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1. Introduction.

In this paper we develop a general theory of compositions for quadratic spaces of rank 8 with

trivial Arf and Clifford invariants. Using this theory, and adapting a classical technique of C.

Chevalley, we construct classes of examples of Cayley algebras over any affine scheme. As an

application, for any field K of characteristic not 2 which admits a Cayley division algebra, we

construct Cayley algebras over the polynomial ring K[x, y] whose norms, restricted to trace zero

elements, are indecomposable as quadratic spaces. These give rise to principal G2–bundles on

A2
K with no reduction of the structure group to any proper connected reductive subgroup, thus

settling one of the two cases left open by M.S. Raghunathan in [R], the other being that of

principal F4–bundles.

In brief, we proceed as follows: we define, for any quadratic space over a scheme X, a Clifford

invariant with values in H2
fl(X,µ2) which generalizes the refined Clifford invariant introduced

in [PS] for schemes with 2 invertible. Quadratic spaces with trivial Arf and Clifford invariants

admit compositions via half–spin representations, which run parallel to the compositions de-

scribed by C. Chevalley in [Ch1] for quadratic spaces of maximal index over fields. If a rank 8

quadratic space and one of its half–spin representations represent 1, then, adapting Chevalley’s

techniques, we can construct a Cayley algebra whose norm is the given quadratic space. In this

context, it is natural to consider rank 7 quadratic spaces q for which 1 ⊥ q occurs as a half–spin

representation. A specific choice of such an admissible space 1 ⊥ q leads to the construction

of a class of G2–bundles on an affine scheme which admit a reduction of the structure group

to SU(3). By “twisting” these bundles through a glueing process developed in [P2], we get

nontrivial G2–bundles over A2
K with the property mentioned above.

The organisation of the paper is as follows: in Sections 2 and 3 we place in a general setting

classical results on spin and half–spin representations of maximal isotropic forms. In this context

the Clifford invariant plays an important role. Section 4 contains results on triality in the spirit

of [BS2]. Here we prove that the similarity class of a rank 8 quadratic space with trivial Arf

and Clifford invariants is determined by its even Clifford algebra with involution. Sections 5

and 6 describe the construction of G2–bundles with reduction of the structure group to SU(3).

Section 7 contains the construction of non-trivial G2–bundles over A2
K .

We would like to thank M.S. Raghunathan for communicating to us the proof of 7.8. The

first author thanks the Tata Institute of Fundamental Research, Bombay, for its hospitality

during the preparation of this paper and the second author acknowledges financial support from

IFCPAR/CEFIPRA.

2. Involutions and similitudes.

Throughout this section, R denotes a commutative ring and unadorned tensor products are

taken over R. For any R-algebra A we denote the group of units of A by A×. An R–linear
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involution τ of an Azumaya R-algebra A is said to be of the first kind. If A = EndR(V ), V a

faithfully projective R-module, there exist an invertible R-module I and an isomorphism

b : V ⊗ I ∼→ V ∗ = HomR(V,R)

such that τ(ϕ) ⊗ 1 = b−1ϕ∗b and b∗ = εb for some ε ∈ µ2(R) = {x ∈ R |x2 = 1}, ∗ denoting

transposition. If I = R, b : V
∼→ V ∗ is an ε–symmetric bilinear form (in fact the adjoint of a

form b : V ×V → R, but we shall not distinguish between a form and its adjoint) and we call the

pair (V, b) an ε–symmetric bilinear space. The corresponding involution of EndR(V ) is denoted

by τb and ε is the type of b.

A 1-symmetric bilinear space (I, d), with I invertible, is a discriminant module. The isometry

classes of discriminant modules form a group, denoted Disc(R), under the tensor product. We

denote the class of (I, d) by [I, d]. Let 〈r〉R be the discriminant module (R, d) with d (1, 1) =

r, r ∈ R×. An isometry

t : (V ⊗ I, b⊗ d)
∼→ (V ′, b′)

is a similitude with multiplier (I, d). Similitudes of quadratic spaces are defined correspondingly.

If (I, d) = 〈r〉R, t is a similitude with multiplier r in the classical sense. The set of similitudes

of (V, b) is a group. We denote it by GO(V, b). For any similitude t, let

End(t) : EndR(V )
∼→ EndR(V ′)

be given by End(t)(ϕ) = t(ϕ⊗ 1)t−1, ϕ ∈ EndR(V ).

(2.1) Lemma. Any similitude t : V ⊗ I
∼→ V ′ induces an isomorphism of algebras with

involution

End(t) : (EndR(V ), τb)
∼→ (EndR(V ′), τb′)

and any such isomorphism is of the form End(t) for some similitude t which is uniquely deter-

mined up to a unit of R.

Proof: By Morita theory (see [KPS] or [K], p. 171). 2

An involution τb of EndR(V ) is of orthogonal type if b is the polar of a quadratic form q,

i.e. b(x, y) = q(x + y) − q(x) − q(y) for x, y ∈ V . In this case we denote the involution by τq.

An isomorphism EndR(V )
∼→ EndR(V ′) of algebras with involutions of orthogonal type, is, by

definition, of the form End(t) with t : V ⊗ I ∼→ V ′ a similitude of quadratic forms, not just

bilinear forms.

Let S be a quadratic etale R-algebra with conjugation σ0. For any S-module W we denote

by σ0W the module W with the action of S twisted through σ0, by W (∗) the S-dual, by W ∗ the

R-dual and by W ∨, the module σ0(W (∗)). Accordingly, we set σ0f, f (∗) and f∨ for an S-linear

map f . If W is finitely generated projective over S, we identify W ∨∨ with W through the map

x 7→ x∨∨, x∨∨(f) = σ0(f(x)). An involution τ of an Azumaya S-algebra A such that τ | S = σ0

is of the second kind. If A = EndS(W ), an involution τ of the second kind is of the form

τ(ϕ) ⊗ 1 = B−1ϕ∨B
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for some S-linear isomorphism B : W⊗I ∼→W∨, where I is an invertible R-module and B∨ = B.

If I = R, B is a genuine hermitian form. We call a pair (W,B), with W finitely generated pro-

jective over S and B : W
∼→ W∨ a nonsingular hermitian form, a hermitian space and denote

the involution ϕ 7→ B−1ϕ∨B of EndS(W ) by τB.

A hermitian space of rank one over S is a hermitian discriminant module. Hermitian discrim-

inant modules form a group with respect to tensor product over S. The identity element is the

form 〈1〉S = (S, d) with d(x, y) = σ0(x)y. For any hermitian space (W,B) of rank n, (∧nW,∧nB)

is a hermitian discriminant module. We call it the hermitian discriminant of (W,B).

The trace map trS/R : S → R, defined by trS/R(s) = s + σ0(s), induces an isomorphism

tr : W (∗) ∼→ W ∗ of R-modules for any finitely generated projective S–module W . Identifying

W∨ with W (∗) as R–modules, trace yields an isomorphism tr : W ∨ ∼→W ∗. To any S–hermitian

form B : W → W∨ corresponds an R–bilinear symmetric form B∗ = tr ◦ B : W
∼→ W ∗ over R.

The form B∗ is the polar form of the quadratic form qB(x) = B(x, x).

(2.2) Lemma. Let W be a finitely generated projective S-module and let b be a symmetric R–

bilinear nonsingular form over W . Then b = B∗ for some hermitian form B on W if and only

if b(sx, y) = b(x, σ0(s)y) for s ∈ S, x, y ∈W .

Proof: Let B : W →W ∨ be defined as B = tr−1 ◦ b, treating b as a linear map W →W ∗. Then

B is S–linear if and only if b(sx, y) = b(x, σ0(s)y) for s ∈ S, x, y ∈W and, in this case, b = B∗.
2

(2.3) Lemma. Let W and b be as in 2.2. We have b = B∗ for some hermitian form B on W

if and only if the involution τb induced by b restricts to σ0 on the image of S in EndR(W ). In

this case τb restricts to the involution of the second kind τB on EndS(W ).

Proof: Let B = tr−1 ◦ b. The condition B : W → W (∗) is σ0–semilinear is equivalent to the

condition τb(s) = σ0(s) for s ∈ S. The rest of the assertions follows from 2.2. 2

(2.4) Corollary. Let (W, b) be as in 2.2. If τb restricts to σ0 on the image of S, then τb is of

orthogonal type.

Proof: In fact we have b = bqB with qB(x) = B(x, x). 2

(2.5) Remark. A bilinear form b admits S if b(sx, y) = b(x, σ0(s)y) for s ∈ S, x, y ∈W . The

functor, which assigns to a S-hermitian space (W,B) the quadratic space (W, qB) over R, is an

isomorphism of the category of S-hermitian spaces with the category of quadratic spaces over

R whose polars admit S (see [FM]).

Let (I, d) be a discriminant module and let (M, q) be a quadratic space over R. Let C(q) =

C0(q) ⊕ C1(q) be the Clifford algebra of (M, q). We define a graded algebra structure on the

R–module C0(q)⊕ C1(q)⊗ I by

(c0 + c1 ⊗ x)(c′0 + c′1 ⊗ x′) = c0c
′
0 + c1c

′
1d(x, x′) + c0c

′
1 ⊗ x′ + c1c

′
0 ⊗ x.

