Abstract regularity structures

Definitions

Definition (Regularity structure)

A regularity structure $\mathcal{T} = (A, T, G)$ consists of the following elements:

- An index set A ⊂ R such that 0 ∈ A, A is bounded from below, and A is locally finite.
- A model space T, which is a graded vector space T = ⊕_{α∈A} T_α, with each (T_α, || · ||_α) a Banach space. Furthermore, T₀ ≈ R and its unit vector is denoted by 1.
- A structure group G of linear operators acting on T such that, for every $\Gamma \in G$, every $\alpha \in A$, and every $a \in T_{\alpha}$, one has

$$\Gamma a - a \in igoplus_{eta < lpha} T_eta \;.$$

Furthermore, $\Gamma \mathbf{1} = \mathbf{1}$ for every $\Gamma \in G$.

Definition (Model)

Given a regularity structure \mathscr{T} and an integer $d \ge 1$, a model for \mathscr{T} on \mathbf{R}^d consists of maps

$$\begin{aligned} \Pi \colon \mathbf{R}^d &\to \mathcal{L}\big(T, \mathcal{S}'(\mathbf{R}^d)\big) & \quad \Gamma \colon \mathbf{R}^d \times \mathbf{R}^d \to G \\ x &\mapsto \Pi_x & \quad (x, y) \mapsto \Gamma_{xy} \end{aligned}$$

such that $\Gamma_{xy}\Gamma_{yz} = \Gamma_{xz}$ and $\Pi_x\Gamma_{xy} = \Pi_y$. Furthermore, given $r > |\inf A|$, for any compact set $\mathfrak{K} \subset \mathbf{R}^d$ and constant $\gamma > 0$, there exists a constant C such that the bounds

$$ig|ig(\Pi_x aig)(arphi_x^\delta)ig| \leq C\delta^lpha \|a\|_lpha$$
 , $\|\Gamma_{xy}a\|_eta \leq C|x-y|^{lpha-eta}\|a\|_lpha$,

hold uniformly over all test functions $\varphi : \mathbf{R}^d \to \mathbf{R}$ with support on the unit ball satisfying $\|\varphi\|_{\mathcal{C}_r} \leq 1$, $(x, y) \in \mathfrak{K}$, $\delta \in (0, 1]$, $a \in T_\alpha$ with $\alpha \leq \gamma$, and $\beta < \alpha$. Here, for any test function φ , φ_x^δ is a shorthand for the rescaled function $\varphi_x^\delta(y) = \delta^{-d}\varphi(\delta^{-1}(y-x))$. Definitions

Fix $\mathscr{T} = (A, T, G)$ and (Π, Γ) model with scaling \mathfrak{s} . Definition (Modelled distributions)

For any $\gamma \in \mathbf{R}$, the space \mathcal{D}^{γ} consists of all $f : \mathbf{R}^{d} \to T_{\gamma}^{-}$ such that, for every compact set $\mathfrak{K} \subset \mathbf{R}^{d}$, one has

$$|||f|||_{\gamma;\mathfrak{K}} = \sup_{x \in \mathfrak{K}} \sup_{\beta < \gamma \atop \beta \in A} ||f(x)||_{\beta} + \sup_{(x,y) \in \mathfrak{K} \atop ||x-y||_{\mathfrak{s}} \leq 1} \sup_{\beta < \gamma \atop \beta \in A} \frac{||f(x) - \Gamma_{xy}f(y)||_{\beta}}{||x-y||_{\mathfrak{s}}^{\gamma-\beta}} < \infty$$

Definition (Generalized Hölder spaces)

Let $\alpha < 0$ and let $r = -\lfloor \alpha \rfloor$. We say that $\xi \in S'$ belongs to $C_{\mathfrak{s}}^{\alpha}$ if it belongs to the dual of \mathcal{C}_{0}^{r} and, for every compact set \mathfrak{K} , there exists a constant C such that the bound

$$\langle \xi, \mathcal{S}^{\delta}_{\mathfrak{s}, \mathbf{x}} \eta \rangle \leq \mathcal{C} \delta^{\alpha},$$

holds for all $\eta \in C^r$ with $\|\eta\|_{C^r} \leq 1$ and $\operatorname{supp} \eta \subset B_{\mathfrak{s}}(0,1)$, all $\delta \leq 1$, and all $x \in \mathfrak{K}$.

