Abstract regularity structures

Definition (Regularity structure)

A regularity structure $\mathscr{T}=(A, T, G)$ consists of the following elements:

- An index set $A \subset \mathbf{R}$ such that $0 \in A, A$ is bounded from below, and A is locally finite.
- A model space T, which is a graded vector space $T=\bigoplus_{\alpha \in A} T_{\alpha}$, with each ($T_{\alpha},\|\cdot\|_{\alpha}$) a Banach space. Furthermore, $T_{0} \approx \mathbf{R}$ and its unit vector is denoted by 1.
- A structure group G of linear operators acting on T such that, for every $\Gamma \in G$, every $\alpha \in A$, and every $a \in T_{\alpha}$, one has

$$
\Gamma a-a \in \bigoplus_{\beta<\alpha} T_{\beta} .
$$

Furthermore, $\Gamma \mathbf{1}=\mathbf{1}$ for every $\Gamma \in G$.

Definition (Model)

Given a regularity structure \mathscr{T} and an integer $d \geq 1$, a model for \mathscr{T} on \mathbf{R}^{d} consists of maps

$$
\begin{aligned}
\Pi: \mathbf{R}^{d} & \rightarrow \mathcal{L}\left(T, \mathcal{S}^{\prime}\left(\mathbf{R}^{d}\right)\right) & \Gamma: \mathbf{R}^{d} \times \mathbf{R}^{d} & \rightarrow G \\
x & \mapsto \Pi_{x} & (x, y) & \mapsto \Gamma_{x y}
\end{aligned}
$$

such that $\Gamma_{x y} \Gamma_{y z}=\Gamma_{x z}$ and $\Pi_{x} \Gamma_{x y}=\Pi_{y}$. Furthermore, given $r>|\inf A|$, for any compact set $\mathfrak{K} \subset \mathbf{R}^{d}$ and constant $\gamma>0$, there exists a constant C such that the bounds

$$
\left|\left(\Pi_{x} a\right)\left(\varphi_{x}^{\delta}\right)\right| \leq C \delta^{\alpha}\|a\|_{\alpha}, \quad\left\|\Gamma_{x y} a\right\|_{\beta} \leq C|x-y|^{\alpha-\beta}\|a\|_{\alpha},
$$

hold uniformly over all test functions $\varphi: \mathbf{R}^{d} \rightarrow \mathbf{R}$ with support on the unit ball satisfying $\|\varphi\|_{\mathcal{C}_{r}} \leq 1,(x, y) \in \mathfrak{K}, \delta \in(0,1]$, $a \in T_{\alpha}$ with $\alpha \leq \gamma$, and $\beta<\alpha$. Here, for any test function $\varphi, \varphi_{x}^{\delta}$ is a shorthand for the rescaled function $\varphi_{x}^{\delta}(y)=\delta^{-d} \varphi\left(\delta^{-1}(y-x)\right)$.

Modelled distributions

Fix $\mathscr{T}=(A, T, G)$ and (Π, Γ) model with scaling \mathfrak{s}.
Definition (Modelled distributions)
For any $\gamma \in \mathbf{R}$, the space \mathcal{D}^{γ} consists of all $f: \mathbf{R}^{d} \rightarrow T_{\gamma}^{-}$such that, for every compact set $\mathfrak{K} \subset \mathbf{R}^{d}$, one has

$$
\|f\|_{\gamma ; \mathfrak{K}}=\sup _{x \in \mathfrak{K}} \sup _{\substack{\beta<\gamma \\ \beta \in A}}\|f(x)\|_{\beta}+\sup _{\substack{(x, y) \in \mathfrak{K} \\\|x-y\| \mathfrak{s} \leq 1}} \sup _{\substack{\beta<\gamma \\ \beta \in A}} \frac{\left\|f(x)-\Gamma_{x y} f(y)\right\|_{\beta}}{\|x-y\|_{\mathfrak{s}}^{\gamma-\beta}}<\infty .
$$

