left(d^{-1}\right)=d^{-1}$. It follows that $\operatorname{Int}\left(d^{-1}\right) \circ J$ is an involution of second kind on D and that the space of fixed elements under $\operatorname{Int}\left(d^{-1}\right) \circ J$ is $d^{-1} S \supset U$. Finally we prove (4): Because the element u is fixed by the involution J^{\prime}, the argument presented immediately preceding the statement of the proposition shows that $P_{u}(X) \in F[X]$. Using the explicit form of $P_{u}(X)$ given there it follows from (2) that $u^{3}=\mathrm{N}(u) \in F$, as desired.

Let $D[X]=D \otimes_{F} F[X]$. For any $\xi \in D^{\times}, \theta \in D$, we have

$$
X-\xi^{-i} \theta \xi^{i}=\xi^{-1-i}(\xi X-\xi \theta) \xi^{i}
$$

Thus

$$
\begin{equation*}
\left(X-\xi^{-2} \theta \xi^{2}\right)\left(X-\xi^{-1} \theta \xi^{1}\right)(X-\theta)=\xi^{-3}(\xi X-\xi \theta)^{3} \tag{*}
\end{equation*}
$$

We apply this formula to the elements $\xi=w_{1}$ and $\theta=w_{1}^{-1} w_{2}$, where $w_{1}, w_{2} \in U$ are linearly independent over F. We obtain:

$$
\begin{equation*}
\left(w_{1} X-w_{2}\right)^{3}=w_{1}^{3}\left(X-w_{1}^{-2} \theta w_{1}^{2}\right)\left(X-w_{1}^{-1} \theta w_{1}\right)(X-\theta) . \tag{**}
\end{equation*}
$$

Lemma 2. Let $\theta_{1}=\theta=w_{1}^{-1} w_{2}, \theta_{2}=w_{1}^{-1} \theta_{1} w_{1}$ and $\theta_{3}=w_{1}^{-1} \theta_{2} w_{1}$. Then
(1) $\operatorname{Int}\left(w_{1}^{-1}\right)\left(\theta_{i}\right)=\theta_{i+1}, i \bmod 3$, and

$$
w_{1}^{-3}\left(w_{1} X-w_{2}\right)^{3}=\left(X-\theta_{3}\right)\left(X-\theta_{2}\right)\left(X-\theta_{1}\right)
$$

is the reduced characteristic polynomial of $\theta_{i}, i=1$, 2, 3.
(2) $\operatorname{Tr}\left(\theta_{i}\right)=\theta_{1}+\theta_{2}+\theta_{3}$ and $\mathrm{N}\left(\theta_{i}\right)=\theta_{i+2} \theta_{i+1} \theta_{i}=w_{1}^{-3} w_{2}^{3}$.
(3) For the involution $J^{\prime}=\operatorname{Int}\left(d^{-1}\right) \circ J$, where d is as in Proposition 1, we have $J^{\prime}\left(\theta_{2}\right)=\theta_{2}$ and $J^{\prime}\left(\theta_{1}\right)=\theta_{3}$.
(4) There exist $w_{1}, w_{2} \in U$ linearly independent over F such that $\operatorname{Tr}\left(w_{1}^{-1} w_{2}\right)=0$. For such a choice we have $\theta_{1}+\theta_{2}+\theta_{3}=0$.