For $\xi \in C^{\alpha}_{\mathfrak{s}}$ and \mathfrak{K} a compact set, we denote by $\|\xi\|_{\alpha;\mathfrak{K}}$ the seminorm given by

$$\|\xi\|_{\alpha;\mathfrak{K}} := \sup_{x \in \mathfrak{K}} \sup_{\eta \in \mathcal{B}_{\mathfrak{s},0}^r} \sup_{\delta \leq 1} \delta^{-\alpha} |\langle \xi, \mathcal{S}_{\mathfrak{s},x}^\delta \eta \rangle| .$$

Theorem (Reconstruction theorem, Part 1)

Let $\alpha = \min A$, and let $r > |\alpha|$. Then, for every $\gamma \in \mathbf{R}$, there exists a continuous linear map $\mathcal{R} \colon \mathcal{D}^{\gamma} \to \mathcal{C}_{\mathfrak{s}}^{\alpha}$ with the property that, for every compact set $\mathfrak{K} \subset \mathbf{R}^{d}$,

$$\left(\mathcal{R}f - \Pi_{x}f(x)\right)(\mathcal{S}^{\delta}_{\mathfrak{s},x}\eta) \Big| \lesssim \delta^{\gamma} \|\Pi\|_{\gamma;\bar{\mathfrak{K}}} \|f\|_{\gamma;\bar{\mathfrak{K}}} , \qquad (1)$$

uniformly over all test functions $\eta \in \mathcal{B}_{\mathfrak{s},0}^r$, all $\delta \in (0,1]$, all $f \in \mathcal{D}^{\gamma}$, and all $x \in \mathfrak{K}$. If $\gamma > 0$, then the bound (1) defines $\mathcal{R}f$ uniquely. Here, we denoted by $\overline{\mathfrak{K}}$ the 1-fattening of \mathfrak{K} .

Modelled distributions

Reconstruction theorem

Let $\mathscr{T} = (A, T, G)$ be a regularity structure with scaling \mathfrak{s} and two models (Π, Γ) and $(\overline{\Pi}, \overline{\Gamma})$. For $f \in \mathcal{D}^{\gamma}(\Gamma)$ and $\overline{f} \in \mathcal{D}^{\gamma}(\overline{\Gamma})$ we introduce

$$\|f; \overline{f}\|_{\gamma;\mathfrak{K}} := \|f - \overline{f}\|_{\gamma;\mathfrak{K}} + \sup_{\substack{(x,y)\in\mathfrak{K} \\ \|x-y\|_{\mathfrak{s}} \leq 1}} \sup_{\beta \leq A} \frac{\|f(x) - \overline{f}(x) - \Gamma_{xy}f(y) + \overline{\Gamma}_{xy}\overline{f}(y)\|_{\beta}}{\|x - y\|_{\mathfrak{s}}^{\gamma-\beta}}$$

Theorem (Reconstruction theorem, Part 2)

Let $\alpha = \min A$, and let $r > |\alpha|$.

1. If \mathcal{R} is the reconstruction operator associated to (Π, Γ) and $\overline{\mathcal{R}}$ to $(\overline{\Pi}, \overline{\Gamma})$, then one has the bound

$$\begin{split} \big| \big(\mathcal{R}f - \overline{\mathcal{R}}\bar{f} - \Pi_{x}f(x) + \bar{\Pi}_{x}\bar{f}(x) \big) \big(\mathcal{S}_{\mathfrak{s},x}^{\delta}\eta \big) \big| \\ \lesssim \delta^{\gamma} \big(\|\bar{\Pi}\|_{\gamma;\bar{\mathfrak{K}}} \|f; \bar{f}\|_{\gamma;\bar{\mathfrak{K}}} + \|\Pi - \bar{\Pi}\|_{\gamma;\bar{\mathfrak{K}}} \|f\|_{\gamma;\bar{\mathfrak{K}}} \big), \end{split}$$

uniformly over x and η as before.