Definition (Generalized Hölder spaces)

Let $\alpha<0$ and let $r=-\lfloor\alpha\rfloor$. We say that $\xi \in \mathcal{S}^{\prime}$ belongs to $\mathcal{C}_{\mathfrak{s}}^{\alpha}$ if it belongs to the dual of \mathcal{C}_{0}^{r} and, for every compact set \mathfrak{K}, there exists a constant C such that the bound

$$
\left\langle\xi, \mathcal{S}_{\mathfrak{s}, x}^{\delta} \eta\right\rangle \leq C \delta^{\alpha},
$$

holds for all $\eta \in \mathcal{C}^{r}$ with $\|\eta\|_{\mathcal{C}^{r}} \leq 1$ and $\operatorname{supp} \eta \subset B_{\mathfrak{s}}(0,1)$, all $\delta \leq 1$, and all $x \in \mathfrak{K}$.

For $\xi \in \mathcal{C}_{\mathfrak{s}}^{\alpha}$ and \mathfrak{K} a compact set, we denote by $\|\xi\|_{\alpha ; \mathfrak{K}}$ the seminorm given by

$$
\|\xi\|_{\alpha ; \mathfrak{K}}:=\sup _{x \in \mathfrak{K}} \sup _{\eta \in \mathcal{B}_{\mathfrak{s}, 0}^{r}} \sup _{\delta \leq 1} \delta^{-\alpha}\left|\left\langle\xi, \mathcal{S}_{\mathfrak{s}, x}^{\delta} \eta\right\rangle\right| .
$$

Theorem (Reconstruction theorem, Part 1) Let $\alpha=\min A$, and let $r>|\alpha|$. Then, for every $\gamma \in \mathbf{R}$, there exists a continuous linear map $\mathcal{R}: \mathcal{D}^{\gamma} \rightarrow \mathcal{C}_{\mathfrak{s}}^{\alpha}$ with the property that, for every compact set $\mathfrak{K} \subset \mathbf{R}^{d}$,

$$
\begin{equation*}
\left|\left(\mathcal{R} f-\Pi_{x} f(x)\right)\left(\mathcal{S}_{\mathfrak{s}, x}^{\delta} \eta\right)\right| \lesssim \delta^{\gamma}\|\Pi\|_{\gamma ; \overline{\boldsymbol{\kappa}}}\|f\|_{\gamma ; \overline{\boldsymbol{\varepsilon}}}, \tag{1}
\end{equation*}
$$

uniformly over all test functions $\eta \in \mathcal{B}_{s, 0}^{r}$, all $\delta \in(0,1]$, all $f \in \mathcal{D}^{\gamma}$, and all $x \in \mathfrak{K}$. If $\gamma>0$, then the bound (1) defines $\mathcal{R} f$ uniquely. Here, we denoted by $\overline{\mathfrak{K}}$ the 1 -fattening of \mathfrak{K}.

Modelled distributions

Let $\mathscr{T}=(A, T, G)$ be a regularity structure with scaling \mathfrak{s} and two models (Π, Γ) and $(\bar{\Pi}, \bar{\Gamma})$.
For $f \in \mathcal{D}^{\gamma}(\Gamma)$ and $\bar{f} \in \mathcal{D}^{\gamma}(\bar{\Gamma})$ we introduce

$$
\begin{aligned}
\|f ; \bar{f}\|_{\gamma ; \beta}:= & \|f-\bar{f}\|_{\gamma ; \mathfrak{R}} \\
& +\sup _{\substack{(x, y \in \mathcal{R} \\
\|x-y,\| \leq 1}} \sup _{\beta \in \gamma}^{\beta \in \mathcal{A}}
\end{aligned} \frac{\left\|f(x)-\bar{f}(x)-\Gamma_{x y} f(y)+\bar{\Gamma}_{x y} \bar{f}(y)\right\|_{\beta}}{\|x-y\|_{s}^{\gamma-\beta}} .
$$

Theorem (Reconstruction theorem, Part 2)

Let $\alpha=\min A$, and let $r>|\alpha|$.