Proof: The first part of (1) is clear. By Proposition 1, (4), $\left(w_{1} \alpha-w_{2}\right)^{3} \in F$ for all $\alpha \in F$. Since the field F is infinite it follows that $\left(w_{1} X-w_{2}\right)^{3} \in F[X]$. Because θ_{1} is a root of the right hand side of $(* *)$ we get the desired formula for its reduced characteristic polynomial. Thus $\operatorname{Tr}\left(\theta_{1}\right)=\theta_{3}+\theta_{2}+\theta_{1}$ and $\mathrm{N}\left(\theta_{1}\right)=\theta_{3} \theta_{2} \theta_{1}=w_{1}^{-3} w_{2}^{3}$. Conjugating with $w_{1}^{-i}, i=$ 1,2 , gives the other formulae of (2). The claims in (3) follow from $\theta_{2}=w_{1}^{-3}\left(w_{1} w_{2} w_{1}\right)$, $\theta_{1}=w_{1}^{-3}\left(w_{1}^{2} w_{2}\right)$ and $\theta_{3}=w_{1}^{-3}\left(w_{2} w_{1}^{2}\right)$, because J^{\prime} fixes U by Propostion 1, (3). Finally we check (4). Let w_{1} be a nonzero element of U. The form $x \mapsto \operatorname{Tr}\left(w_{1} x\right)$ on U has values in F. Since U is at least 2 -dimensional, there exists $w_{2} \neq 0 \in U$ with $\operatorname{Tr}\left(w_{1}^{-1} w_{2}\right)=0$. Since $\operatorname{Tr}(\lambda)=3 \lambda \neq 0$ for $\lambda \neq 0 \in F, w_{1}$ and w_{2} are linearly independent over F. It then follows from (2) that $\theta_{1}+\theta_{2}+\theta_{3}=0$.

To prove Albert's theorem we begin with a separable cubic extension of F contained in S (for example the F-subalgebra generated by any noncentral element of S). We then obtain a space U as in Proposition 1 and choose linearly independent elements $w_{1}, w_{2} \in U$ with $\operatorname{Tr}\left(w_{1}^{-1} w_{2}\right)=0$, as in Lemma 2, (4). We then let $\theta_{1}=\theta=w_{1}^{-1} w_{2}, \theta_{2}=w_{1}^{-1} \theta_{1} w_{1}$ and $\theta_{3}=w_{1}^{-1} \theta_{2} w_{1}$ as in Lemma 2.
Theorem 3. Let $E=K\left(\theta_{2}^{-1} \theta_{3}\right)$ if $\theta_{2}^{-1} \theta_{3} \notin K$ or $E=K\left(\theta_{2}\right)$ if $\theta_{2}^{-1} \theta_{3} \in K$. Then $E \subset D$ is cyclic over K and is a Galois extension over F with group \mathcal{S}_{3}.
Proof: Assume first that $\theta_{2}^{-1} \theta_{3} \notin K$, so that $\operatorname{dim}_{K} K\left(\theta_{2}^{-1} \theta_{3}\right)=3$. Since

$$
\operatorname{Int}\left(w_{1}^{-1}\right)\left(\theta_{2}^{-1} \theta_{3}\right)=\theta_{3}^{-1} \theta_{1}=-\theta_{3}^{-1}\left(\theta_{3}+\theta_{2}\right)=-1-\left(\theta_{2}^{-1} \theta_{3}\right)^{-1} \in K\left(\theta_{2}^{-1} \theta_{3}\right)
$$

$\operatorname{Int}\left(w_{1}^{-1}\right)$ restricts to a K-automorphism ρ of $K\left(\theta_{2}^{-1} \theta_{3}\right)$. If ρ is the identity, the element $\theta_{2}^{-1} \theta_{3}$ satisfies the equation $y^{2}+y+1=0$. The algebra D being of degree 3 , this implies that $\theta_{2}^{-1} \theta_{3} \in K$, in contradiction to the assumption. Thus ρ is nontrivial of order 3 . We further have for the involution J^{\prime} given in Lemma 2

$$
J^{\prime}\left(\theta_{2}^{-1} \theta_{3}\right)=\theta_{1} \theta_{2}^{-1}=\theta_{2}\left(\theta_{2}^{-1} \theta_{1}\right) \theta_{2}^{-1}=-\theta_{2}\left(1+\theta_{2}^{-1} \theta_{3}\right) \theta_{2}^{-1}
$$