2. Finally, for $0 < \kappa < \gamma/(\gamma - \alpha)$ and for every C > 0, one has the bound

$$\begin{split} \big| \big(\mathcal{R}f - \overline{\mathcal{R}}\bar{f} - \Pi_{x}f(x) + \bar{\Pi}_{x}\bar{f}(x) \big) (\mathcal{S}_{\mathfrak{s},x}^{\delta}\eta) \big| \\ \lesssim \delta^{\bar{\gamma}} \big(\|f - \bar{f}\|_{\gamma;\bar{\mathfrak{K}}}^{\kappa} + \|\Pi - \bar{\Pi}\|_{\gamma;\bar{\mathfrak{K}}}^{\kappa} + \|\Gamma - \bar{\Gamma}\|_{\gamma;\bar{\mathfrak{K}}}^{\kappa} \big), \end{split}$$

where we set $\bar{\gamma} := \gamma - \kappa(\gamma - \alpha)$, and where we assume that $|||f|||_{\gamma;\bar{\mathfrak{K}}}$, $||\Pi||_{\gamma;\bar{\mathfrak{K}}}$ and $||\Gamma||_{\gamma;\bar{\mathfrak{K}}}$ are bounded by C, and similarly for \bar{f} , $\bar{\Pi}$ and $\bar{\Gamma}$.

Elements of wavelet analysis

Theorem (Wavelet analysis)

One has $\langle \psi_x^n, \psi_y^m \rangle = \delta_{n,m} \delta_{x,y}$ for every $n, m \in \mathbb{Z}$ and every $x \in \Lambda_n$, $y \in \Lambda_m$. Furthermore, $\langle \varphi_x^n, \psi_y^m \rangle = 0$ for every $m \ge n$ and every $x \in \Lambda_n$, $y \in \Lambda_m$. Finally, for every $n \in \mathbb{Z}$, the set

$$\{\varphi_x^n: x\in \Lambda_n\}\cup \{\psi_x^m: m\geq n, x\in \Lambda_m\}$$
,

forms an orthonormal basis of $L^2(\mathbf{R})$.

Extending the construction to \mathbf{R}^d

For any given scaling \mathfrak{s} of \mathbb{R}^d and any $n \in \mathbb{Z}$, we thus define

$$\Lambda_n^{\mathfrak{s}} = \left\{ \sum_{j=1}^d 2^{-n\mathfrak{s}_j} k_j e_j : k_j \in \mathbb{Z}
ight\} \subset \mathbb{R}^d$$

For every $x \in \Lambda_n^{\mathfrak{s}}$, we then set

$$arphi_{x}^{n,\mathfrak{s}}(y) := \prod_{j=1}^{d} \varphi_{x_{j}}^{n\mathfrak{s}_{j}}(y_{j}),$$

with

$$\varphi_{x_j}^{n\mathfrak{s}_j}(y_j) = 2^{n\mathfrak{s}_j/2}\varphi(2^{n\mathfrak{s}_j}(y_j-x_j)), \quad j=1,...,d.$$

Similarly, there exists a finite collection Ψ of orthonormal compactly supported functions such that, if we define V_n similarly as before, V_n^{\perp} is given by

$$V_n^{\perp} = \operatorname{span} \{ \psi_x^{n,\mathfrak{s}} : \psi \in \Psi \quad x \in \Lambda_n^{\mathfrak{s}} \} .$$

In this expression, given a function $\psi \in \Psi$, we have set

$$\psi_x^{n,\mathfrak{s}} = 2^{-n|\mathfrak{s}|/2} \mathcal{S}_{\mathfrak{s},x}^{2^{-n}} \psi.$$

This collection forms an orthonormal basis of V_n^{\perp} .