1. If \mathcal{R} is the reconstruction operator associated to (Π, Γ) and $\overline{\mathcal{R}}$ to $(\bar{\Pi}, \bar{\Gamma})$, then one has the bound

$$
\begin{aligned}
& \left|\left(\mathcal{R} f-\overline{\mathcal{R}} \bar{f}-\Pi_{x} f(x)+\bar{\Pi}_{x} \bar{f}(x)\right)\left(\mathcal{S}_{, x, \chi}^{\delta} \eta\right)\right| \\
& \quad \lesssim \delta^{\gamma}\left(\|\bar{\Pi}\|_{\gamma ; ; \overline{\mathcal{R}} \|}\|f ; \bar{f}\|_{\gamma ; \overline{\mathcal{R}}}+\|\Pi-\bar{\Pi}\|_{\gamma ; \overline{\mathcal{R}}}\|f\|_{\gamma ; \overline{\mathfrak{R}}}\right),
\end{aligned}
$$

uniformly over x and η as before.
2. Finally, for $0<\kappa<\gamma /(\gamma-\alpha)$ and for every $C>0$, one has the bound

$$
\begin{aligned}
& \left|\left(\mathcal{R} f-\overline{\mathcal{R}} \bar{f}-\Pi_{x} f(x)+\bar{\Pi}_{x} \bar{f}(x)\right)\left(\mathcal{S}_{\mathfrak{s}, x}^{\delta} \eta\right)\right| \\
& \quad \lesssim \delta^{\bar{\gamma}}\left(\|f-\bar{f}\|_{\gamma ; \bar{\Omega}}^{\kappa}+\|\Pi-\bar{\Pi}\|_{\gamma ; \bar{\kappa}}^{\kappa}+\|\Gamma-\bar{\Gamma}\|_{\gamma ; \bar{\kappa}}^{\kappa}\right),
\end{aligned}
$$

where we set $\bar{\gamma}:=\gamma-\kappa(\gamma-\alpha)$, and where we assume that $\|f\|_{\gamma ; \bar{\xi}}$,
$\|\Pi\|_{\gamma, \bar{\xi}}$ and $\|\Gamma\|_{\gamma, \bar{\Omega}}$ are bounded by C, and similarly for $\bar{f}, \bar{\Pi}$ and $\bar{\Gamma}$.

Modelled distributions

Theorem (Wavelet analysis)

One has $\left\langle\psi_{x}^{n}, \psi_{y}^{m}\right\rangle=\delta_{n, m} \delta_{x, y}$ for every $n, m \in \mathbb{Z}$ and every $x \in \Lambda_{n}, y \in \Lambda_{m}$. Furthermore, $\left\langle\varphi_{x}^{n}, \psi_{y}^{m}\right\rangle=0$ for every $m \geq n$ and every $x \in \Lambda_{n}, y \in \Lambda_{m}$. Finally, for every $n \in \mathbb{Z}$, the set

$$
\left\{\varphi_{x}^{n}: x \in \Lambda_{n}\right\} \cup\left\{\psi_{x}^{m}: m \geq n, x \in \Lambda_{m}\right\},
$$

forms an orthonormal basis of $L^{2}(\mathbf{R})$.
Extending the construction to \mathbf{R}^{d}
For any given scaling \mathfrak{s} of \mathbb{R}^{d} and any $n \in \mathbb{Z}$, we thus define

$$
\Lambda_{n}^{\mathfrak{s}}=\left\{\sum_{j=1}^{d} 2^{-n \mathfrak{s}_{j}} k_{j} e_{j}: k_{j} \in \mathbb{Z}\right\} \subset \mathbb{R}^{d},
$$