so the involution $J^{\prime \prime}=\operatorname{Int}\left(\theta_{2}^{-1}\right) \circ J^{\prime}$ satisfies $J^{\prime \prime}\left(\theta_{2}^{-1} \theta_{3}\right)=-\left(1+\theta_{2}^{-1} \theta_{3}\right)$ and so defines an automorphism of order 2 of $K\left(\theta_{2}^{-1} \theta_{3}\right)$. To show that $\operatorname{Int}\left(w_{1}^{-1}\right)$ and $J^{\prime \prime}$ generate a group isomorphic to \mathcal{S}_{3}, it suffices to verify that $J^{\prime \prime} \circ \operatorname{Int}\left(w_{1}^{-1}\right)=\operatorname{Int}\left(w_{1}^{-2}\right) \circ J^{\prime \prime}$. We check it on the generator $\theta_{2}^{-1} \theta_{3}$:

$$
J^{\prime \prime} \circ \operatorname{Int}\left(w_{1}^{-1}\right)\left(\theta_{2}^{-1} \theta_{3}\right)=\left(\theta_{2}^{-1} \theta_{3}\right)\left(\theta_{1}^{-1} \theta_{2}\right)=\left(\theta_{1}^{-1} \theta_{2}\right)\left(\theta_{2}^{-1} \theta_{3}\right)=\theta_{1}^{-1} \theta_{3}
$$

where the next to last equality follows from the fact that $\theta_{1}^{-1} \theta_{2}=\operatorname{Int}\left(w_{1}^{-2}\right)\left(\theta_{2}^{-1} \theta_{3}\right) \in$ $K\left(\theta_{2}^{-1} \theta_{3}\right)$ and so commutes with $\theta_{2}^{-1} \theta_{3}$. On the other hand we have

$$
\operatorname{Int}\left(w_{1}^{-2}\right) \circ J^{\prime \prime}\left(\theta_{2}^{-1} \theta_{3}\right)=\operatorname{Int}\left(w_{1}^{-2} \theta_{2}^{-1}\right) \circ J^{\prime}\left(\theta_{2}^{-1} \theta_{3}\right)=\theta_{1}^{-1} \theta_{3}
$$

as claimed.
Assume now that $\theta_{2}^{-1} \theta_{3}=y \in K$. By Lemma 2, (2), we must have $y^{3}=1$. If $y=1$, we get $\theta_{2}=\theta_{3}=\theta_{1}$, a contradiction to $\theta_{2}+\theta_{3}+\theta_{1}=0$. Thus $y \in K$ is a primitive cubic root of 1 . It follows from $\theta_{3}=y \theta_{2}$ that $\theta_{1}=y \theta_{3}$ and $\theta_{2}=y \theta_{1}$. Thus
$\mathrm{N}\left(\theta_{2}\right)=\theta_{1} \theta_{3} \theta_{2}=\theta_{2}^{3}$ and $\theta_{2}^{3} \in K$. Since $J^{\prime}\left(\theta_{2}\right)=\theta_{2}$, we even have $\theta_{2}^{3} \in F$. Further we deduce from $J^{\prime}\left(\theta_{1}\right)=\theta_{3}$ and $\theta_{1}=y \theta_{3}$ that $\theta_{3}=J^{\prime}(y) \theta_{1}$, so that $J^{\prime}(y)=y^{2}$ and $K=F(y)$. Thus we have $K\left(\theta_{2}\right)=K\left(\theta_{3}\right)=K\left(\theta_{1}\right)$ and the restriction ρ of $\operatorname{Int}\left(w_{1}^{-1}\right)$ to $K\left(\theta_{2}\right)$ is given by $\theta_{2} \mapsto \theta_{3}=y \theta_{2}$. It is then easy to check that $\left\{J^{\prime}, \rho\right\}$ generates a group of automorphisms of $K\left(\theta_{2}\right)$ isomorphic to \mathcal{S}_{3}.