A convergence criterion in $\mathcal{C}^{\alpha}_{\mathfrak{s}}$

Fix $\mathscr{T} = (A, T, G)$ and (Π, Γ) model with scaling \mathfrak{s} .

Proposition (Characterising $C_{\mathfrak{s}}^{\alpha}$ by wavelet coefficients) Let $\alpha < 0$ and $\xi \in \mathcal{S}'(\mathbb{R}^d)$. Consider a wavelet analysis with a compactly supported scaling function $\varphi \in C^r$ for some $r > |\alpha|$. Then, $\xi \in C_{\mathfrak{s}}^{\alpha}$ iff ξ belongs to the dual of C_0^r and, for every compact set

 $\mathfrak{K} \subset \mathbf{R}^{d}$, the bounds

$$|\langle \xi, \psi_x^{n,\mathfrak{s}}
angle| \lesssim 2^{-rac{n|\mathfrak{s}|}{2}-nlpha}$$
 , $|\langle \xi, arphi_y^0
angle| \lesssim 1$,

hold uniformly over $n \ge 0$, every $\psi \in \Psi$, every $x \in \Lambda_n^{\mathfrak{s}} \cap \mathfrak{K}$, and every $y \in \Lambda_0^{\mathfrak{s}} \cap \mathfrak{K}$.

Theorem (Convergence criterion in $C_{\mathfrak{s}}^{\alpha}$)

Let \mathfrak{s} be a scaling of \mathbf{R}^d , let $\alpha < 0 < \gamma$, and fix a wavelet basis with regularity $r > |\alpha|$. For every $n \ge 0$, let $x \mapsto A_x^n$ be a function on \mathbf{R}^d satisfying the bounds

$$|A_x^n| \leq ||A|| 2^{-\frac{n\mathfrak{s}}{2}-lpha n}$$
, $|\delta A_x^n| \lesssim ||A|| 2^{-\frac{n\mathfrak{s}}{2}-\gamma n}$,

for some constant ||A||, uniformly over $n \ge 0$ and $x \in \mathbf{R}^d$. Then, the sequence $\{f_n\}_{n\ge 0}$ given by $f_n = \sum_{x\in\Lambda_n^{\mathfrak{s}}} A_x^n \varphi_x^{n,\mathfrak{s}}$ converges in $\mathcal{C}_{\mathfrak{s}}^{\bar{\alpha}}$ for every $\bar{\alpha} < \alpha$ and its limit f belongs to $\mathcal{C}_{\mathfrak{s}}^{\alpha}$. Furthermore, the bounds

$$\|f-f_n\|_{\bar{lpha}} \lesssim \|A\| 2^{-(\alpha-\bar{lpha})n}$$
, $\|\mathcal{P}_n f-f_n\|_{lpha} \lesssim \|A\| 2^{-\gamma n}$,

hold for $\bar{\alpha} \in (\alpha - \gamma, \alpha)$, where \mathcal{P}_n is given by

$$\mathcal{P}_n f := \sum_{x \in \Lambda_n} \langle f, \varphi_x^n \rangle \varphi_x^n.$$

Modelled distributions

Proof of the reconstruction theorem

Suppose there exists a family $x \mapsto \zeta_x \in \mathcal{S}'(\mathbf{R}^d)$ of distributions such that the sequence f_n is given by

$$f_n = \sum_{x \in \Lambda_n^{\mathfrak{s}}} A_x^n \varphi_x^{n,\mathfrak{s}},$$

with $A_x^n = \langle \varphi_x^{n,\mathfrak{s}}, \zeta_x \rangle$.