(2.6) Lemma. 1) The canonical map M ⊗ I → C1(q) ⊗ I induces a graded isomorphism of
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algebras

C(q ⊗ d)
∼→ C0(q)⊕ C1(q)⊗ I.

2) Any similitude t : M⊗I ∼→M ′ induces an isomorphism C0(t) : C0(q)
∼→ C0(q′) of algebras and

a C0(t)–semilinear isomorphism of bimodules C1(t) : C1(q)⊗I ∼→ C1(q′) such that C1(t)|M⊗I = t.

Proof: 1) The existence of a homomorphism C(q ⊗ d) → C0(q) ⊕ C1(q) ⊗ I follows from the

universal property of the Clifford algebra. The map is an isomorphism since C(q ⊗ d) is an

Azumaya algebra. 2) is a consequence of 1). 2

Assume that M has even rank. Then the centre Z of C0(q) is a quadratic etale R–algebra.

Let σ0 be the unique R–linear nontrivial involution of Z. A similitude t of M is proper if C0(t)

restricts to the identity of Z and is improper if it restricts to σ0. If R is connected, any simili-

tude is either proper or improper. We denote by GO+(q) the group of proper similitudes and

by GO−(q) the set of improper similitudes of (M, q).

3. The Clifford invariant and spin representations.

Most of the results of this section are valid over arbitrary algebraic schemes. However, to

simplify the exposition, we restrict to affine schemes. Let (U, p) be a quadratic space over R of

rank 2m. The Clifford algebra C(p) of (U, p) is an Azumaya algebra over R, the centre Z of the

even Clifford algebra C0(p) is, as already observed, a quadratic etale R–algebra and C0(p) is an

Azumaya algebra over Z. We call the involution τ of C(p) which is the identity on U the first

involution of C(p) and the involution τ ′ such that τ ′(x) = −x for x ∈ U the second involution

of C(p). Let τ0 be the restriction of τ (or τ ′) to C0(p). Then τ0 restricts to the identity of Z if

rankRU ≡ 0 (4) and to the unique nontrivial R–automorphism of Z if rankRU ≡ 2 (4). If not

explicitly specified, we consider C(p) as an algebra with the involution τ and C0(p) as an algebra

with the involution τ0. We recall that ν(c) = cτ(c) ∈ R× for any c ∈ C× with cUc−1 ⊂ U .

Let O(p) be the group of isometries of (U, p) and let SO(p) = O(p)∩GO+(p) be the special

orthogonal group. Let hC(p)× be the group of locally homogeneous units of C(p), let

Pin(p) = {c ∈ hC(p)× | (−1)deg(c)cUc−1 ⊂ U and cτ(c) = 1}

and let Spin(p) = Pin(p) ∩ C0(p). We have exact sequences (see [B])

1→ µ2(R)→ Pin(p)
χ−→ O(p)

SN−→ Disc(R)

and

1→ µ2(R)→ Spin(p)
χ−→ SO(p)

SN−→ Disc(R)

where χ is the vector representation, i.e. χc(x) = (−1)deg(c)cxc−1, x ∈ U , and SN is the spinor

norm.

In [PS] an invariant, called the refined Clifford invariant, with values in H 2
et(X,µ2), X =

Spec(R), was associated to a quadratic space over R, assuming that 2 ∈ R×. Without the

assumption 2 invertible, we define the Clifford invariant, with values in H 2
fl(X,µ2), as follows:

The above exact sequence yields an exact sequence of sheaves of groups

1→ µ2 → Pin2m → O2m → 1
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for the flat topology, where Pin and O are sheaves of flat sections of the group Pin, resp. the

orthogonal group, associated to the hyperbolic quadratic form

qH(x1, . . . , xm, y1, . . . , ym) = x1y1 + x2y2 + . . . xmym.

Any rank 2m quadratic space (U, p) over X defines a class in H 1
fl(X,O2m) and we define its

image in H2
fl(X,µ2) under the connecting homomorphism ∂ : H1

fl(X,O2m) → H2
fl(X,µ2) (see

[G], Remarque 4.2.10, p. 284) as the Clifford invariant of (U, p). One can verify that the Clifford

invariant coincides, in the case 2 is invertible, with the refined Clifford invariant defined in [PS].

(3.1) Proposition. Let (U, p) be a quadratic space over R of rank 2m with trivial Clifford

invariant. There exists an isomorphism of algebras with involution

α : C(p)
∼→ (EndR(V ), τb)

for some ε–bilinear space (V, b). If 2m ≡ 0 (8), the form b is the polar of a quadratic form q on

V and the involution τb is of orthogonal type. Further, we have

1) q(α(x)(v)) = p(x)q(v) for x ∈ U and v ∈ V .

2) q(α(c)(v)) = ν(c)q(v) for v ∈ V and c ∈ C× with cUc−1 ⊂ U .

Proof: By [G], Proposition 4.2.8, p. 283, the Clifford invariant of (U, p) is trivial if and only

if the class of (U, p) in H1
fl(X,O2m) is in the image of the canonical map H1

fl(X,Pin2m) →
H1
fl(X,O2m). In this case we have an isomorphism α : C(p)

∼→ (EndR(V ), τb) for some ε–

bilinear space (V, b). Let αij be a Čech 1–cocycle in Pin2m, with respect to an affine covering

{Ui} of X = Spec(R) (for the flat topology), such that its image in O2m defines the quadratic

space (U, p). Let i, j be fixed and let Ui ∩ Uj = Spec(S). The restriction of Clifford algebra

C(qH) to Ui ∩Uj is canonically isomorphic to End(∧(Sm)) (see [Ch1] or [B]) and αij, which is a

unit of C(qH) restricted to Ui ∩ Uj, corresponds to an element of End(∧(Sm)) which preserves

the bilinear form

b0(x, y) =

{
0 if k + ` 6= m

τ(x)y if k + ` = m

for x ∈ ∧k(Sm) and y ∈ ∧`(Sm), τ denoting the involution of the exterior algebra ∧(Sm) which

is the identity on Sm (see [PS]). This element defines a 1–cocycle with values in O(∧(Sm), b0)

and yields a symmetric bilinear space (V, b). By the very construction we have an isomorphism

C(U, p) ' (EndR(V ), τb). Further, if 2m ≡ 0 (8) and m = 2l, let q0 : ∧(Rm)→ ∧m(Rm) ' R be

defined by

q0(x) =





0 if x 6∈ ∧`(R2`)

(−1)
`(`−1)

2 exp(x)2` if x ∈ ∧`(R2`),

where exp is the exponential mapping as defined by Chevalley in [Ch2]. On Ui ∩ Uj , b0 is the

polar of q0. Formulae 1) and 2) (over Ui ∩ Uj) can be verified as in [Ch1], Chapter III, Section

2.7. The element αij leaves in fact the restriction of q0 to Ui ∩ Uj invariant, so that it defines a

class (V, q) in H1
fl(X,O(q0)) as required. Formulae 1) and 2) hold since they hold locally. 2

An isomorphism of algebras with involution

α : C(p)
∼→ (EndR(V ), τq)
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is a spin representation and (V, q) a spin representation space. We use the notation α(c) = αc
for c ∈ C(p). Given a spin representation α, we regard V as a Z–module through α, Z being

the centre of C0(p). Since C0(p) is the centralizer of Z in C(p) and since

C1(p) = {x ∈ C(p) | σ0(z)x = xz, ∀z ∈ Z},

α induces isomorphisms

α0 : C0(p)
∼→ EndZ(V ) = V ⊗Z V (∗) and α1 : C1(p)

∼→ HomZ(σ0V, V ) = V ⊗Z V ∨.

For any t ∈ SO(p), C(t) is an automorphism of C(p) and, by 2.1, C(t) induces a similitude

t̃ : (V, q)⊗ (It, dt)
∼→ (V, q).

In fact, the spinor norm SN(t) of t is the class [It, dt] in Disc(R) (see [B]), so that t ∈ SO(p)

induces an isometry of (V, q) if and only if SN(t) = 1 or, equivalently, if t = χc for some

c ∈ Spin(p).

Let (U, p) be a quadratic space with trivial Clifford and Arf invariants (we recall that the

Arf invariant is the isomorphism class of the centre Z of C0(p) if (U, p) has even rank; the Arf

invariant is trivial if Z ' R × R). Let α : C(p)
∼→ EndR(V ) be a fixed spin representation and

let e ∈ Z be an idempotent generating Z = R×R. For simplicity of presentation we restrict in

the following to the case R connected. This implies that the pair of idempotents (e, 1 − e) of

Z is unique. We get a decomposition V = E ⊕ F with E = αeV and F = α1−eV , the algebra

EndR(V ) has a corresponding block decomposition

EndR(E ⊕ F ) =

(
EndR(E) HomR(F,E)

HomR(E,F ) EndR(F )

)

and the gradation of C(p) corresponds to the checker-board gradation of EndR(E⊕F ). Observe

that rankRE = rankRF . If rankRU ≡ 0 (8), the involution τ0 is the identity on Z = R × R
and by 3.1 there exists nonsingular quadratic forms qE and qF on E, resp. F , such that the

transport ατα−1 of the involution τ of C(p) is of the form τq with q = qE ⊥ qF . Let bE and bF be

the polars of qE and qF respectively. We call (E, qE), (F, qF ) a pair of half-spin representation

spaces. We set

αc =

(
βc ρc
λc γc

)
∈ EndR(E ⊕ F ) for c ∈ C(p)

and call c 7→ βc, c 7→ γc the half-spin representations of C0(p). For u ∈ U the elements

λu ∈ HomR(E,F ), ρu ∈ HomR(F,E) satisfy λuρu = p(u) · 1F and ρuλu = p(u) · 1E . Let

λ(u, x) = λu(x) and ρ(u, y) = ρu(y) for u ∈ U , x ∈ E and y ∈ F . The maps λ : U ×E → F and

ρ : U × F → E are bilinear and 3.1 implies that

qF (λ(u, x)) = p(u)qE(x) and qE(ρ(u, y)) = p(u)qF (y).