For every $x \in \Lambda_{n}^{\mathfrak{s}}$, we then set

$$
\varphi_{x}^{n, 5}(y):=\prod_{j=1}^{d} \varphi_{x_{j}}^{n 5_{j}}\left(y_{j}\right),
$$

with

$$
\varphi_{x_{j}}^{n_{j}}\left(y_{j}\right)=2^{{n 5_{j}}^{2} 2} \varphi\left(2^{n_{j}}\left(y_{j}-x_{j}\right)\right), \quad j=1, \ldots, d .
$$

Similarly, there exists a finite collection Ψ of orthonormal compactly supported functions such that, if we define V_{n} similarly as before, V_{n}^{\perp} is given by

$$
V_{n}^{\perp}=\operatorname{span}\left\{\psi_{x}^{n, 5}: \psi \in \Psi \quad x \in \Lambda_{n}^{\mathfrak{s}}\right\} .
$$

In this expression, given a function $\psi \in \Psi$, we have set

$$
\psi_{x}^{n, \mathfrak{s}}=2^{-n \mid\{|s| / 2} \mathcal{S}_{\mathfrak{s}, x}^{2-n} \psi .
$$

This collection forms an orthonormal basis of V_{n}^{\perp}.

Modelled distributions

A convergence criterion in $\mathcal{C}_{\mathfrak{s}}^{\alpha}$

Fix $\mathscr{T}=(A, T, G)$ and (Π, Γ) model with scaling \mathfrak{s}.

Proposition (Characterising $\mathcal{C}_{\mathfrak{5}}^{\alpha}$ by wavelet coefficients)

Let $\alpha<0$ and $\xi \in \mathcal{S}^{\prime}\left(\mathbf{R}^{d}\right)$. Consider a wavelet analysis with a compactly supported scaling function $\varphi \in \mathcal{C}^{r}$ for some $r>|\alpha|$.
Then, $\xi \in \mathcal{C}_{\mathfrak{s}}^{\alpha}$ iff ξ belongs to the dual of \mathcal{C}_{0}^{r} and, for every compact set $\mathfrak{K} \subset \mathbf{R}^{d}$, the bounds

$$
\left|\left\langle\xi, \psi_{x}^{n, s}\right\rangle\right| \lesssim 2^{-\frac{n|s|}{2}-n \alpha}, \quad\left|\left\langle\xi, \varphi_{y}^{0}\right\rangle\right| \lesssim 1
$$

hold uniformly over $n \geq 0$, every $\psi \in \Psi$, every $x \in \Lambda_{n}^{\mathfrak{s}} \cap \mathfrak{K}$, and every $y \in \Lambda_{0}^{\mathfrak{s}} \cap \mathfrak{K}$.

Theorem (Convergence criterion in $\mathcal{C}_{\mathfrak{s}}^{\alpha}$)

Let \mathfrak{s} be a scaling of \mathbf{R}^{d}, let $\alpha<0<\gamma$, and fix a wavelet basis with regularity $r>|\alpha|$. For every $n \geq 0$, let $x \mapsto A_{x}^{n}$ be a function on \mathbf{R}^{d} satisfying the bounds

$$
\left|A_{x}^{n}\right| \leq\|A\| 2^{-\frac{n s}{2}-\alpha n}, \quad\left|\delta A_{x}^{n}\right| \lesssim\|A\| \|^{-\frac{n s}{2}-\gamma n},
$$

for some constant $\|A\|$, uniformly over $n \geq 0$ and $x \in \mathbf{R}^{d}$.
Then, the sequence $\left\{f_{n}\right\}_{n \geq 0}$ given by $f_{n}=\sum_{x \in \Lambda_{n}^{n}} A_{x}^{n} \varphi_{x}^{n, 5}$ converges in $\mathcal{C}_{\mathfrak{s}}^{\bar{\alpha}}$ for every $\bar{\alpha}<\alpha$ and its limit f belongs to $\mathcal{C}_{\mathfrak{s}}^{\alpha}$. Furthermore, the bounds