Proposition

In the above situation, assume that the family ζ_x is such that, for some constants K_1 and K_2 and exponents $\alpha < 0 < \gamma$, the bounds

$$\begin{aligned} |\langle \varphi_{x}^{n,\mathfrak{s}}, \zeta_{x} - \zeta_{y} \rangle| &\leq K_{1} ||x - y||_{\mathfrak{s}}^{\gamma - \alpha} 2^{-\frac{n|\mathfrak{s}|}{2} - \alpha n}, \\ |\langle \varphi_{x}^{n,\mathfrak{s}}, \zeta_{x} \rangle| &\leq K_{2} 2^{-\alpha n - \frac{n|\mathfrak{s}|}{2}}, \end{aligned}$$

hold uniformly over all x, y such that $2^{-n} \leq ||x - y||_{\mathfrak{s}} \leq 1$. Here, as before, φ is the scaling function for a wavelet basis of regularity $r > |\alpha|$.

Then, the $\lim_{n\to\infty} f_n = f$ exists and the limit distribution $f \in C_s^{\alpha}$ satisfies the bound

$$|(f-\zeta_{\mathsf{x}})(\mathcal{S}^{\delta}_{\mathfrak{s},\mathsf{x}}\eta)|\lesssim \mathsf{K}_{1}\delta^{\gamma}$$

uniformly over $\eta \in \mathcal{B}_{\mathfrak{s},0}^r$. Here, the proportionality constant only depends on the choice of wavelet basis, but not on K_2 .

Overview

Classical multiplication

- $\mathcal{C}^{\alpha} \times \mathcal{C}^{\beta} \to \mathcal{C}^{\alpha \wedge \beta}$ continuous for $\alpha + \beta > 0$.
- Not continuous for $\alpha + \beta \leq \mathbf{0}, \alpha \notin \mathbb{N}$.

Multiplication of modelled distributions

- Algebraic structure: need product on T.
- Get $\mathcal{D}_{\alpha_1}^{\gamma_1} \times \mathcal{D}_{\alpha_2}^{\gamma_2} \to \mathcal{D}_{\alpha_1 + \alpha_2}^{(\gamma_1 + \alpha_2) \land (\gamma_2 + \alpha_1)}$ continuous.
- Note: $(\mathcal{R}f_1)(\mathcal{R}f_2) \neq \mathcal{R}(f_1f_2)$ in general, even when this makes sense in the classical way.
- However, the formalism is flexible enough for products that encode some renormalisation procedure.

Constructing products on T

- Constructing products on Hopf algebras T.
- Example: Polynomial regularity structure.
- Example: Regularity structure of rough paths.

Composition of functions

• $G \circ f \in \mathcal{D}^{\gamma}(V)$ if $G : \mathbb{R}^n \to \mathbb{R}^n$ is smooth, $f \in \mathcal{D}^{\gamma}(V)$, and $V \subseteq T$ is function-like.

Definitions of distributions and modelled distributions

Definition (\mathscr{D}^{γ})

Given a regularity structure \mathscr{T} equipped with a model (Π, Γ) over \mathbb{R}^d , the space \mathscr{D}^{γ} is given by the set of functions $f : \mathbb{R}^d \to \bigoplus_{\alpha < \gamma} T_{\alpha}$ such that, for every compact set \mathfrak{K} and every $\alpha < \gamma$, the exists a constant C with

$$\|f(x) - \Gamma_{xy}f(y)\|_{\alpha} \leq C|x-y|^{\gamma-\alpha}$$

uniformly over $x, y \in \mathfrak{K}$.

Definition $(\mathscr{D}^{\gamma}_{\alpha})$

 \mathscr{D}^γ_lpha denotes those elements $f\in \mathscr{D}^\gamma$ such that

$$f(x)\in T^+_lpha\equiv igoplus_{eta\geqlpha}T_eta, \qquad orall x.$$

Definition (C^{α})

Let (A, T, G) be the polynomial regularity structure. A function $f : \mathbb{R}^d \to \mathbb{R}$ is of class \mathcal{C}^{α} with $\alpha > 0$ if and only if the Taylor expansion

$$F(x) = \sum_{|k|_{\mathfrak{s}} < lpha} rac{X^k}{k!} D^k f(x) \; .$$

is of class \mathscr{D}^{α} .