Remarks. (1) The argument used in the proof of Theorem 3 is largely inspired by the very last part of Albert's proof in $\left(\left[\mathrm{A}_{2}\right]\right)$. The use of Lemma 2 allows to avoid most of the computations in the first part of his proof.
(2) As we remarked in the introduction the analog of Proposition 1 given in $\left[\mathrm{H}_{2}\right]$ is used to give a proof of Wedderburn's Theorem on the cyclicity of a central division algebra of degree 3 (without involution) over K. In fact, Albert's Theorem also holds (with the same proof) for D of the form $A \times A^{\circ \mathrm{p}}, A$ a central division algebra over F with the twist involution, so that Wedderburn's Theorem can be viewed a special case of Albert's Theorem. Thus we get another elementary proof of Wedderburn's Theorem. A similar remark applies to the next proposition.

Wedderburn Factorization of symmetric elements. Let D, K, J, S and F be as above. We want to show that one can obtain the full "symmetric" version of Wedderburn's Factorization Theorem (described in the introduction).

Proposition 4. Let $\theta \in D-F$ with minimal polynomial $f \in F[X]$. There is an involution J^{\prime} on D such that $\theta \in S^{\prime}=\left(D, J^{\prime}\right)_{+}$and there is an element $\xi \in S^{\prime}$ such that $\xi^{3} \in F^{\times}$ and

$$
f(X)=\left(X-\xi^{-2} \theta \xi^{2}\right)\left(X-\xi^{-1} \theta \xi^{1}\right)(X-\theta)
$$

Proof: We first show there is an involution fixing θ. This is a special case of a result of Albert ([$\left.\mathrm{A}_{1}\right]$, p. 157). For completeness we provide a proof. The elements θ and $J(\theta)$ have the same minimal polynomials, hence are conjugates in D. Let $J(\theta)=\operatorname{Int}(g)(\theta)$. If $g+J(g) \neq 0$, then $\operatorname{Int}(g+J(g))(\theta)=J(\theta)$ and so the involution $J^{\prime \prime}=\operatorname{Int}\left((g+J(g))^{-1}\right) \circ J$ fixes θ. If $g=-J(g)$, then $J^{\prime \prime}=\operatorname{Int}\left(g^{-1}\right) \circ J$ fixes θ.

We proceed as in the proof of Proposition 1 to find a 2 -dimensional subspace W of $L=F(\theta) \subset S^{\prime \prime}=\left(D, J^{\prime \prime}\right)_{+}$and $d \in S^{\prime \prime} \cap D^{\times}$such that $y^{3} \in F$ for all $y \in d^{-1} W$. Let $Y=F+F \theta \subset L$. We claim that there exists $\ell \in L$ such that $\ell W=Y$. In fact it was shown in $\left[\mathrm{H}_{2}\right]$ that for any 2 -dimensional subspaces U_{1} and U_{2} of L, there is $\ell \in L$ such that $\ell U_{1}=U_{2}$. Again for completeness we recall the argument: let $f, g \in L^{*}$ be such that $U_{1}=\operatorname{Ker} f$ and $U_{2}=$ Ker g. The claim then follows from the fact that L^{*} is a 1 -dimensional L-space (through the operation $(f \ell)(x)=f(\ell x))$. So let $\ell \in L$ be such that $\ell W=Y$ and let $\xi=(\ell d)^{-1}$; then $\xi Y=d^{-1} \ell^{-1} Y=d^{-1} W$, so that $x^{3} \in F$ for all $x \in \xi Y$. As in the proof of Lemma 2, (1), it follows that $(\xi X-\xi \theta)^{3} \in F[X]$ and hence, applying $(*)$, that $\left(X-\xi^{-2} \theta \xi^{2}\right)\left(X-\xi^{-1} \theta \xi^{1}\right)(X-\theta)$ is the reduced characteristic polynomial of θ. It follows that $f(X)=\left(X-\xi^{-2} \theta \xi^{2}\right)\left(X-\xi^{-1} \theta \xi^{1}\right)(X-\theta)$. Moreover $J^{\prime}=\operatorname{Int}(\ell) \circ J^{\prime \prime}$ fixes θ and ξ.