$$
\left\|f-f_{n}\right\|_{\bar{\alpha}} \lesssim\|A\| 2^{-(\alpha-\bar{\alpha}) n}, \quad\left\|\mathcal{P}_{n} f-f_{n}\right\|_{\alpha} \lesssim\|A\| 2^{-\gamma n}
$$

hold for $\bar{\alpha} \in(\alpha-\gamma, \alpha)$, where \mathcal{P}_{n} is given by

$$
\mathcal{P}_{n} f:=\sum_{x \in \Lambda_{n}}\left\langle f, \varphi_{x}^{n}\right\rangle \varphi_{x}^{n} .
$$

Modelled distributions

Suppose there exists a family $x \mapsto \zeta_{x} \in \mathcal{S}^{\prime}\left(\mathbf{R}^{d}\right)$ of distributions such that the sequence f_{n} is given by

$$
f_{n}=\sum_{x \in \Lambda_{n}^{s}} A_{x}^{n} \varphi_{x}^{n, 5},
$$

with $A_{x}^{n}=\left\langle\varphi_{x}^{n, 5}, \zeta_{x}\right\rangle$.

Proposition

In the above situation, assume that the family ζ_{x} is such that, for some constants K_{1} and K_{2} and exponents $\alpha<0<\gamma$, the bounds

$$
\begin{aligned}
& \left|\left\langle\varphi_{x}^{n, s}, \zeta_{x}-\zeta_{y}\right\rangle\right| \leq K_{1}\|x-y\|_{s}^{\gamma-\alpha} 2^{-\frac{n|s|}{2}-\alpha n}, \\
& \left|\left\langle\varphi_{x}^{n, s}, \zeta_{x}\right\rangle\right| \leq K_{2} 2^{-\alpha n-\frac{n|s|}{2}},
\end{aligned}
$$

hold uniformly over all x, y such that $2^{-n} \leq\|x-y\|_{s} \leq 1$. Here, as before, φ is the scaling function for a wavelet basis of regularity $r>|\alpha|$.
Then, the $\lim _{n \rightarrow \infty} f_{n}=f$ exists and the limit distribution $f \in \mathcal{C}_{\mathfrak{s}}^{\alpha}$ satisfies the bound

$$
\left|\left(f-\zeta_{x}\right)\left(\mathcal{S}_{\mathfrak{s}, \chi}^{\delta} \eta\right)\right| \lesssim K_{1} \delta^{\gamma},
$$

uniformly over $\eta \in \mathcal{B}_{5,0}^{r}$. Here, the proportionality constant only depends on the choice of wavelet basis, but not on K_{2}.

Multiplication

Classical multiplication

- $\mathcal{C}^{\alpha} \times \mathcal{C}^{\beta} \rightarrow \mathcal{C}^{\alpha \wedge \beta}$ continuous for $\alpha+\beta>0$.
- Not continuous for $\alpha+\beta \leq 0, \alpha \notin \mathbb{N}$.

Multiplication of modelled distributions

- Algebraic structure: need product on T.
- Get $\mathcal{D}_{\alpha_{1}}^{\gamma_{1}} \times \mathcal{D}_{\alpha_{2}}^{\gamma_{2}} \rightarrow \mathcal{D}_{\alpha_{1}+\alpha_{2}}^{\left(\gamma_{1}+\alpha_{2}\right) \wedge\left(\gamma_{2}+\alpha_{1}\right)}$ continuous.
- Note: $\left(\mathcal{R} f_{1}\right)\left(\mathcal{R} f_{2}\right) \neq \mathcal{R}\left(f_{1} f_{2}\right)$ in general, even when this makes sense in the classical way.
- However, the formalism is flexible enough for products that encode some renormalisation procedure.

Constructing products on T

- Constructing products on Hopf algebras T.
- Example: Polynomial regularity structure.
- Example: Regularity structure of rough paths.

