ON DIVISION ALGEBRAS OF DEGREE 3 WITH INVOLUTION

BY D. HAILE* AND M.-A. KNUS

Introduction. Let D be a division algebra of degree 3 over its center K and let J be an involution of the second kind on D. Let F be the subfield of K of elements invariant under J. We assume that char $F \neq 3$. In the first part of this note we present a simple proof of Albert's Theorem ($[A_2]$) on the existence of a maximal subfield of D which is Galois over F with group S_3 . The first step is a construction of a subspace of elements u such that $u^3 \in F$, inspired by a similar contruction in $[H_2]$ (for algebras without involution). This construction was used there to give a short elementary proof of Wedderburn's Theorem ([W]) that central division algebras of degree 3 are cyclic. In fact the argument given here yields another proof of Wedderburn's Theorem.

In [W] Wedderburn, in preparation for his result on the cyclicity of algebras of degree 3, proves that if θ is a noncentral element of D with minimal polynomial f(X) (say), then there is an element $\xi \in D^{\times}$ such that $\xi^3 \in K$ and $f(X) = (X - \xi^{-2}\theta\xi^2)(X - \xi^{-1}\theta\xi^1)(X - \theta)$. In part 2 we prove an analogous theorem for the elements of D symmetric under J. In part 3 we apply these results to the theory of Clifford algebras. We prove that every central simple algebra of degree 3 with involution of the second kind is a homomorphic image (as algebra with involution) of the Clifford algebra of some binary cubic form with its canonical involution and then show how to classify these images for a given form.

Albert's Theorem. Let D, K, F and J be as above and let $S = (D, J)_+$ be the F-subspace of symmetric elements. Let $P_a(X)$ be the reduced characteristic polynomial of $a \in D$, let Tr be the reduced trace and N the reduced norm on D. By passing to the algebraic closure of K one easily verifies the following formula for $P_a(X)$:

$$P_a(X) = X^3 - \text{Tr}(a)X^2 + N(a)\text{Tr}(a^{-1})X - N(a)1.$$

If $a \notin K$ then $P_a(X)$ is irreducible and the minimal polynomial of a over K. It follows that $P_a^J(X) = P_{J(a)}(X)$. In particular J commutes with Tr and N and if $a \in S$, then $P_a(X) \in F[X]$.

We begin with an analog for algebras with involution of the Proposition, p. 317, in $[H_2]$.

PROPOSITION 1. Let L be a separable cubic extension of F contained in S. (1) There exists $d \in S \cap D^{\times}$ such that $\operatorname{Tr}(Ld) = 0$.

^{*} This research was done while the first author was a visitor at the ETH, Zürich. He would like to thank the Forschungsinstitut für Mathematik for its hospitality.

(2) For d as in (1), the space $U = d^{-1}L \cap \text{Ker Tr} = \{d^{-1}\ell \mid \ell \in L \text{ and } \text{Tr}(d^{-1}\ell) = 0\}$ is at least 2-dimensional over F and $\text{Tr}(u) = \text{Tr}(u^{-1}) = 0$ for all $u \in U \cap D^{\times}$.

(3) The map $J' = Int(d^{-1}) \circ J$ is an involution of second kind on D and U is contained in $(D, Int(d^{-1}) \circ J)_+$.

(4) We have $u^3 = \mathcal{N}(u) \in F$ for all $u \in U$.