A triple of nonsingular quadratic spaces (U, p), (E, qE), (F, qF ), with a bilinear map λ as above,

is a composition of quadratic forms. Thus any quadratic space of rank 8m with trivial Arf and

Clifford invariants gives rise to a composition λ : U ×E → F . The converse also holds:
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(3.2) Proposition. Let λ : U × E → F be a composition of quadratic spaces (U, p), (E, qE)

and (F, qF ) such that rankRU = 8m and rankRE = rankRF = 24m−1. Then (U, p) has trivial

Arf and Clifford invariants and (E, qE), (F, qF ) is a pair of half-spin representation spaces of

(U, p).

Proof: We view λ as a map U → HomR(E,F ) and put λu(x) = λ(u, x). Let ρu = b−1
E λ∗ubF .

Then u 7→ ( 0
λu

ρu
0 ) ∈ EndR(E ⊕ F ) extends to an isomorphism C(p)

∼→ EndR(E ⊕ F ) of graded

algebras and the involution τq with q = (qE0
0
qF ) corresponds to τ . 2

(3.3) Remark. In view of the Radon-Hurwitz formula, the half-spin representation spaces E

and F are spaces of the smallest possible rank which admit composition with U .

If λ : U × E → F and λ′ : U ′ × E′ → F ′ are compositions, an isometry λ
∼→ λ′ of

compositions is a triple (t, t2, t1) of isometries t : U
∼→ U ′, t2 : E

∼→ E′ and t1 : F
∼→ F ′ such

that t1 ◦ λ = λ′ ◦ (t, t2).

(3.4) Proposition. Let c ∈ C0(p)×. The following conditions are equivalent:

1) c ∈ Spin(p).

2) cUc−1 ⊂ U , βc is an isometry of (E, qE) and γc is an isometry of (F, qF ).

3) (χc, βc, γc) is an isometry of the composition λ.

Proof: The equivalence of 1) and 2) follows from 3.1. If cuc−1 ∈ U , we have γc ◦ λ = λ ◦ (χc, βc)

since λcuc−1 = γcλuβ
−1
c . Thus 3) is also equivalent to 2). 2

(3.5) Proposition. Let (U, p), (U ′, p′) be quadratic spaces with trivial Clifford and Arf invari-

ants and let λ : U×E → F , λ′ : U ′×E′ → F ′, be compositions given by half-spin representations.

Let t : (U, p)
∼→ (U ′, p′) ⊗ (I, d) be a similitude. There exist a discriminant module (J, k) and

either similitudes t2 : E ⊗ J ∼→ E′, t1 : F ⊗ I ⊗ J ∼→ F ′ or similitudes t2 : E ⊗ J ∼→ F ′, t1 :

F ⊗ I ⊗ J ∼→ E′ such that (t, t1, t2) is an isometry of λ ⊗ 1 : U × E ⊗ I → F ⊗ I ⊗ J with λ′

or an isometry of ρ ⊗ 1 : U × F ⊗ I → E ⊗ I ⊗ J with λ′. Furthermore t determines the pair

(t1, t2) up to a unit of R.

Proof: Let α : C(p)
∼→ EndR(E ⊕ F ), α′ : C(p′) ∼→ EndR(E′ ⊕ F ′) be the spin representations

induced by λ, λ′ respectively, as in 3.2. Then α′ ◦ C0(t) ◦ α−1 : EndR(E ⊕ F )
∼→ EndR(E′ ⊕ F ′)

is an isomorphism of algebras with involution (of orthogonal type). If e, e ′, are idempotents of

C(p) and C(p′) corresponding to the half–spin representations of (U, p), (U ′, p′), respectively, we

have either C(t)(e) = e′ or = 1 − e′. This corresponds to the two described cases in the claim,

which then follows from 2.1. 2

(3.6) Corollary. Let λ : U×E → F , ρ : U×F → E be compositions given by a pair of half-spin

representation spaces (E,F ) of the quadratic space (U, p).

1) If t : U ⊗ I ∼→ U is a proper similitude of (U, p), with multiplier (I, d), there exist a discrimi-

nant module (J, k) and similitudes t2 : E ⊗ J ∼→ E, t1 : F ⊗ I ⊗ J ∼→ F such that (t, t2, t1) is an

isometry of λ⊗ 1⊗ 1 : U ⊗ I ×E ⊗ J → F ⊗ I ⊗ J with λ.

2) If t : U ⊗ I
∼→ U is an improper similitude of (U, p), with multiplier (I, d), there exist a

discriminant module (J, k) and similitudes t2 : E ⊗ J
∼→ F , t1 : F ⊗ I ⊗ J

∼→ E such that
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(t, t2, t1) is an isometry of λ⊗ 1⊗ 1 : U ⊗ I ×E ⊗ J → F ⊗ I ⊗ J with ρ.

We next assume that the quadratic space (U, p) represents a unit, i.e. there exists u1 ∈ U
such that p(u1) ∈ R×. Replacing p by p(u1)−1p(x), we may as well assume that the form p

represents 1. Then λu1 : (E, bE)
∼→ (F, bF ) is an isometry with inverse ρu1 . Replacing λ by

ρu1 ◦ λ, we get a composition λ : U × E → E such that u1 acts as identity on E and a spin

representation α : C(p)
∼→ EndR(E ⊕E) such that αu1 = (0

1
1
0).

(3.7) Remark. A similitude (E, qE)
∼→ (F, qF ) may exist even if (U, p) does not represent a

unit. Let R = R[x, y] be the polynomial ring in two variables over the field of real numbers, let

(Rn, pn) be an indecomposable quadratic space over R of rank n such that its reduction modulo

(x, y) is the diagonal form 〈1, . . . , 1〉. Such spaces exist for n ≥ 3, by [P2]. Then p3 ⊥ p5 does not

represent a unit and has trivial Arf and Clifford invariants. The isometry t = −1 ⊥ 1 switches

the two factors of the centre R×R of C0(p) since it is improper. Thus C(t) induces a similitude

t2 : E
∼→ F for any pair of half-spin representation (E,F ).

4. Triality.

Let (U, p) be a quadratic space of rank 8 with trivial Arf and Clifford invariants. Let α : C(p)
∼→

EndR(E ⊕ F ) be a half-spin representation. The two quadratic spaces (E, qE) and (F, qF ) also

have rank 8. We construct six compositions relating U,E and F . We put λ1 = λ, ρ1 = ρ,

where λ and ρ are as in Section 3, and define λ2, ρ2, λ3, ρ3 as follows. The map ρ2 is given by

ρ2(x, u) = λ1(u, x). Let T : U ×E × F → R be the trilinear form

(u, x, y) 7→ bF (λ1(u, x), y) = bE(x, ρ1(u, y)).

For fixed (x, y) ∈ E × F , we define f(x,y) ∈ U∗ by f(x,y)(u) = T (u, x, y). Since p is nonsingular,

there exists λ2(x, y) ∈ U such that f(x,y)(u) = p(λ2(x, y), u) for all u ∈ U . By definition of λ2

and ρ2, we have

bp(λ2(x, y), u) = bF (y, ρ2(x, u)).

Finally, we set λ3(y, u) = ρ1(u, y) and define ρ3 : F ×E → U through the trilinear form T , i.e.

bp(ρ3(y, x), u) = bE(x, λ3(y, u)).

To check that all these maps are compositions of the corresponding quadratic forms, we can

localize and follow Chevalley’s computations ([Ch1], p. 120).

For any composition µ : X × Y → W we denote by µx the linear map Y → W given by

µx(y) = µ(x, y). For the proof of the following result, we shall use the identities

λ2,xρ2,x = qE(x) · 1 = ρ2,xλ2,x

λ3,yρ3,y = qF (y) · 1 = ρ3,yλ3,y

for x ∈ E and y ∈ F .

(4.1) Proposition. The pair (λ2, ρ2) induces an isomorphism

α2 : C(qE)
∼→ (EndR(U ⊕ F ), τq2), where q2 = (p0

0
qF ),
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and (λ3, ρ3) induces an isomorphism

α3 : C(qF )
∼→ (EndR(U ⊕E), τq3), where q3 = (p0

0
qE

).

Proof: The map α2 is induced by x 7→ ( 0
λ2,x

ρ2,x

0 ) and α3 is induced by y 7→ ( 0
λ3,y

ρ3,y

0 ). 2

(4.2) Corollary. Let R be a connected ring. Two quadratic spaces of rank 8 over R with trivial

Arf and Clifford invariants are similar if and only if their even Clifford algebras are isomorphic

as algebras with involution.