Definition $(\mathcal{C}^{-\alpha})$

For each $\alpha > 0$, we denote by $C^{-\alpha}$ the space of all Schwartz distributions η such that η belongs to the dual of C^r with $r = \lceil \alpha \rceil$ and such that

$$\left|\eta(arphi_{\mathsf{x}}^{\lambda})
ight|\lesssim\lambda^{-lpha}$$
 ,

uniformly over all $\varphi \colon \mathbf{R}^d \to \mathbf{R}$ with $\|\varphi\|_{\mathcal{C}^r} \leq 1$ supported in the unit ball around the origin, and $\lambda \in (0, 1]$, and locally uniformly in x.

Theorem (Classical multiplication)

If $\beta > \alpha$, then there is a continuous bilinear map $B: C^{-\alpha} \times C^{\beta} \to S'(\mathbf{R}^d)$ such that B(f,g) = fg for any two continuous functions f and g.

Definition (Sector)

Given a regularity structure (T, A, G) we say that a subspace $V \subset T$ is a *sector* if it is invariant under the action of the structure group G and if it can furthermore be written as $V = \bigoplus_{\alpha \in A} V_{\alpha}$ with $V_{\alpha} \subset T_{\alpha}$.

Definition (Multiplication in T)

Given a regularity structure (T, A, G) and two sectors $V, \overline{V} \subset T$, a product on (V, \overline{V}) is a bilinear map $\star : V \times \overline{V} \to T$ such that, for any $\tau \in V_{\alpha}$ and $\overline{\tau} \in \overline{V}_{\beta}$, one has $\tau \star \overline{\tau} \in T_{\alpha+\beta}$ and such that, for any element $\Gamma \in G$, one has $\Gamma(\tau \star \overline{\tau}) = \Gamma \tau \star \Gamma \overline{\tau}$. Furthermore, $\star : V_{\alpha} \times \overline{V}_{\beta} \to T_{\alpha+\beta}$ is continuous.

Theorem (Multiplication of modeled distributions) Let $f_1 \in \mathscr{D}_{\alpha_1}^{\gamma_1}(V)$, $f_2 \in \mathscr{D}_{\alpha_2}^{\gamma_2}(\bar{V})$, and let \star be a product on (V, \bar{V}) . Then, the function f given by $f(x) = f_1(x) \star f_2(x)$ belongs to $\mathscr{D}_{\alpha}^{\gamma}$ with

$$lpha=lpha_1+lpha_2$$
 , $\gamma=(\gamma_1+lpha_2)\wedge(\gamma_2+lpha_1)$.

Remark

If $\Pi_x \tau$ happens to be a continuous function for every $\tau \in T$ and the product satisfies $\Pi_x(a \star b) = \Pi_x(a)\Pi_x(b)$ we also have

$$\mathcal{R}(f_1\star f_2)(x) = \Pi_x\big(f_1(x)\star f_2(x)\big)(x) = \Pi_x\big(f_1(x)\big)(x)\Pi_x\big(f_2(x)\big)(x) = \mathcal{R}f_1(x)\mathcal{R}f_2(x).$$

This holds for example if $f_i \in \mathscr{D}_0^{\gamma}(V)$ with $\gamma > 0$. Note however, that even if both $\mathcal{R}f_1$ and $\mathcal{R}f_2$ happen to be continuous functions, this does *not* in general imply that $\mathcal{R}(f_1 \star f_2)(x) = (\mathcal{R}f_1)(x) (\mathcal{R}f_2)(x)!$

Definition (Composition with smooth functions)

Let V be a function-like sector (i.e., $V_{\alpha} = 0$ if $\alpha < 0$ and $V_0 = \mathbf{R}$) endowed with a product $\star: V \times V \to V$. For any smooth function $G: \mathbf{R} \to \mathbf{R}$ and any $f \in \mathscr{D}^{\gamma}(V)$ with $\gamma > 0$, we can then *define* G(f) to be the V-valued function given by

$$ig(G\circ fig)(x)=\sum_{k\geq 0}rac{G^{(k)}(ar{f}(x))}{k!}\widetilde{f}(x)^{\star k}$$
 ,

where we have set

$$ar{f}(x) = \langle \mathbf{1}, f(x)
angle$$
 , $\widetilde{f}(x) = f(x) - ar{f}(x) \mathbf{1}$.