Proof: The proof is very similar to the proof of the result of $[H_2]$ mentioned above. For any $x \in S$, the form $f(x)(\ell) = \operatorname{Tr}(\ell x)$ has values in F since $J(\operatorname{Tr}(\ell x)) = \operatorname{Tr}(JxJ\ell) = \operatorname{Tr}(x\ell) = \operatorname{Tr}(\ell x)$. Thus we get an F-linear map $S \to L^*$, $x \mapsto f(x)$. Since $\dim_F S > \dim_F L$, there is an element d as wanted. For (2), since the form $\ell \mapsto \operatorname{Tr}(d^{-1}\ell)$ has values in F, we obviously have $\dim_F U \geq 2$ and, by the choice of d,

$$\operatorname{Tr}(d^{-1}\ell) = \operatorname{Tr}(\ell^{-1}d) = 0 \text{ for all } d^{-1}\ell \in U \cap D^{\times}.$$

To prove (3) note that $J(d^{-1}) = d^{-1}$. It follows that $Int(d^{-1}) \circ J$ is an involution of second kind on D and that the space of fixed elements under $Int(d^{-1}) \circ J$ is $d^{-1}S \supset U$. Finally we prove (4): Because the element u is fixed by the involution J', the argument presented immediately preceding the statement of the proposition shows that $P_u(X) \in F[X]$. Using the explicit form of $P_u(X)$ given there it follows from (2) that $u^3 = N(u) \in F$, as desired. \Box

Let $D[X] = D \otimes_F F[X]$. For any $\xi \in D^{\times}$, $\theta \in D$, we have

$$X - \xi^{-i}\theta\xi^i = \xi^{-1-i}(\xi X - \xi\theta)\xi^i.$$

Thus

(*)
$$(X - \xi^{-2}\theta\xi^2)(X - \xi^{-1}\theta\xi^1)(X - \theta) = \xi^{-3}(\xi X - \xi\theta)^3.$$

We apply this formula to the elements $\xi = w_1$ and $\theta = w_1^{-1}w_2$, where $w_1, w_2 \in U$ are linearly independent over F. We obtain:

(**)
$$(w_1X - w_2)^3 = w_1^3(X - w_1^{-2}\theta w_1^2)(X - w_1^{-1}\theta w_1)(X - \theta).$$

LEMMA 2. Let $\theta_1 = \theta = w_1^{-1} w_2$, $\theta_2 = w_1^{-1} \theta_1 w_1$ and $\theta_3 = w_1^{-1} \theta_2 w_1$. Then (1) Int $(w_1^{-1})(\theta_i) = \theta_{i+1}$, *i* mod 3, and

$$w_1^{-3}(w_1X - w_2)^3 = (X - \theta_3)(X - \theta_2)(X - \theta_1)$$

is the reduced characteristic polynomial of θ_i , i=1, 2, 3. (2) $\operatorname{Tr}(\theta_i) = \theta_1 + \theta_2 + \theta_3$ and $\operatorname{N}(\theta_i) = \theta_{i+2}\theta_{i+1}\theta_i = w_1^{-3}w_2^3$. (3) For the involution $J' = \operatorname{Int}(d^{-1}) \circ J$, where d is as in Proposition 1, we have $J'(\theta_2) = \theta_2$ and $J'(\theta_1) = \theta_3$. (4) There exists we were $\in U$ linearly independent over F such that $\operatorname{Tr}(w^{-1}w_2) = 0$. For

(4) There exist $w_1, w_2 \in U$ linearly independent over F such that $\operatorname{Tr}(w_1^{-1}w_2) = 0$. For such a choice we have $\theta_1 + \theta_2 + \theta_3 = 0$.