Proof: Let (U, p) and (U ′, p′) be the two spaces, let

α0 : C0(p)
∼→ EndR(E)× EndR(F )

α′0 : C0(p′) ∼→ EndR(E′)× EndR(F ′)

be induced by half-spin representations and let ψ : C0(p)
∼→ C0(p′) be an isomorphism of algebras

with involution. Since R is connected, we have α′0ψα
−1
0 (1, 0) = (1, 0) or = (0, 1) ∈ R × R. By

relabelling E ′ and F ′, we may assume that α′0ψα
−1
0 maps EndR(E) to EndR(E′) and EndR(F ) to

EndR(F ′). Thus α′0ψα
−1
0 is an isomorphism of algebras with involutions EndR(E)×EndR(F )

∼→
EndR(E′)× EndR(F ′) over R×R and, by 2.1, ψ induces similitudes

ϕ2 : (E, qE)⊗ (I2, d2)
∼→ (E′, qE′)

ϕ3 : (F, qF )⊗ (I3, d3)
∼→ (F ′, qF ′)

of quadratic forms, for some discriminants modules (I2, d2), (I3, d3). In turn, by 2.6, ϕ2 and ϕ3

induce isomorphisms of algebras with involution

C0(ϕ2) : C0(qE)
∼→ C0(qE′), C0(ϕ3) : C0(qF )

∼→ C0(qF ′),

so that by 4.1,

(EndR(U)× EndR(F ), τp×qF ) ' (EndR(U ′)× EndR(F ′), τp′×qF ′ ).

We either have

(EndR(U), τp) ' (EndR(U ′), τp′)

or

(EndR(U), τp) ' (EndR(F ′), τqF ′ ) and (EndR(F ), τqF ) ' (EndR(U ′), τp′).

Since F and F ′ are similar, we get in any case an isomorphism

(EndR(U), τp) ' (EndR(U ′), τp′)

and, as claimed, (U, p) and (U ′, p′) are similar. The other direction follows by 2.6. 2

If U and E represent units, we may as well assume that they represent 1 (by scaling p and

qE). Let u1 ∈ U be such that p(u1) = 1 and let x1 ∈ E be such that qE(x1) = 1. Then

y1 = λ1(u1, x1) ∈ F is such that qF (y1) = 1. We define a composition ◦ : U × U → U by

u ◦ v = λ2(ρ1(u, y1), λ1(v, x1))

= λ2(λ3(y1, u), ρ2(x1, v))
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for u, v ∈ U . By construction (λ3,y1 , ρ2,x1 , 1U ) is an isometry of the composition ◦ with the

composition λ2 : E × F → U and we have p(u ◦ v) = p(u)p(v) for u, v ∈ U . We get

u1 ◦ v = λ2(ρ1(u1, y1), λ1(v, x1))

= λ2(ρ1,u1(λ1(u1, x1)), ρ2(x1, v))

= λ2,x1ρ2,x1v = v

and similarly v ◦ u1 = v for all v ∈ U . Thus ◦ admits u1 as a unit element. A space (U, p) of

rank 8 with a composition U × U → U which admits a unit element is a Cayley algebra. The

construction of a Cayley algebra given above, out of a half-spin representation, is in [Ch1] for

(U, p) a quadratic space of maximal index over a field. We call it the Chevalley construction.

(4.3) Question. We obtain a composition ◦ : U × U → U assuming that the quadratic spaces

(U, p) and (E, qE) represent units. Conversely, given a composition ◦ : U × U → U , does (U, p)

represent a unit? This is the case if U is of rank 4. We do not know the answer if rankRU = 8.

Let C be a Cayley algebra with composition ◦, norm n and unit element u1. For any x ∈ C

we set x = bn(x, u1)u1 − x. We have x = x and one can check as in [Ch1], p. 124, 125, [BS1], or

in [K], Chapter V, §7, that x ◦ y = y ◦ x, xx = xx = n(x)u1, x ◦ (x ◦ y) = (x ◦ x) ◦ y = n(x)y and

that C is an alternative algebra. We shall also use the formula bn(x ◦ y, z) = bn(y, x ◦ z), which

holds for any Cayley algebra (see [BS1]). The map x 7→ x is the conjugation of C.

(4.4) Proposition. For any composition algebra C, the map x 7→ (0
µx

µx
0 ), with µx(y) = x ◦ y,

induces isomorphisms of algebras with involutions

C(C, n)
∼→ (EndR(C⊕ C), τñ) and (C0(C, n), τ)

∼→ (EndR(C), τn)× (EndR(C), τn),

where ñ = (n0
0
n).

Proof: The existence of a homomorphism follows from the universal property of the Clifford

algebra. It is an isomorphism since C(C, n) is an Azumaya algebra. The claims about the

involutions follow from the formula bn ◦ µx = µ∗x̄ ◦ bn (where bn stands for the adjoint), which

is equivalent to bn(x ◦ y, z) = bn(y, x̄ ◦ z). As already observed, this last formula holds for any

Cayley algebra. 2

(4.5) Proposition. Let t : C ⊗ I
∼→ C be a similitude with multiplier (I, d). There exist a

discriminant module (J, k) and similitudes

t2 : C⊗ J ∼→ C, t1 : C⊗ I ⊗ J ∼→ C

such that:

1) t1(x ◦ y ⊗ ξ ⊗ η) = t(x⊗ ξ) ◦ t2(y ⊗ η) if t is an proper similitude and

2) t1(x ◦ y ⊗ ξ ⊗ η) = t(y ⊗ ξ) ◦ t2(x⊗ η) if t is an improper similitude.

Conversely, if 1) holds, t is proper and, if 2) holds, t is improper. Furthermore t determines the

pair (t1, t2) up to a common unit of R.

Proof: This is just a reformulation of 3.5.
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Let t be a similitude t : C⊗ I ∼→ C with multiplier (I, d). Following [BS2], p. 161, we define

t̂ : C⊗ I∗ ∼→ C by

t̂(x⊗ ξ) = t(x⊗ d−1(ξ)).

We have
n(t̂(x⊗ ξ)) = n(t(x⊗ d−1(ξ)))

= n(x)d(d−1(ξ))(d−1(ξ))

= n(x)d−1(ξ, ξ)

so that t̂ is a similitude with multiplier (I∗, d−1). Since x̄ = χu1(x) and C(χu1)|Z = σ0, t̂ is

proper if t is proper and is improper if t is improper.

(4.6) Proposition. With the notations of 4.5 we have

1) If t ∈ GO+(n), then t1, t2 ∈ GO+(n) and

t(x ◦ y ⊗ ξ)k(η, η) = t1(x⊗ ξ ⊗ η) ◦ t̂2(y ⊗ k(η))

t2(x ◦ y ⊗ η)d(ξ, ξ) = t̂(x⊗ ξ) ◦ t1(y ⊗ η ⊗ ξ)
t̂(x ◦ y ⊗ d(ξ))k(η, η) = t2(x⊗ η) ◦ t̂1(y ⊗ d(ξ)⊗ k(η))

2) If t ∈ GO−(n), then t1, t2 ∈ GO−(n) and

t(x ◦ y ⊗ ξ)k(η, η) = t1(y ⊗ ξ ⊗ η) ◦ t̂2(x⊗ k(η))

t2(x ◦ y ⊗ η)d(ξ, ξ) = t̂(y ⊗ ξ) ◦ t1(x⊗ η ⊗ ξ)
t̂(x ◦ y ⊗ d(ξ))k(η, η) = t2(y ⊗ η) ◦ t̂1(x⊗ d(ξ)⊗ k(η)).

If t ∈ SO(n) is such that SN(t) = 1, then t1, t2 can be taken in KerSN ⊂ SO(n).

Proof: The verification of the formulas is a straightforward generalization of corresponding com-

putations of [BS2] and we only check the first one. In the formula

t1(x ◦ y ⊗ ξ ⊗ η) = t(x⊗ ξ) ◦ t2(y ⊗ η),

we replace x by x ◦ y and y by y. We get

t(x ◦ y ⊗ ξ) ◦ t2(y ⊗ η) = t(x ◦ y ⊗ ξ) ◦ t̂2(y ⊗ k(η)))

= t1(x⊗ ξ ⊗ η)n(y).

Multiplying by t̂2(y ⊗ k(η)) gives

t(x ◦ y ⊗ ξ)k(η, η)n(y) = t1(x⊗ ξ ⊗ η) ◦ t̂2(y ⊗ k(η))n(y)

Viewing y as “generic”, we may divide both sides with n(y). This is the first formula. The claim

about the “parity” then follows from 3.6. If t ∈ KerSN , then t1, t2 can be taken in SO(q) (see

the discussion after the proof of 3.1) and in fact t1, t2 ∈ KerSN , since SN(t̂ ) = 1. 2

(4.7) Remark. Let R be a connected ring with Pic(R) = 0. Let ◦ and ∗ be two compositions

giving rise to the same norm on C and with the same identity element u1. By 4.6 there exist

similitudes t1, t2 : M
∼→M such that

x ∗ t2(y) = t1(x ◦ y) or t2(y) ∗ x = t1(x ◦ y).
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We may assume that x ∗ t2(y) = t1(x ◦ y). Setting x = u1 we get t1 = t2 and setting y = u1 we

see that t1(x) = x ◦ u with u = t2(u1), so that

x ∗ y = (x ◦ (y ◦ u−1)) ◦ u.