Clifford Algebras. The foregoing results may be applied to the theory of Clifford algebras of binary cubic forms. Recall that if $g\left(u_{1}, \ldots, u_{m}\right)$ is a form of degree d in m
variables over a field F, then the Clifford algebra C_{g} of g is the algebra $F\left\{X_{1}, \ldots, X_{m}\right\} / I$ where $F\left\{X_{1}, \ldots, X_{m}\right\}$ is the free algebra on m variables and I is the ideal generated by the set

$$
\left\{\left(\alpha_{1} X_{1}+\ldots \alpha_{m} X_{m}\right)^{d}-g\left(\alpha_{1}, \ldots, \alpha_{m}\right), \alpha_{1}, \ldots, \alpha_{m} \in F\right\}
$$

(See Roby [Ro], Revoy [Re_{1}], Childs [C]). If g is a binary cubic form it has been shown (Heerema [He], Revoy $\left[\mathrm{Re}_{2}\right]$, Haile $\left[\mathrm{H}_{1}\right]$) that C_{g} is an Azumaya algebra over its center Z and that Z is isomorphic to the affine coordinate ring $F[E]$ of the elliptic curve E given by the equation $S^{2}=R^{3}-27 \delta$ where $\delta \in F$ is the discriminant of g. In particular each simple image A of C_{g} is of degree 3 over its center and the simple images with center F are in one-to-one correspondence with the F-rational points on E. This correspondence gives rise to a function from $E(F)$, the group of F-rational points on E, to $B(F)$, the Brauer group of F, and it is shown in Haile $\left[\mathrm{H}_{1}\right]$, that this map is a group homomorphism.

Now let $g(u, v)$ be a binary cubic form over F. The free algebra $F\{X, Y\}$ admits a unique involution fixing X and Y and this involution preserves I. We let $*$ denote the induced involution on C_{g} and call it the canonical involution on C_{g}.

Proposition 5. Let A be a simple algebra of degree 3 with involution of the second kind having fixed field F. There is an involution J on A and a binary form $g(u, v)$ over F such that (A, J) is a homomorphic image of $\left(C_{g}, *\right)$. Moreover, if A is a division algebra and $f(x) \in F[x]$ is irreducible of degree 3 with a root $\theta \in D$, then there is an element $a \in F^{\times}$ and an involution J on D such that $\left(C_{g}, *\right)$ maps onto (D, J), where $g(u, v)=a v^{3} f(u / v)$.

Proof: Let K denote the center of A. First assume A is a division algebra. By Proposition 4 there is a involution J^{\prime} such that $J^{\prime}(\theta)=\theta$ and an element $\xi \in A$ fixed by J^{\prime} such that $\xi^{3}=a \in F^{\times}$and

$$
f(X)=\left(X-\xi^{-2} \theta \xi^{2}\right)\left(X-\xi^{-1} \theta \xi^{1}\right)(X-\theta)=a^{-1}(\xi X-\xi \theta)^{3} .
$$

Hence the binary cubic form $g(u, v)=a v^{3} f(u / v)$ satisfies $g(u, v)=(u \xi+v(-\xi \theta))^{3} \in$ $A[u, v]$. If we let $J=\operatorname{Int}(\xi) \circ J^{\prime}$, then $J(\xi)=\xi, J(\xi \theta)=\xi \theta$. Hence the map $X \mapsto \xi, Y \mapsto \xi \theta$ induces a homomorphism from $\left(C_{g}, *\right)$ onto (A, J).