Proof: The first part of (1) is clear. By Proposition 1, (4), $(w_1\alpha - w_2)^3 \in F$ for all $\alpha \in F$. Since the field F is infinite it follows that $(w_1X - w_2)^3 \in F[X]$. Because θ_1 is a root of the right hand side of (**) we get the desired formula for its reduced characteristic polynomial. Thus $\operatorname{Tr}(\theta_1) = \theta_3 + \theta_2 + \theta_1$ and $\operatorname{N}(\theta_1) = \theta_3\theta_2\theta_1 = w_1^{-3}w_2^3$. Conjugating with w_1^{-i} , i = 1, 2, gives the other formulae of (2). The claims in (3) follow from $\theta_2 = w_1^{-3}(w_1w_2w_1)$, $\theta_1 = w_1^{-3}(w_1^2w_2)$ and $\theta_3 = w_1^{-3}(w_2w_1^2)$, because J' fixes U by Proposition 1, (3). Finally we check (4). Let w_1 be a nonzero element of U. The form $x \mapsto \operatorname{Tr}(w_1x)$ on U has values in F. Since U is at least 2-dimensional, there exists $w_2 \neq 0 \in U$ with $\operatorname{Tr}(w_1^{-1}w_2) = 0$. Since $\operatorname{Tr}(\lambda) = 3\lambda \neq 0$ for $\lambda \neq 0 \in F$, w_1 and w_2 are linearly independent over F. It then follows from (2) that $\theta_1 + \theta_2 + \theta_3 = 0$.

To prove Albert's theorem we begin with a separable cubic extension of F contained in S (for example the F-subalgebra generated by any noncentral element of S). We then obtain a space U as in Proposition 1 and choose linearly independent elements $w_1, w_2 \in U$ with $\operatorname{Tr}(w_1^{-1}w_2) = 0$, as in Lemma 2, (4). We then let $\theta_1 = \theta = w_1^{-1}w_2$, $\theta_2 = w_1^{-1}\theta_1w_1$ and $\theta_3 = w_1^{-1}\theta_2w_1$ as in Lemma 2.

THEOREM 3. Let $E = K(\theta_2^{-1}\theta_3)$ if $\theta_2^{-1}\theta_3 \notin K$ or $E = K(\theta_2)$ if $\theta_2^{-1}\theta_3 \in K$. Then $E \subset D$ is cyclic over K and is a Galois extension over F with group S_3 .

Proof: Assume first that $\theta_2^{-1}\theta_3 \notin K$, so that $\dim_K K(\theta_2^{-1}\theta_3) = 3$. Since

$$\operatorname{Int}(w_1^{-1})(\theta_2^{-1}\theta_3) = \theta_3^{-1}\theta_1 = -\theta_3^{-1}(\theta_3 + \theta_2) = -1 - (\theta_2^{-1}\theta_3)^{-1} \in K(\theta_2^{-1}\theta_3),$$

Int (w_1^{-1}) restricts to a *K*-automorphism ρ of $K(\theta_2^{-1}\theta_3)$. If ρ is the identity, the element $\theta_2^{-1}\theta_3$ satisfies the equation $y^2 + y + 1 = 0$. The algebra *D* being of degree 3, this implies that $\theta_2^{-1}\theta_3 \in K$, in contradiction to the assumption. Thus ρ is nontrivial of order 3. We further have for the involution J' given in Lemma 2

$$J'(\theta_2^{-1}\theta_3) = \theta_1 \theta_2^{-1} = \theta_2(\theta_2^{-1}\theta_1)\theta_2^{-1} = -\theta_2(1 + \theta_2^{-1}\theta_3)\theta_2^{-1}$$

so the involution $J'' = \operatorname{Int}(\theta_2^{-1}) \circ J'$ satisfies $J''(\theta_2^{-1}\theta_3) = -(1 + \theta_2^{-1}\theta_3)$ and so defines an automorphism of order 2 of $K(\theta_2^{-1}\theta_3)$. To show that $\operatorname{Int}(w_1^{-1})$ and J'' generate a group isomorphic to S_3 , it suffices to verify that $J'' \circ \operatorname{Int}(w_1^{-1}) = \operatorname{Int}(w_1^{-2}) \circ J''$. We check it on the generator $\theta_2^{-1}\theta_3$:

$$J'' \circ \operatorname{Int}(w_1^{-1})(\theta_2^{-1}\theta_3) = (\theta_2^{-1}\theta_3)(\theta_1^{-1}\theta_2) = (\theta_1^{-1}\theta_2)(\theta_2^{-1}\theta_3) = \theta_1^{-1}\theta_3$$