Conversely, this formula can be used to construct different compositions on C with the same

identity element u1. Thus we may have on the same quadratic space (U, p) different Cayley

compositions ◦ and ∗ with the same identity element u1. This is in contrast with quadratic or

quaternion algebras, the other types of composition algebras. However, even if different, the two

multiplications could be isomorphic.

(4.8) Proposition. We have

Spin(C, n) ' {(t0, t1, t2) | ti ∈ SO(C, n) with t1(x ◦ y) = t0(x) ◦ t2(y)}

and the canonical map Spin(C, n)→ SO(C, n) corresponds to (t0, t1, t2) 7→ t0.

Proof: In view of 3.4 and 4.6, for c ∈ Spin(C, n), the assignment c 7→ (χc, βc, γc) gives the required

bijection. 2

(4.9) Remark. The results 4.5, 4.6 and 4.8 for forms over fields of characteristic not 2 are in

[BS2] or [S]. The proofs given there use the theorem of Cartan-Dieudonné.

(4.10) Lemma. Let C,C′ be Cayley algebras with identities u1, u
′
1 and let (t, t2, t1) be an isometry

(C, n)
∼→ (C′, n′). The following conditions are equivalent:

1) t = t1 = t2
2) t(u1) = t1(u1) = t2(u1) = u′1.

Proof: 2) is a consequence of 1) since t(x) = t(x ◦ u1) = t(x) ◦ t(u1), for all x ∈ C, implies

t(u1) = u′1 and 1) follows from 2) since t1(y) = t1(u1 ◦ y) = u1 ◦ t2(y) = t2(y) and similarly

t1(y) = t(y). 2

An isometry of (C, n) satisfying the equivalent properties of 4.10 is an automorphim of the

composition algebra. The group of automorphisms of the composition algebra C is denoted by

G2(C).

Let Γ be KerSN ⊂ SO(C, n)) (' Spin(C, n)) modulo its centre) and let [t] ∈ Γ be the class

of t ∈ KerSN . We define

ϕ1([t]) = [t1], ϕ2([t]) = [t2] and ε([t]) = [t̂].

(4.11) Proposition. Let R be connected. The maps ϕ1, ϕ2 and ε are automorphisms of Γ.

They generate an action of the symmetric group S3 on Γ and G2(C) = (Γ)S3 .

Proof: The first claim is as in [BS2], p. 161. Let [t] ∈ (Γ)S3 . We get r1, r2 ∈ µ2(R) such that

r1t(x ◦ y) = t(x) ◦ r2t(y). If r1 = r2 the map t is multiplicative and if r1 = −r2 the map −t is

multiplicative. 2
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5. Spaces of rank 6.

Let (M, q) be a quadratic space of rank 6 over R with Arf invariant Z and trivial Clifford

invariant. Let α : C(q)
∼→ EndR(V ) be a spin representation space for (M, q). Then V is

a Z-module through α and is projective of rank 4, Z being a separable R–algebra. Since

C0(q) = C(q)Z = {x ∈ C(q) |xz = zx, ∀z ∈ Z} α restricts to α0 : C0(q)
∼→ EndZ(V ) and, since

the rank of M is congruent to 2 modulo 4, τ0 restricts to the nontrivial automorphism σ0 on

Z. By 2.3 there exists a nonsingular Z–hermitian form B : V
∼→ V ∨ on V such that α is an

isomorphism (C0(q0), τ0)
∼→ (EndZ(V ), τB) of algebras with involution. Furthermore we have

(C(q), τ ′) ∼→ EndR(V ), τqB ),

where τ ′ is the second involution of C(q), i.e. such that τ ′(x) = −x for x ∈ V (see [K], p. 241),

and qB(x) = B(x, x). Thus the spin representation space (V, qB) is induced from the hermitian

space (V,B). It follows from general results of [KPS], §8, that a hermitian space (V,B) of rank

4 induces in this way a spin representation space for a quadratic space of rank 6 if and only if

its hermitian discriminant is trivial. In this section we give a direct proof of this fact, without

using the machinery of [KPS]. We begin with some preliminaries. Let V be a rank 4 projective

module over R and let

pf : ∧2V → ∧4V

be its pfaffian. If V is free with basis {e1, e2, e3, e4}, we recall that

pf(
∑

i<j

aij(ei ∧ ej) = pf(α)(e1 ∧ e2 ∧ e3 ∧ e4),

where α ∈ M4(R) is the alternating matrix with (i × j)-entry aij for i < j, and pf(α) is the

classical pfaffian of the matrix α. If ∧4V is free and λ : ∧4V
∼→ R is an isomorphism, the

composite pfλ = λ ◦ pf is a quadratic form on the space ∧2V of rank 6. We describe its Clifford

algebra. We identify ∧2V with

Alt(V ⊗ V ) = {ξ ∈ V ⊗ V | ξ = η − ωV (η), η ∈ V ⊗ V },

ωV the switch of V ⊗ V , through the map x ∧ y 7→ x ⊗ y − y ⊗ x and view pfλ as a quadratic

form on Alt(V ⊗ V ). If V is free with basis {e1, e2, e3, e4} and λ(e1 ∧ e2 ∧ e3 ∧ e4) = 1, we have

pfλ(
∑

i<j

aij(ei ⊗ ej − ej ⊗ ei)) = pf(α).

Let α◦ = (a◦ij) be the alternating matrix such that α◦α = α◦α = pf(α). Let {e∗1, e∗2, e∗3, e∗4} be

the dual basis of V ∗. The map

π : Alt(V ⊗ V )→ Alt(V ∗ ⊗ V ∗)⊗ ∧4V

given by
∑
i<j aij(ei⊗ ej− ej⊗ ei) 7→

∑
i<j a

◦
ij(e
∗
i ⊗ e∗j − e∗j ⊗ e∗i )⊗ e1∧ e2∧ e3∧ e4 is independent

of the choice of the basis, hence π is defined for any rank 4 projective R–module V and we have

π(ξ)ξ = 1⊗ pf(ξ) ∈ EndR(V ∗)⊗ ∧4V

ξπ(ξ) = 1⊗ pf(ξ) ∈ EndR(V )⊗ ∧4V,
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where we identify W ′⊗W ∗ with HomR(W,W ′) for any finitely generated projective R-modules

W and W ′. The products π(ξ)ξ and ξπ(ξ) then are given by the corresponding compositions of

maps. We write (using the same identification)

EndR(V ⊕ V ∗) =

(
V ⊗ V ∗ V ∗ ⊗ V ∗
V ⊗ V V ∗ ⊗ V

)
,

where the product on the right hand side is induced by (2× 2)–matrix multiplication.

(5.1) Proposition. Let λ : ∧4V
∼→ R be an isomorphism and let

πλ = (1⊗ λ) ◦ π : Alt(V ⊗ V )→ Alt(V ∗ ⊗ V ∗).

1) The map Alt(V ⊗ V )→ EndR(V ⊕ V ∗) given by

ξ 7→ (0
ξ
πλ(ξ)
0 ), ξ ∈ Alt(V ⊗ V ),

induces an isomorphism of algebras with involution

α : (C(pfλ), τ ′) ∼→ (EndR(V ⊕ V ∗), τh),

where h is the hyperbolic quadratic form on V ⊕V ∗, i.e. H((x, f)) = f(x) for x ∈ V and f ∈ V ∗.
2) The centre Z of C0(pfλ)) is isomorphic to R × R and the restriction of α to C0(pfλ) is an

isomorphism

α0 : C0(pfλ)
∼→ (EndR(V )× EndR(V ∗), τH),

where τH(φ, ψ) = (ψ∗, φ∗).
3) The isomorphism (λ, λ∗−1) : ∧4

R×R(V × V ∗) = ∧4V × ∧4V ∗ ∼→ R×R is an isometry

(∧4
R×R(V × V ∗),∧4H)

∼→ 〈1〉R×R

of (R ×R)–hermitian discriminant modules.

Proof: 1) follows from the universal property of the Clifford algebra and 2) is a consequence of

1). We check 3): the hermitian form

∧4H : ∧4V × ∧4V ∗ → (∧4V × ∧4V ∗)(∗) = (∧4V )∗ × (∧4V ∗)∗

is given by (ξ, x) 7→ (ξ, x) after identifying (∧4V )∗ with ∧4V ∗ through the map which is locally

given by (e∗1 ∧ e∗2 ∧ e∗3 ∧ e∗4)(e1 ∧ e2 ∧ e3 ∧ e4) = 1 for a local basis {e1, e2, e3, e4} of V . Then

λ(e1 ∧ e2 ∧ e3 ∧ e4) = 1 implies λ∗(1) = e∗1 ∧ e∗2 ∧ e∗3 ∧ e∗4 and (λ, λ∗−1) is as required. 2

(5.2) Proposition. Let (M, q) be a quadratic space of rank 6 with trivial Clifford invariant, let

Z be the centre of C0(q) and let (V,B) be a Z–hermitian space inducing the spin representation

α : C(q)
∼→ EndR(V ). There exists an isometry λ : (∧4

ZV,∧4B)
∼→ 〈1〉Z such that

(Z ⊗M,Z ⊗ q) ∼→ (Alt(V ⊗Z V ),pfλ).