Here, $G^{(k)}$ denotes the *k*th derivative of *G* and $\tau^{\star k}$ denotes the *k*-fold product $\tau \star \cdots \star \tau$. We also used the usual conventions $G^{(0)} = G$ and $\tau^{\star 0} = \mathbf{1}$.

Proposition (Regularity of composition with smooth function) In the same setting as above, provided that G is of class C^k with $k > \gamma/\alpha_0$, the map $f \mapsto G \circ f$ is continuous from $\mathscr{D}^{\gamma}(V)$ into itself. If $k > \gamma/\alpha_0 + 1$, then it is locally Lipschitz continuous.

Hopf algebras

Definition

- Algebra (T, ∇, e) over \mathbb{R} : unital, associative, commutative.
- Coalgebra (T, Δ, ϵ) over \mathbb{R} : counital, coassociative.
- Compatibility: for all $p, q \in T$,

$$\Delta(pq) = (\Delta p)(\Delta q), \quad \Delta e = e \otimes e, \quad \epsilon(pq) = \epsilon(p)\epsilon(q), \quad \epsilon(e) = 1.$$

• Grading: $T = \bigoplus_{k \in \mathbb{Z}^d_+} T_k$ with dim $T_k < \infty$ such that

$$abla : T_k \times T_\ell \to T_{k+\ell}, \qquad \Delta : T_k \to \bigoplus_{\ell+m=k} T_\ell \otimes T_m.$$

- Connectedness: $T_0 = \operatorname{span}_{\mathbb{R}} \{ e \}.$
- Antipode: linear mapping $\mathcal{A}: T_k o T_k$ such that

$$T \otimes T \xrightarrow{\mathcal{A} \otimes \mathrm{id}} T \otimes T$$

$$\begin{array}{c} T \otimes T \xrightarrow{id \otimes \mathcal{A}} T \otimes T \\ \Delta & \nabla \\ T \xrightarrow{\epsilon} \mathbb{R} \xrightarrow{e} T \end{array}$$

Constructing a group acting on T

- Dual Hopf algebra $(T^*, \nabla^*, e^*, \Delta^*, \epsilon^*, \mathcal{A}^*)$.
- Primitive elements P(T*) = {f ∈ T*: Δ*f = e* ⊗ f + f ⊗ e*} form a Lie algebra with universal enveloping algebra T* (Milnor-Moore Theorem).
- Define $G = \exp(P(T^*)) \subset T^*$. Then $\Delta^* g = g \otimes g$ holds, for all $g \in G$.
- Group action 1: $\langle f, \Gamma_g p \rangle = \langle fg, p \rangle$, for all $f \in T^*, g \in G, p \in T$.
- Group action 2: $\langle f, \Gamma_g p \rangle = \langle (\mathcal{A}^*g)f, p \rangle$, for all $f \in T^*, g \in G, p \in T$.

Properties of the group action

- If $p \in T_{\gamma}$, then $\Gamma_g p p \in T_{\gamma}^-$.
- Multiplication on *T* is *regular*.

$$\Gamma_g(pq) = \Gamma_g(p)\Gamma_g(q), \quad \forall g \in G,$$

as a consequence of $\Delta^*g = g \otimes g$.

Polynomial regularity structure as a Hopf algebra

Definition

- $A = \mathbb{N}_0, T = \mathbb{R}[X_1, \ldots, X_d], G = \mathbb{R}^d.$
- Group action $(\Gamma_g p)(X) = p(X + g)$.