where the next to last equality follows from the fact that $\theta_1^{-1}\theta_2 = \text{Int}(w_1^{-2})(\theta_2^{-1}\theta_3) \in K(\theta_2^{-1}\theta_3)$ and so commutes with $\theta_2^{-1}\theta_3$. On the other hand we have

$$\operatorname{Int}(w_1^{-2}) \circ J''(\theta_2^{-1}\theta_3) = \operatorname{Int}(w_1^{-2}\theta_2^{-1}) \circ J'(\theta_2^{-1}\theta_3) = \theta_1^{-1}\theta_3$$

as claimed.

Assume now that $\theta_2^{-1}\theta_3 = y \in K$. By Lemma 2, (2), we must have $y^3 = 1$. If y = 1, we get $\theta_2 = \theta_3 = \theta_1$, a contradiction to $\theta_2 + \theta_3 + \theta_1 = 0$. Thus $y \in K$ is a primitive cubic root of 1. It follows from $\theta_3 = y\theta_2$ that $\theta_1 = y\theta_3$ and $\theta_2 = y\theta_1$. Thus

 $N(\theta_2) = \theta_1 \theta_3 \theta_2 = \theta_2^3$ and $\theta_2^3 \in K$. Since $J'(\theta_2) = \theta_2$, we even have $\theta_2^3 \in F$. Further we deduce from $J'(\theta_1) = \theta_3$ and $\theta_1 = y\theta_3$ that $\theta_3 = J'(y)\theta_1$, so that $J'(y) = y^2$ and K = F(y). Thus we have $K(\theta_2) = K(\theta_3) = K(\theta_1)$ and the restriction ρ of $Int(w_1^{-1})$ to $K(\theta_2)$ is given by $\theta_2 \mapsto \theta_3 = y\theta_2$. It is then easy to check that $\{J', \rho\}$ generates a group of automorphisms of $K(\theta_2)$ isomorphic to S_3 .

REMARKS. (1) The argument used in the proof of Theorem 3 is largely inspired by the very last part of Albert's proof in $([A_2])$. The use of Lemma 2 allows to avoid most of the computations in the first part of his proof.

(2) As we remarked in the introduction the analog of Proposition 1 given in $[H_2]$ is used to give a proof of Wedderburn's Theorem on the cyclicity of a central division algebra of degree 3 (without involution) over K. In fact, Albert's Theorem also holds (with the same proof) for D of the form $A \times A^{op}$, A a central division algebra over F with the twist involution, so that Wedderburn's Theorem can be viewed a special case of Albert's Theorem. Thus we get another elementary proof of Wedderburn's Theorem. A similar remark applies to the next proposition.

Wedderburn Factorization of symmetric elements. Let D, K, J, S and F be as above. We want to show that one can obtain the full "symmetric" version of Wedderburn's Factorization Theorem (described in the introduction).

PROPOSITION 4. Let $\theta \in D - F$ with minimal polynomial $f \in F[X]$. There is an involution J' on D such that $\theta \in S' = (D, J')_+$ and there is an element $\xi \in S'$ such that $\xi^3 \in F^{\times}$ and

$$f(X) = (X - \xi^{-2}\theta\xi^{2})(X - \xi^{-1}\theta\xi^{1})(X - \theta).$$

Proof: We first show there is an involution fixing θ . This is a special case of a result of Albert ([A₁], p. 157). For completeness we provide a proof. The elements θ and $J(\theta)$ have the same minimal polynomials, hence are conjugates in D. Let $J(\theta) = \text{Int}(g)(\theta)$. If $g+J(g) \neq 0$, then $\text{Int}(g+J(g))(\theta) = J(\theta)$ and so the involution $J'' = \text{Int}((g+J(g))^{-1}) \circ J$ fixes θ . If g = -J(g), then $J'' = \text{Int}(g^{-1}) \circ J$ fixes θ .