In particular (V,B) has trivial hermitian discriminant.
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Proof: The representation α induces an isomorphism C(Z ⊗M)
∼→ EndZ(Z ⊗ V ). Let σ0 be

the nontrivial R–automorphism of Z and let ν : Z ⊗ V ∼→ V ⊕ V (∗) be given by γ(z ⊗ v) =

(zv,B(σ0(z)v)). The map β = End(ν) ◦ (1Z ⊗ α) is an isomorphism

β : (C(Z ⊗M,Z ⊗ q), τ ′) ∼→ (EndZ(V ⊕ V (∗)), τh).

Let x ∈ Z ⊗M and let

β(x) =

(
0 β2(x)

β1(x) 0

)
∈
(

0 V (∗) ⊗Z V (∗)

V ⊗Z V 0

)
⊂ EndZ(V ⊕ V (∗)).

Since τhβ(x) = β(τ(x)) = −β(x), β1(x) is contained in the set of antisymmetric tensors of

V ⊗ZV . Thus we get β1(Z⊗M) = Alt(V ⊗ZV ) if 2 is invertible. In general, we get β1(Z⊗M) =

Alt(V ⊗Z V )) by 5.1 and faithfully flat descent. Similarly we get β2(Z⊗M) = Alt(V (∗)⊗Z V (∗)).
The map γ = β2β

−1
1 : Alt(V ⊗Z V ) → Alt(V (∗) ⊗Z V (∗)) has the property that γ(ξ)ξ ∈ Z for

ξ ∈ Alt(V ⊗Z V ), in fact γ(ξ)ξ = (Z ⊗ q)(x) for ξ = β1(x), x ∈ Z ⊗ V . By [KPS], Lemma

1.3, there exists an isomorphism λ : ∧4
ZV

∼→ Z such that γ = πλ and β1 is an isometry

(Z⊗M, z⊗q) ∼→ (Alt(V ⊗Z V ),pfλ). The fact that λ is an isometry (∧4
ZV,∧4B)

∼→ 〈1〉Z follows

from 5.1. 2

By 5.2, the condition that the hermitian discriminant is trivial is necessary for a hermitian

spin representation space of rank 4. We next check that it is sufficient.

(5.3) Proposition. Let S/R be a quadratic etale R-algebra with conjugation σ0 and let (E,B)

be a hermitian space of rank 4 of S such that (∧4
SE,∧4B) ' 〈1〉S . There exists a quadratic

space (M, q) of rank 6 over R and an isomorphism α : (C(q), τ ′) ∼→ (EndR(E), τqB ), with

qB(x) = B(x, x), such that α0(C0(q), τ0) = (EndS(E), τB) and α0(Z) = S.

Proof: Let λ be an isometry (∧4
SE,∧4B)

∼→ 〈1〉S . In view of 5.2, it is natural to define (M, q) as

a descent (from S to R) of the quadratic space (Alt(E⊗SE),pfλ). The descent is the composite

σ : Alt(E ⊗S E)
B⊗B→ Alt(E∨ ⊗S E∨)

i⊗i→ Alt(E(∗) ⊗S E(∗))
π−1
λ→ Alt(E ⊗S E),

where i : E∨ ∼→ E(∗) is the tautological map x 7→ x. Observe that i is σ0–semilinear. To

check that σ2 = 1, we may assume that E is free with basis {e1, e2, e3, e4} over S and that

λ(e1 ∧ e2 ∧ e3 ∧ e4) = 1. Through this choice we identify Alt(E ⊗S E) with Alt4(S), the set

of alternating (4 × 4)–matrices with entries in S, and, through the choice of the dual basis, we

identify Alt(E(∗)⊗SE(∗)) with Alt4(S). For any matrix X = (xij) ∈Mn(S), let X = (σ0(xij)). If

U is the matrix of B with respect to the given basis, B⊗B corresponds to X 7→ UXU t. The fact

that B is hermitian implies that U
t

= U and the fact that λ is an isometry (∧4
SE,∧4B)

∼→ 〈1〉S
with λ(e1∧e2∧e3∧e4) = 1 implies that det(U) = 1. The tautological map i is given by X 7→ X

and pfλ is given by X 7→ X◦, where X◦ ∈ Alt4(S) is such that XX◦ = XX◦ = pf(X). Observe

that (X◦)◦ = X. Thus we have σ(X) = (UXU t)
◦
. The formula pf(UXU t) = det(U)pf(X)

implies (UXU t)
◦

= det(U)(U t)−1X◦U−1 and we get σ(X) = U−1X
◦
U t
−1

. It follows that

σ2(X) =
(
U(U−1X

◦
U t−1)U t

)◦
= X

◦◦
= X.
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By definition of descent, we set

M = {ξ ∈ Alt(E ⊗S E) |σ(ξ) = ξ} and q = pfλ|M .

Let

ϕ = End(1
0

0
B−1) : EndS(E ⊕E(∗)) ∼→ EndS(E ⊕ σ0E) = S ⊗ EndR(E).

We claim that the inclusion M → Alt(E ⊗S E) → EndS(E ⊕ E(∗))
ϕ→ EndS(E ⊕ σ0E) =

S ⊗ EndR(E) induces an isomorphism C(q)
∼→ EndR(E). We show that (σ0 ⊗ 1)ϕ = ϕC(σ).

This will imply that ϕ maps C(q), which is the descent for the datum C(σ), onto EndR(E),

which is the descent for the datum σ0 ⊗ 1. By 5.2, Alt(E ⊗S E) is identified with the set

(0
ξ
πλ(ξ)

0 ) ∈ EndS(E ⊕E(∗)), ξ ∈ Alt(E ⊗S E).

It follows from σ2 = 1 that π−1
λ ◦ (iB ⊗ iB) = (iB ⊗ iB)−1 ◦ πλ on Alt(E ⊗S E), thus

C(σ)

(
0 πλ(ξ)

ξ 0

)
=

(
0 (iB ⊗ iB)(ξ)

(iB ⊗ iB)−1πλ(ξ) 0

)

= End

(
0 (iB)−1

iB 0

)(
0 πλ(ξ)

ξ 0

)

= ϕ−1 ◦ (σ0 ⊗ 1) ◦ ϕ
(

0 πλ(ξ)

ξ 0

)

The claim then follows from the fact that Alt(E ⊗S E) generates the Clifford algebra C(pfλ) =

EndS(E ⊕ E(∗)). Similar arguments show that α0(C0(q)) = EndS(E) and α0(Z) = S. The

involution τ on EndS(E ⊕ E(∗)) is τh, h = (0
1

1
0). Thus its transport to EndS(E ⊕ σ0E) is

τB′ with B′ = (0
B

σ0B
0 ). Since 1 ⊗ B∗ = (B, σ0B), τB′ descends to τqB with qB(x) = B(x, x).

Similarly τ restricts to τB on C0(q)
∼→ EndS(E). 2

For a hermitian space (E,B) with trivial hermitian discriminant and of rank n over S, we

define SU(E,B) to be the subgroup of isometries t ∈ U(E,B) such that ∧nt ◦ λ = λ, where

λ : (∧nSE,∧nB)
∼→ 〈1〉S is a fixed isometry. We denote by t∗ the isometry of the quadratic form

qB induced by t. If (E,B) is as in 5.3, we have

(5.4) Proposition. 1) For any t ∈ SU(E,B), there exists t0 ∈ SO(q) such that C(t0) =

End(t∗), C0(t0) = End(t).

2) Spin(q) = SU(E,B).

Proof: By construction t ⊗ t is an isometry of (Alt(E ⊗S E),pfλ) and t ⊗ t commutes with

the descent σ. Thus t induces an isometry t0 of (M, q) and C(t0) = End(t∗), C0(t0) = End(t)

holds. Since t is S–linear, t0 ∈ SO(q). Since C0(q) = EndZ(E) with τ0 induced by B, for any

t ∈ EndZ(E), the condition tτ0(t) = 1 is equivalent to t ∈ U(E,B). This, together with 1)

implies that Spin(q) = SU(E,B). 2

6. Cayley algebras arising from rank 3 hermitian spaces.

Let S be a quadratic etale R–algebra with norm n = nS/R and let (E,B) be a hermitian space

of rank 4 over S with trivial discriminant. Let (M, q) be the quadratic space of rank 6 and α :

16



(C(q), τ ′) ∼→ (EndR(E), τqB ) the spin representation given by 5.3. Let (U, p) = (S, n) ⊥ (M,−q)
and let

α̃ : S ⊕M → EndR(E ⊕E), α̃(s, x) =

(
0 ασ0(s) + αx

αs − αx 0

)

where, for s ∈ S, αs : E → E is the multiplication by s.

(6.1) Lemma. The map α̃ extends to an isomorphism of algebras with involution

α̃ : (C(p), τ)
∼→ (EndR(E ⊕E), τq̃), where q̃ = (qB0

0
qB

).

In particular α̃ induces compositions λ, ρ : (U, p)× (E, qB)→ (E, qB) of quadratic forms.

Proof: 1) The existence of α̃ follows from the universal property of the Clifford algebra, the fact

that it is an isomorphism follows from the fact that C(p) is an Azumaya algebra. We have

τq̃α̃(s, x) = b−1
q̃

(
0 ασ0(s) − αx

αs + αx 0

)∗
bq̃

=

(
0 b−1

qB (αs + αx)∗bqB
b−1
qB (ασ0(s) − αx)∗bqB 0

)

=

(
0 ασ0(s) − αx

αs + αx 0

)
= α̃τ(s, x)

since b−1
qBα

∗
xbqB = −αx and b−1

qBα
∗
sbqB = B−1α∗sB = ασ0(s). 2

Let (E′, B′) be a hermitian space of rank 3 over S with trivial hermitian discriminant and

let

(E,B) = 〈1〉S ⊥ (E′, B′).