If $A=M_{3}(K)$, let $J^{\prime}=\operatorname{Int}(u) \circ \tau$ with $u=\operatorname{diag}\left(1,\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right)\right), \tau\left(x_{i j}\right)=\left(\bar{x}_{i j}\right)^{t}$, where $x \mapsto \bar{x}$ is conjugation in K and t is transpose. If $K=F(\beta)$ with $\beta^{2}=a$, let $g(u, v)=$ $(u-v)\left(u^{2}-a v^{2}\right)$. There is a homomorphism ϕ of $\left(C_{g}, *\right)$ onto $\left(M_{3}(K), J\right)$ sending

$$
X \text { to }\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \text { and } Y \text { to }\left(\begin{array}{ccc}
0 & 0 & -\beta \\
1 & 0 & 0 \\
0 & \beta & 0
\end{array}\right)
$$

where $J=\operatorname{Int}(\phi(X)) \circ J^{\prime}$.
If A is a simple image of C_{g} arising from the maximal ideal m of Z then $*$ will induce an involution on A if and only if $m^{*}=m$. Moreover, because the center of A is Z / m we see that the fixed field of $*$ on A is F if and only if m has residue degree 2 . In fact we can describe such maximal ideals quite precisely:

Theorem 6. The simple images of C_{g} on which $*$ induces an involution of the second kind with fixed field F are in one to one correspondence with the pairs of points ($r, \pm s$) on the curve $S^{2}=R^{3}-27 \delta$ such that $r \in F, s \notin F$. The center of the resulting algebra is $F(s)$, a quadratic extension of F.

Proof: Let $C_{g}=F\{X, Y\} / I$. We use the results of the discussion beginning section 2 of $\left[\mathrm{H}_{3}\right]$. By making a linear change of variables we may assume that $g(u, v)=a u^{3}+3 c u v^{2}+d v^{3}$ in $F[u, v]$. Let $r=a c, 2 s=a d, t=-c^{2}$, and $\delta=s^{2}-r t=\frac{a^{2} d^{2}}{4}+a c^{3}$, the discriminant of g. Let $L=F[\sqrt{\delta}, \omega]$ where ω is a primitive third root of one. Let $\bar{X}=(\sqrt{\delta}+s) X-r Y$ and $\bar{Y}=$ $(\sqrt{\delta}-s) X+r Y$ in $C_{g} \otimes_{F} L$, the Clifford algebra of g over L. If we let $\mu=\bar{Y} \bar{X}-\omega \bar{X} \bar{Y}$ and $\nu=\bar{Y} \bar{X}-\omega^{2} \bar{X} \bar{Y}$, then the elements $\mu \nu, \sqrt{\delta}\left(\mu^{3}+\nu^{3}\right)$ are in C_{g} and $Z=F\left[\mu \nu, \sqrt{\delta}\left(\mu^{3}+\nu^{3}\right)\right]$. Morever Z is isomorphic to the coordinate ring of $E: S^{2}=R^{3}-27 \delta$ via the map

$$
R \mapsto \frac{\mu \nu}{4 r^{2} \delta}, \quad S \mapsto \frac{\sqrt{\delta}\left(\mu^{3}+\nu^{3}\right)}{16 r^{3} \delta^{2}}
$$

Now the map $* \otimes 1$ is the canonical involution on $C_{g} \otimes L$ and an easy computation shows that $\mu^{* \otimes 1}=-\omega \nu$. It follows that $\mu \nu$ in C_{g} is fixed by $*$. Hence the action of $*$ on $Z=F[E]$ is given by $R^{*}=R$ and $S^{*}=-S$.

Now let A be a simple image of C_{g} on which $*$ induces an involution of second kind with fixed field F. As we have seen $A=C_{g} / m C_{g}$ where m is a maximal ideal of Z of residue degree 2 such that $m^{*}=m$. Let $K=Z / m$. The involution $*$ induces the nontrivial automorphism of K over F. Hence in the coordinate ring $K[E]$ there are 2 maximal ideals lying over m in $F[E]$. These maximal ideals are given by K-rational points and are conjugate under $*$. If (r, s) is one such point we have seen that $r^{*}=r$ and $s^{*}=-s$. Hence $r \in F, s \notin F$ and $K=F(s)$.