We proceed as in the proof of Proposition 1 to find a 2-dimensional subspace W of $L = F(\theta) \subset S'' = (D, J'')_+$ and $d \in S'' \cap D^{\times}$ such that $y^3 \in F$ for all $y \in d^{-1}W$. Let $Y = F + F\theta \subset L$. We claim that there exists $\ell \in L$ such that $\ell W = Y$. In fact it was shown in [H₂] that for any 2-dimensional subspaces U_1 and U_2 of L, there is $\ell \in L$ such that $\ell U_1 = U_2$. Again for completeness we recall the argument: let $f, g \in L^*$ be such that $U_1 = Ker f$ and $U_2 = Ker g$. The claim then follows from the fact that L^* is a 1-dimensional L-space (through the operation $(f\ell)(x) = f(\ell x)$). So let $\ell \in L$ be such that $\ell W = Y$ and let $\xi = (\ell d)^{-1}$; then $\xi Y = d^{-1}\ell^{-1}Y = d^{-1}W$, so that $x^3 \in F$ for all $x \in \xi Y$. As in the proof of Lemma 2, (1), it follows that $(\xi X - \xi \theta)^3 \in F[X]$ and hence, applying (*), that $(X - \xi^{-2}\theta\xi^2)(X - \xi^{-1}\theta\xi^1)(X - \theta)$ is the reduced characteristic polynomial of θ . It follows that $f(X) = (X - \xi^{-2}\theta\xi^2)(X - \xi^{-1}\theta\xi^1)(X - \theta)$. Moreover $J' = Int(\ell) \circ J''$ fixes θ and ξ .

Clifford Algebras. The foregoing results may be applied to the theory of Clifford algebras of binary cubic forms. Recall that if $g(u_1, \ldots, u_m)$ is a form of degree d in m

variables over a field F, then the Clifford algebra C_g of g is the algebra $F\{X_1, \ldots, X_m\}/I$ where $F\{X_1, \ldots, X_m\}$ is the free algebra on m variables and I is the ideal generated by the set

 $\{(\alpha_1 X_1 + \dots \alpha_m X_m)^d - g(\alpha_1, \dots, \alpha_m), \ \alpha_1, \dots, \alpha_m \in F\}$

(See Roby [Ro], Revoy [Re₁], Childs [C]). If g is a binary cubic form it has been shown (Heerema [He], Revoy [Re₂], Haile [H₁]) that C_g is an Azumaya algebra over its center Z and that Z is isomorphic to the affine coordinate ring F[E] of the elliptic curve E given by the equation $S^2 = R^3 - 27\delta$ where $\delta \in F$ is the discriminant of g. In particular each simple image A of C_g is of degree 3 over its center and the simple images with center F are in one-to-one correspondence with the F-rational points on E. This correspondence gives rise to a function from E(F), the group of F-rational points on E, to B(F), the Brauer group of F, and it is shown in Haile [H₁], that this map is a group homomorphism.

Now let g(u, v) be a binary cubic form over F. The free algebra $F\{X, Y\}$ admits a unique involution fixing X and Y and this involution preserves I. We let * denote the induced involution on C_q and call it the *canonical* involution on C_q .

PROPOSITION 5. Let A be a simple algebra of degree 3 with involution of the second kind having fixed field F. There is an involution J on A and a binary form g(u, v) over F such that (A, J) is a homomorphic image of $(C_g, *)$. Moreover, if A is a division algebra and $f(x) \in F[x]$ is irreducible of degree 3 with a root $\theta \in D$, then there is an element $a \in F^{\times}$ and an involution J on D such that $(C_g, *)$ maps onto (D, J), where $g(u, v) = av^3 f(u/v)$.