Putting as above qB(x) = B(x, x), it follows that

(E, qB) = (S, nS/R) ⊥ (E′, q′B)

and the composition U × E → E restricts on S × S → S to the given algebra structure of S.

Let u1 = (1, 0) ∈ U = S ⊥ M and let x1 = (1, 0) ∈ E = S ⊥ E ′. Let Cay(S,E ′) be the

Cayley algebra with underlying quadratic space (U, p) and composition ◦ given by the Chevalley

construction applied to λ : U ×E → E for the choice of u1 and x1.

(6.2) Proposition. 1) The composition ◦ of Cay(S,E ′) restricts on S to the multiplication map

and defines the structure of an S–module on M .

2) There exists a hermitian structure B̃ on M as an S–module such that the map φ : U → E

given by φ(u) = λ(u, x1) restricts to an isometry (M, B̃)
∼→ (E′, B′).

Proof: 1) The first claim follows from the fact that the composition U × E → E restricts to

the multiplication on S. The composition ◦ : S × U → U satisfies the associativity condition

(λλ′) ◦ u = λ ◦ (λ′ ◦ u): since S is quadratic over R, it is enough to verify this for λ = λ′ = z

a generator of S over R. Then z2 ◦ u = z ◦ (z ◦ u) since Cayley algebras are alternative. Thus

U is an S-module and the fact that M is an S–module follows from M = S⊥ ⊂ U , since
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bp(sm, s1) = bp(m, ss1) holds (U being a Cayley algebra with norm p). The fact that φ is S–

linear then is obvious. The form B̃ is the pull-back tr−1 ◦ b of the adjoint of the polar of −q (see

Section 2, in particular Remark 2.5). 2

(6.3) Corollary. Let C be Cayley algebra with norm n and let S be an etale quadratic subalgebra

of C. There exists a nonsingular hermitian form B on C such that qB = n and C = Cay(S, S⊥).

(6.4) Remark. Let X = Spec(R). The association E 7→ q in 5.3 corresponds to the map

H1
et(X,SU4) → H1

et(X,SO6) induced by the homomorphism SU4 → Spin4 → SO6 of group

schemes and (S,E ′) 7→ Cay(S,E ′) corresponds to H1
et(X,SU3) → H1

et(X,G2) induced by the

inclusion SU3 → G2 (see [J], Theorem 3, p. 16, or Collected Works, Vol. 2, p. 356).

7. Composition over affine spaces.

In this section K is a field of characteristic not 2. Let R = K[X1, . . . , Xn] be the polynomial

ring in n variables over K. Let C be a Cayley algebra over R with underlying module U .

By a theorem of Quillen-Suslin, we may write U = U ⊗ K[X1, . . . Xn], where U is the K-

space U/(X1, . . . , Xn)U . For any R-linear map t we denote its reduction modulo (X1, . . . , Xn)

by t. We say that C is extended from K if there exists an isomorphism of Cayley algebras

C
∼→ C⊗K[X1, . . . , Xn].

(7.1) Lemma. Let R be a domain and let R[X] be the polynomial ring over R. Let C be a Cayley

algebra over R[X] and let C be its reduction modulo X. Suppose the norm n
C

is anisotropic. If

t : C→ C⊗RR[X] is an isometry such that t̄ = 1
C

, then t is an isomorphism of Cayley algebras.

Proof: Let u1 be the identity element of C. Then ū1 ∈ C is the identity element of C. Let

t(u1) = ū1 ⊗ 1 + v1 ⊗X + v2 ⊗X2 + . . . + vk ⊗Xk. We claim that vi = 0 for i ≥ 1. Suppose

vk 6= 0. Since t is an isometry, n
C⊗R[X]

(ū1⊗1+v1⊗X+ . . . vk⊗Xk) = 1. The left hand side is a

polynomial in X with leading term n
C

(vk)X
2k, so that n

C
(vk) = 0. Since nC is anisotropic, we get

vk = 0, a contradiction. Thus t(u1) = ū1⊗1. By 3.6, there exist similitudes t1, t2 : C→ C⊗R[X]

such that t1(x ◦ y) = t(x) ◦̃ t2(y), ◦̃ denoting the multiplication ◦ ⊗ 1 of C⊗R[X]. Since ū1 ⊗ 1

is the identity for ◦̃, t1(y) = t(u1) ◦̃ t2(y) = t2(y), so that t1 = t2. Since t̄ = 1 and t̄ determines

t̄1 and t̄2 up to scalars (see 4.5), t̄1 is a scalar. Scaling t1, we may assume that t̄1 = 1. Since

t1 : C→ C⊗R[X] is an isometry with t̄1 = 1, as above, we get t1(u1) = u1⊗ 1. Then t = t1 = t2
and, by 4.10, t is an isomorphism of Cayley algebras. 2

(7.2) Corollary. Let K be a field of characteristic not 2. Let C be a Cayley algebra over

K[X1, . . . , Xn]. If the norm nC is anisotropic and extended from K, then C is isomorphic to

C⊗K K[X1, . . . , Xn].

(7.3) Remark. The same arguments as in 7.1 can be used to show that, for any Cayley algebra

C over a domain R with nC anisotropic, the natural map G2(C)→ G2(C⊗R[X1, . . . , Xn]) is an

isomorphism.

(7.4) Proposition. Let C be a Cayley algebra over K[X1, . . . , Xn]. If its norm form n is

isotropic, the algebra C is extended from K.
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Proof: As above, let R = K[X1, . . . , Xn]. An isotropic quadratic space over R is extended from K

(see [O]). Since a Cayley algebra with zero divisors over a field is split, the form n is hyperbolic,

so that n is hyperbolic. Let t : (C, n)
∼→ H(P ) = P ⊕ P ∗, with P = R4, be an isometry. We get,

for u1 the identity element, t(u1) = (p1, q1), p1 ∈P, q1 ∈P ∗ and the pair (p1, q1) is hyperbolic.

The element t−1(p1) generates a split separable quadratic R–algebra S = R × R ⊂ M . In

particular S is extended from K. By 6.2, (M, q) = (S, n)⊥ is a S-module of rank 3 and carries a

nonsingular S–hermitian form B such that q(x) = B(x, x). Since q is hyperbolic, q is isotropic

and by [O] is extended as a quadratic space. It follows that q represents any unit, in particular

−1 and B can be decomposed as 〈−1〉S ⊥ B1. Since B1 has hermitian discriminant −1, it is

hyperbolic ([K], p. 304), hence extended, and B is extended. Since S and B are extended, 6.3

implies that C is extended. 2

(7.5) Corollary. Any composition algebra over K[X] is extended from K.

Proof: By a theorem of Harder, anisotropic spaces over K[X] are extended from K. 2

(7.6) Remark. 7.1, 7.4 are special cases of [RR] and 7.2 is a special case of [R] (for the group

G2). Another proof of 7.5 is in [Pe].

Corollary 7.5 does not hold for polynomial rings in more than one variable:

(7.7) Theorem. Let K be a field of characteristic not 2 which admits a non-split Cayley

algebra C0. There exists an infinite sequence of non-isomorphic Cayley algebras (Ci, ◦i) over

K[X,Y ], whose reductions modulo (X,Y ) are isomorphic to C0, and such that the restriction of

the norm to C′i = {x ∈ Ci |x+ x = 0} is indecomposable as a rank 7 quadratic space.

(7.8) Theorem. For all i Ci is a principal G2-bundle over A2
K whose structure group cannot

be reduced to any proper reductive connected subgroup.

We first prove 7.8 and postpone the proof of 7.7. Theorem 7.8 is a consequence of 7.7 and of

the following Lemmas 7.9, 7.10 and 7.11 communicated to us by Raghunathan. Let G be a

simple algebraic group of type G2 over a field K and let ρ : G → GL(V ) be its 7–dimensional

representation. Let H be a connected reductive subgroup of G which is not abelian.

(7.9) Lemma. If the representation ρ |H is irreducible, it is absolutely irreducible.

Proof: If ρ|H is reducible over the algebraic closure K, then it has at least 2 distinct irreducible

components of different dimensions, dimKV being a prime and H not being abelian. The

corresponding isotypical components descend to give a decomposition of ρ|H over K. 2

(7.10) Lemma. Let K be an algebraically closed field. let G and ρ : G → GL(V ) be as above.

Let u : SL2 → G be any homomorphism. Then ρ ◦ u cannot be irreducible.

Proof: As observed in [Ch1], Chapter IV, Section 4.2, ρ(G) leaves a nonzero cubic form invariant.