Conversely, if (r, s) is a point on E such that $r \in F, s \notin F$ then $K=F(s)$ is a quadratic extension of F. Moreover $(r,-s)$ is another point on E and these two points lie over the same maximal ideal m of $F[E]$. Clearly $m^{*}=m$ and m has residue degree 2, so, as we have seen, * induces an involution of the second kind on $C_{g} / m C_{g}$ with fixed field F.

COROLLARY 7. Let $K=F(\gamma), \gamma^{2} \in F$ be a quadratic extension of F. The simple images of C_{g} with center K on which $*$ induces an involution of second kind with fixed field F are in one to one correspondence with the pairs $(\alpha, \pm \beta)$ of F-rational points on the elliptic curve $S^{2}=R^{3}-27\left(\delta / \gamma^{3}\right)$.

Proof: By the theorem the simple images of C_{g} with center K on which $*$ induces an involution of second kind with fixed field F are in one to one correspondence with the pairs of points $(r, \pm s)$ on the curve $S^{2}=R^{3}-27 \delta$ such that $r \in F$ and $F(s)=K$. Since $s^{2}=r^{3}-27 \delta \in F$, it follows that $s / \gamma \in F$. But then the points $\left(r / \gamma^{2}, \pm s / \gamma^{3}\right)$ are F rational and lie on $S^{2}=R^{3}-27\left(\delta / \gamma^{3}\right)$. Conversely if $(\alpha, \pm \beta)$ are F-rational points on $S^{2}=R^{3}-27\left(\delta / \gamma^{3}\right)$, then the points $\left(\alpha \gamma^{2}, \pm \beta \gamma^{3}\right)$ lie on $S^{2}=R^{3}-27 \delta$ and satisfy $\alpha \gamma^{2} \in F$, $F\left(\beta \gamma^{3}\right)=K$.

References

[A A_{1} A.A. Albert, Structure of Algebras, Colloqium Publ. 24, Amer. Math. Soc. New York, 1939
[A_{2}] A.A. Albert, On involutorial associative division algebras, Scripta Mathematica 26 (1963), 309-316
[C] L. Childs, Linearizing of n-ic forms and generalized Clifford algebras, Linear and Multilinear Alg. 5 (1978), 267-278
$\left[\mathrm{H}_{1}\right] \quad$ D.E. Haile, On the Clifford algebra of a binary cubic form, Amer. J. Math. 106 (1984), 12-69-1280
$\left[\mathrm{H}_{2}\right]$ D.E. Haile, A useful proposition for division algebras of small degree, Proc. Amer. Math. Soc. 106 (1989), 317-319
[H_{3}] D.E. Haile, On Clifford algebras and conjugate splittings, J. Algebra 139 (1991), 322-335
[He] N. Heerema, An algebra determined by a binary cubic form, Duke Math. J. 21 (1954), 423-444
[$\left.\mathrm{Re}_{1}\right]$ Ph. Revoy, Algèbres de Clifford et algèbres extérieures, C.R. Acad. Sci. Paris 277A (1973), 655-657
[$\left.\mathrm{Re}_{1}\right]$ Ph. Revoy, Sur certaines algèbres de Clifford, Communications in Alg. 11 (1983), 1877-1891
[Ro] N. Roby, Algèbres de Cliford des formes polynômes, C.R. Acad. Paris 268A (1969), 484-486
[W] J.H.M. Wedderburn, On division algebras, Trans. Amer. Math. Soc. (1921), 129-135

Darrell E. Haile
Department of Mathematics
Indiana University
Bloomington, IN 47405
USA
haile ucs.indiana.edu
Max-Albert Knus
Departement Mathematik
ETH-Zentrum
CH-8092 Zürich
Switzerland
knus math.ethz.ch

[^0]: * This research was done while the first author was a visitor at the ETH, Zürich. He would like to thank the Forschungsinstitut für Mathematik for its hospitality.