Proof: Let K denote the center of A. First assume A is a division algebra. By Proposition 4 there is a involution J' such that $J'(\theta) = \theta$ and an element $\xi \in A$ fixed by J' such that $\xi^3 = a \in F^{\times}$ and

$$f(X) = (X - \xi^{-2}\theta\xi^2)(X - \xi^{-1}\theta\xi^1)(X - \theta) = a^{-1}(\xi X - \xi\theta)^3.$$

Hence the binary cubic form $g(u, v) = av^3 f(u/v)$ satisfies $g(u, v) = (u\xi + v(-\xi\theta))^3 \in A[u, v]$. If we let $J = \text{Int}(\xi) \circ J'$, then $J(\xi) = \xi$, $J(\xi\theta) = \xi\theta$. Hence the map $X \mapsto \xi$, $Y \mapsto \xi\theta$ induces a homomorphism from $(C_g, *)$ onto (A, J).

If $A = M_3(K)$, let $J' = \operatorname{Int}(u) \circ \tau$ with $u = \operatorname{diag}(1, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}), \tau(x_{ij}) = (\bar{x}_{ij})^t$, where $x \mapsto \bar{x}$ is conjugation in K and t is transpose. If $K = F(\beta)$ with $\beta^2 = a$, let $g(u, v) = (u-v)(u^2 - av^2)$. There is a homomorphism ϕ of $(C_g, *)$ onto $(M_3(K), J)$ sending

$$X \text{ to } \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \text{ and } Y \text{ to } \begin{pmatrix} 0 & 0 & -\beta \\ 1 & 0 & 0 \\ 0 & \beta & 0 \end{pmatrix},$$

where $J = \text{Int}(\phi(X)) \circ J'$.

If A is a simple image of C_g arising from the maximal ideal m of Z then * will induce an involution on A if and only if $m^* = m$. Moreover, because the center of A is Z/m we see that the fixed field of * on A is F if and only if m has residue degree 2. In fact we can describe such maximal ideals quite precisely:

THEOREM 6. The simple images of C_g on which * induces an involution of the second kind with fixed field F are in one to one correspondence with the pairs of points $(r, \pm s)$ on the curve $S^2 = R^3 - 27\delta$ such that $r \in F, s \notin F$. The center of the resulting algebra is F(s), a quadratic extension of F.

Proof: Let $C_g = F\{X, Y\}/I$. We use the results of the discussion beginning section 2 of [H₃]. By making a linear change of variables we may assume that $g(u, v) = au^3 + 3cuv^2 + dv^3$ in F[u, v]. Let $r = ac, 2s = ad, t = -c^2$, and $\delta = s^2 - rt = \frac{a^2d^2}{4} + ac^3$, the discriminant of g. Let $L = F[\sqrt{\delta}, \omega]$ where ω is a primitive third root of one. Let $\overline{X} = (\sqrt{\delta} + s)X - rY$ and $\overline{Y} = (\sqrt{\delta} - s)X + rY$ in $C_g \otimes_F L$, the Clifford algebra of g over L. If we let $\mu = \overline{YX} - \omega \overline{XY}$ and $\nu = \overline{YX} - \omega^2 \overline{XY}$, then the elements $\mu\nu, \sqrt{\delta}(\mu^3 + \nu^3)$ are in C_g and $Z = F[\mu\nu, \sqrt{\delta}(\mu^3 + \nu^3)]$. Morever Z is isomorphic to the coordinate ring of $E: S^2 = R^3 - 27\delta$ via the map

$$R \mapsto \frac{\mu\nu}{4r^2\delta}, \quad S \mapsto \frac{\sqrt{\delta}(\mu^3 + \nu^3)}{16r^3\delta^2}$$

Now the map $* \otimes 1$ is the canonical involution on $C_g \otimes L$ and an easy computation shows that $\mu^{*\otimes 1} = -\omega\nu$. It follows that $\mu\nu$ in C_g is fixed by *. Hence the action of * on Z = F[E]is given by $R^* = R$ and $S^* = -S$.