Thus it suffices to show that the natural 7–dimensional representation of SL2 does not leave any

nonzero cubic form invariant. Denoting this representation by V again, we need to show that the

3rd symmetric power S3(V ) has no nonzero SL2–invariant submodule. In fact we will show that

S2(V )⊗V has no nonzero SL2–invariant submodule. If S2(V )⊗V = HomK(V ∗, S2(V )) contains
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an invariant element, then S2(V ) contains V ∗ ' V as an SL2–submodule. It is easy to see from

the Clebsch–Gordan formula that S2(V ) ' C⊕D⊕E⊕F , where C is the trivial representation,

D, resp. E, resp. F is the irreducible representation of dimension 5, resp. 9, resp. 13. Thus

S2(V ) does not contains V (which has dimension 7) as an irreducible SL2–submodule. 2

(7.11) Lemma. Let H be a proper reductive connected subgroup of G. Then H acts reducibly

on V .

Proof: If H is abelian, it acts reducibly on V . Suppose that H is not abelian. By Lemma 7.9,

it is enough to check that H acts reducibly over K. Hence we assume that K = K. If H ' SL2,

this follows from Lemma 7.10. Next suppose that H is locally isomorphic to SL2×Gm. If ρ◦u is

irreducible as a representation of H, then ρ ◦u |SL2 is necessarily isotypical, since Gm commutes

with SL2. Since 7 is a prime, V has to be irreducible as a SL2–module as well, a contradiction.

This means that we need only to consider the case where H is semisimple of rank 2. But then

looking at root systems shows that H has to be of type B2 or A2. From Weyl’s dimension

formula we get that the irreducible representations of dimension ≤ 7 are of dimension 4 and 5

in the case of B2 and of dimension 3 and 6 in the case of A2. Thus there are no irreducible

representations of dimension 7 for B2 or A2. 2

We cut the proof of 7.7 in steps. Some preliminaries and some notations are needed. For

any module N over a commutative ring R, any s ∈ R and any R–linear homomorphim f , we

denote by Ns, resp. fs the localization with respect to the multiplicative set {1, s, s2, . . .}.

(7.12) Lemma. Let L be a quadratic field extension of K and let 〈λ1, λ2, λ3〉 be an anisotropic

hermitian space over L. There exists an infinite sequence {fi}i≥1 of polynomials in K[X] with

(fi, fj) = 1 for i 6= j and indecomposable hermitian spaces (Ni, Bi) over L[X,Y ], whose reduc-

tions modulo (X,Y ) are isometric to 〈λ1, λ2, λ3〉, and such that

1) the quadratic spaces qi = qBi are indecomposable over K[X,Y ].

2) (Ni, Bi)fi is extended from L[X]fi [Y ] for all i.

Proof: The construction uses the techniques developed in [P2] for quadratic spaces. We first con-

struct B1. There exist indecomposable anisotropic hermitian spaces B ′i of rank 2 over L[X,Y ],

polynomials f ′i ∈ K[X] such that (f ′i , f
′
j) = 1 for i 6= j and isometries

L[X]f ′i [Y ]⊗L[X,Y ] B
′
i
∼→ L[X]f ′i [Y ]⊗K 〈λ1, λ2〉.

(see [K], p. 449). We get an indecomposable hermitian space B1 of rank 3 by glueing the space

(B′1)f2⊥〈λ3〉, defined over L[X]f ′2 [Y ], with (B ′2)f1⊥〈λ3〉, defined over L[X]f ′1 [Y ], over L[X]f ′1f ′2 [Y ]

as in [P2]. We claim that q1 = qB1 is indecomposable as a quadratic space over K[X,Y ]. Suppose

that q1 = q′ ⊥ q′′ with q′, q′′ quadratic spaces over K[X,Y ]. Since B1 is indecomposable it does

not represent units and q1 does not represent units either. By [P2] or [K], Lemma 10.1.3, p. 450,

q′ and q′′ do not represent units. Hence, in view of the fact that rank 2 spaces over K[X,Y ]

are extended ([P1]), each should be of rank 3. Since (B1)f ′2 = (B′1)f ′2 ⊥ 〈λ3〉 over K[X]f ′2 [Y ],

we have (qB1)f ′2 = (qB′1)f ′2 ⊥ 〈λ3〉 ⊗ 〈1,−u〉 ' (q′ ⊥ q′′)f ′2 . Thus by [P2] or [K], Lemma 10.1.3,

p. 450, one of (q′)f ′2 or (q′′)f ′2 must represent a unit, hence is diagonalizable for the same reasons

as above. This would imply, by the following Lemma 7.13, that (B ′1)f ′2 represents a unit and,
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being of rank 2, is extended from L[X]f ′2 . Since (B ′1)f ′1 is extended from L[X]f ′1 , B′1 is locally

extended from L[X] and it follows from [BCW] that B ′1 is extended from L[X], contradicting

the choice of B ′1. Finally we set f1 = f ′1f
′
2. To get Bi we repeat the construction for B1, taking

a pair B′2i−1, B
′
2i and the corresponding polynomials f ′2i−1, f

′
2i and setting fi = f ′2i−1f

′
2i. 2

(7.13) Lemma. Let q, q′ be indecomposable quadratic spaces over R[Y ], R a domain, and let q1

be a quadratic space over R[Y ] such that q ⊥ q1 ' q′ ⊥ 〈v1, . . . , vr〉 for units v1, . . . , vr ∈ R×. If

q ⊥ q1 is anisotropic, then q1 ' 〈v1, . . . , vr〉.

Proof: The claim is a straightforward generalization of [P2] or [K], Lemma 10.1.3, p. 450. 2

Proof of 7.7: Let C0 be a non-split Cayley algebra over K. We write the norm n0 of C0 as a

three-fold Pfister form 〈1,−λ〉 ⊗ 〈1,−µ〉 ⊗ 〈1,−ν〉. Let L = K(
√
λ) and let fi, Bi be as in 7.12

for the anisotropic hermitian space 〈−µ,−ν, µν〉 over L. Let S = L[X,Y ], R = K[X,Y ] and

let Ui = Cay(S,Ni) be the Cayley algebra associated to the rank 3 hermitian space (Ni, Bi)

(Section 6). Let pi be the norm of Ui. We have

(Ui, pi) = (S, nS/R) ⊥ (Ni, qi)

with qi = qBi and we get isometries

πi : (qi)fi
∼→ 〈−µ, λµ, ν,−νλ,−νµ, νλµ〉 ⊗K[X]fi [Y ]

over K[X]fi [Y ] such that πi = 1, bar denoting the reduction modulo Y . We now construct C1

by glueing U1 = Cay(S,N1) and U2 = Cay(S,N2) by an isomorphism

θ : (U1)f1f2

∼→ (U2)f1f2

over K[X]f1f2 [Y ] defined as follows. Let ψ be an automorphism of the algebra C0 such that

ψ(〈−λ〉) ⊂ 〈1,−λ〉⊥. Such automorphisms always exist: take one in the quaternion subalgebra

〈1,−λ〉 ⊗ 〈1,−µ〉 of C0 and extend it to C0 by the Cayley–Dickson process. We set

θ = (1 ⊥ 1 ⊥ π2)−1 ◦ ψ ◦ (1 ⊥ 1 ⊥ π1).

Since πi = 1, it follows from 7.1 that the maps 1 ⊥ 1 ⊥ πi are isomorphisms of Cayley algebras.

Thus θ is a Cayley algebra isomorphism and C1, obtained by glueing U1 = Cay(S,N1) and

U2 = Cay(S,N2) through θ, is a Cayley algebra. It follows as in [P2] that C′1 = 〈1〉R⊥ is

indecomposable. We get finally Ci by glueing similarly U2i−1 and U2i for each i. 2

21



References

[B] Bass, H.: Clifford algebras and spinor norms over commutative rings. Amer. J. Math. 96,

156-206 (1974)

[BCW] Bass, H., Connel, E.H., Wright,D.L. : Locally polynomial algebras are symmetric algebras.

Invent. Math. 38, 279-299 (1977)

[BS1] Blij, F. van der; Springer T.A.: The arithmetic of octaves and of the group G2. Proc. Kon.

Ak., Amsterdam, Series A62 = Ind. Math. 21, 406-418 (1959)

[BS2] Blij, F. van der; Springer T.A.: Octaves and triality. Nieuw Archief voor Wiskunde 8,

158-169 (1960)

[Ch1] Chevalley, C.: The algebraic theory of spinors. New York: Columbia University Press 1954

[Ch2] Chevalley, C.: The construction and study of certain important algebras. Publications of

the Mathematical Society of Japan 1, 1955
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A 287, 695-698 (1978)

[P1] Parimala, R.: Failure of a quadratic analogue of Serre’s conjecture. Amer. J. Math. 100,

913-924 (1978)

[P2] Parimala, R.: Indecomposable quadratic spaces over the affine plane. Adv. in Math. 62,

1-6 (1986)

[PS] Parimala, R. Srinivas, V.: Analogues of the Brauer group for algebras with involution,

Duke Math. J. 66, 207-237 (1992)

[Pe] Petersson, H. P.: Composition algebras over algebraic curves of genus zero. Trans. Amer.

Math. Soc. (to appear)

[R] Raghunathan, M.S.: Principal bundles on affine space and bundles on the projective line.

Math. Ann. 285, 309-332 (1989)

[RR] Raghunathan, M.S., Ramanathan, A.: Principal bundles over the affine line, Proc. Indian

Acad. Sci. (Math. Sci.) 93, 137-145 (1984)

[S] Springer, T.A.: Oktaven, Jordan–Algebren und Ausnahme–Gruppen, Göttingen, 1963

Mathematik Tata Institute of Fundamental Research

ETH–Zentrum School of Mathematics
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