Hopf algebra structure on T

- Multiplication ∇ as usual; unit e = 1.
- Comultiplication Δ is the unique homomorphism satisfying $\Delta X_i = 1 \otimes X_i + X_i \otimes 1$ ("divided powers"); counit ϵ is evaluation at zero.
- Antipode A is the unique antihomomorphism satisfying $AX_i = -X_i$.

Dual structure on T^*

- T^* identified with formal differential operators $\sum_{n\geq 0} a_{i_1,...,i_n} \frac{\partial}{\partial X^{i_1}...\partial X^{i_n}}$ with constant coefficients.
- \blacktriangleright Pairing with T given by differentiation and evaluation at zero.
- Multiplication ∇^* is composition of differential operators.
- Comultiplication Δ^* is the unique homomorphism satisfying $\Delta^* \frac{\partial}{\partial X^i} = \frac{\partial}{\partial X^i} \otimes \operatorname{id} + \operatorname{id} \otimes \frac{\partial}{\partial X^i}$.

Group and group action

- Primitive elements $P(T^*)$ are first order differential operators because $\Delta^* f = e^* \otimes f + f \otimes e^* \Leftrightarrow \langle f, pq \rangle = p(0) \langle f, q \rangle + \langle f, p \rangle q(0).$
- $G = \exp(P(T^*))$ are translations.
- This is group action 1: $\langle f, \Gamma_g p \rangle = \langle fg, p \rangle$.

Standard model

- $\blacktriangleright (\Pi_x X_k)(y) = (y-x)^k$
- $\Gamma_{xy} = x y \in G$

Regularity structure of rough paths as a Hopf algebra

Definition

- $ightarrow \gamma > 0, E = \mathbb{R}^{d}.$
- $A = \gamma \mathbb{N}_0, T = \bigoplus_{k=0}^{\infty} T_{\gamma k}$ with $T_{\gamma k} = (E^*)^{\otimes k}, G = \exp(\operatorname{Lie}(E)).$
- Group action $\langle f, \Gamma_g p \rangle = \langle g^{-1}f, p \rangle$, for all $f \in \prod_{k=0}^{\infty} E^{\otimes k}, g \in G, p \in T$.

Hopf algebra structure on T

- Multiplication $\nabla = \sqcup$ is the shuffle product; unit $e = 1 \in \mathbb{R}$.
- Comultiplication Δ obtained by duality from multiplication on T^* , i.e., $\langle f \otimes g, \Delta p \rangle = \langle fg, p \rangle$; counit ϵ extracts the \mathbb{R} -component.
- Antipode A is the unique antihomomorphism satisfying $Ax = -x, \forall x \in E^*$.

Dual structure on T^*

- $T^* = \prod_{k=0}^{\infty} E^{\otimes k}$ is the (pre-)dual of T.
- Multiplication $abla^*$ is concatenation (alias tensorisation); unit $e^* = 1 \in \mathbb{R}$.
- Comultiplication Δ^* obtained by duality from multiplication on T, i.e., $\langle \Delta^* f, p \otimes q \rangle = \langle f, p \sqcup q \rangle$; counit ϵ^* extracts the \mathbb{R} -component.

Group and group action

- Primitive elements $P(T^*) = \text{Lie}(E) \subset T^*$.
- $G = \exp(P(T^*)) \subset T^*$ has the property $\mathcal{A}g = g^{-1}, \forall g \in G$.
- This is group action 2: $\langle f, \Gamma_g p \rangle = \langle (\mathcal{A}g)f, p \rangle = \langle g^{-1}f, p \rangle$.

Standard model

- $\blacktriangleright (\Pi_s a)(t) = \langle \boldsymbol{X}_{st}, a \rangle$
- $\blacktriangleright \Gamma_{st} = \boldsymbol{X}_{st} \in \boldsymbol{G}$