Now let A be a simple image of C_g on which * induces an involution of second kind with fixed field F. As we have seen $A = C_g/mC_g$ where m is a maximal ideal of Z of residue degree 2 such that $m^* = m$. Let K = Z/m. The involution * induces the nontrivial automorphism of K over F. Hence in the coordinate ring K[E] there are 2 maximal ideals lying over m in F[E]. These maximal ideals are given by K-rational points and are conjugate under *. If (r, s) is one such point we have seen that $r^* = r$ and $s^* = -s$. Hence $r \in F, s \notin F$ and K = F(s).

Conversely, if (r, s) is a point on E such that $r \in F$, $s \notin F$ then K = F(s) is a quadratic extension of F. Moreover (r, -s) is another point on E and these two points lie over the same maximal ideal m of F[E]. Clearly $m^* = m$ and m has residue degree 2, so, as we have seen, * induces an involution of the second kind on C_g/mC_g with fixed field F.

COROLLARY 7. Let $K = F(\gamma), \gamma^2 \in F$ be a quadratic extension of F. The simple images of C_g with center K on which * induces an involution of second kind with fixed field F are in one to one correspondence with the pairs $(\alpha, \pm \beta)$ of F-rational points on the elliptic curve $S^2 = R^3 - 27(\delta/\gamma^3)$.

Proof: By the theorem the simple images of C_g with center K on which * induces an involution of second kind with fixed field F are in one to one correspondence with the pairs of points $(r, \pm s)$ on the curve $S^2 = R^3 - 27\delta$ such that $r \in F$ and F(s) = K. Since $s^2 = r^3 - 27\delta \in F$, it follows that $s/\gamma \in F$. But then the points $(r/\gamma^2, \pm s/\gamma^3)$ are F-rational and lie on $S^2 = R^3 - 27(\delta/\gamma^3)$. Conversely if $(\alpha, \pm \beta)$ are F-rational points on $S^2 = R^3 - 27(\delta/\gamma^3)$, then the points $(\alpha\gamma^2, \pm\beta\gamma^3)$ lie on $S^2 = R^3 - 27\delta$ and satisfy $\alpha\gamma^2 \in F$, $F(\beta\gamma^3) = K$.

References

- [A₁] A.A. Albert, *Structure of Algebras*, Colloqium Publ. 24, Amer. Math. Soc. New York, 1939
- [A₂] A.A. Albert, On involutorial associative division algebras, Scripta Mathematica 26 (1963), 309-316
- [C] L. Childs, Linearizing of n-ic forms and generalized Clifford algebras, Linear and Multilinear Alg. 5 (1978), 267-278
- [H₁] D.E. Haile, On the Clifford algebra of a binary cubic form, Amer. J. Math. 106 (1984), 12-69-1280
- [H₂] D.E. Haile, A useful proposition for division algebras of small degree, Proc. Amer. Math. Soc. 106 (1989), 317-319
- [H₃] D.E. Haile, On Clifford algebras and conjugate splittings, J. Algebra 139 (1991), 322-335
- [He] N. Heerema, An algebra determined by a binary cubic form, Duke Math. J. 21 (1954), 423-444
- [Re₁] Ph. Revoy, Algèbres de Clifford et algèbres extérieures, C.R. Acad. Sci. Paris 277A (1973), 655-657
- [Re₁] Ph. Revoy, Sur certaines algèbres de Clifford, Communications in Alg. 11 (1983), 1877-1891
- [Ro] N. Roby, Algèbres de Cliford des formes polynômes, C.R. Acad. Paris 268A (1969), 484-486
- [W] J.H.M. Wedderburn, On division algebras, Trans. Amer. Math. Soc. (1921), 129-135

Darrell E. Haile Department of Mathematics Indiana University Bloomington, IN 47405 USA haile ucs.indiana.edu

Max-Albert Knus Departement Mathematik ETH-Zentrum CH-8092 Zürich Switzerland knus math.ethz.ch