Composition of functions

- $G \circ f \in \mathcal{D}^{\gamma}(V)$ if $G: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is smooth, $f \in \mathcal{D}^{\gamma}(V)$, and $V \subseteq T$ is function-like.

Multiplication

Definition (\mathscr{D}^{γ})

Given a regularity structure \mathscr{T} equipped with a model (Π, Γ) over \mathbf{R}^{d}, the space \mathscr{D}^{γ} is given by the set of functions $f: \mathbf{R}^{d} \rightarrow \bigoplus_{\alpha<\gamma} T_{\alpha}$ such that, for every compact set \mathfrak{K} and every $\alpha<\gamma$, the exists a constant \boldsymbol{C} with

$$
\left\|f(x)-\Gamma_{x y} f(y)\right\|_{\alpha} \leq C|x-y|^{\gamma-\alpha}
$$

uniformly over $x, y \in \mathfrak{K}$.
Definition $\left(\mathscr{D}_{\alpha}^{\gamma}\right)$
$\mathscr{D}_{\alpha}^{\gamma}$ denotes those elements $f \in \mathscr{D}^{\gamma}$ such that

$$
f(x) \in T_{\alpha}^{+} \equiv \bigoplus_{\beta \geq \alpha} T_{\beta}, \quad \forall x .
$$

Definition $\left(\mathcal{C}^{\alpha}\right)$

Let (A, T, G) be the polynomial regularity structure. A function $f: \mathbf{R}^{d} \rightarrow \mathbf{R}$ is of class \mathcal{C}^{α} with $\alpha>0$ if and only if the Taylor expansion

$$
F(x)=\sum_{|k|_{s}<\alpha} \frac{X^{k}}{k!} D^{k} f(x) .
$$

is of class \mathscr{D}^{α}.

Definition $\left(\mathcal{C}^{-\alpha}\right)$

For each $\alpha>0$, we denote by $\mathcal{C}^{-\alpha}$ the space of all Schwartz distributions η such that η belongs to the dual of \mathcal{C}^{r} with $r=\lceil\alpha\rceil$ and such that

$$
\left|\eta\left(\varphi_{x}^{\lambda}\right)\right| \lesssim \lambda^{-\alpha},
$$

uniformly over all $\varphi: \mathbf{R}^{d} \rightarrow \mathbf{R}$ with $\|\varphi\|_{\mathcal{C}^{r}} \leq 1$ supported in the unit ball around the origin, and $\lambda \in(0,1]$, and locally uniformly in x.

Multiplication

Theorem (Classical multiplication)

If $\beta>\alpha$, then there is a continuous bilinear map $B: \mathcal{C}^{-\alpha} \times \mathcal{C}^{\beta} \rightarrow \mathcal{S}^{\prime}\left(\mathbf{R}^{d}\right)$ such that $B(f, g)=f g$ for any two continuous functions f and g.
Definition (Sector)
Given a regularity structure (T, A, G) we say that a subspace $V \subset T$ is a sector if it is invariant under the action of the structure group G and if it can furthermore be written as $V=\bigoplus_{\alpha \in A} V_{\alpha}$ with $V_{\alpha} \subset T_{\alpha}$.
Definition (Multiplication in T)
Given a regularity structure (T, A, G) and two sectors $V, \bar{V} \subset T$, a product on (V, \bar{V}) is a bilinear map $\star: V \times \bar{V} \rightarrow T$ such that, for any $\tau \in V_{\alpha}$ and $\bar{\tau} \in \bar{V}_{\beta}$, one has $\tau \star \bar{\tau} \in T_{\alpha+\beta}$ and such that, for any element $\Gamma \in G$, one has $\Gamma(\tau \star \bar{\tau})=\Gamma \tau \star \Gamma \bar{\tau}$. Furthermore, $\star: V_{\alpha} \times \bar{V}_{\beta} \rightarrow T_{\alpha+\beta}$ is continuous.
Theorem (Multiplication of modeled distributions)
Let $f_{1} \in \mathscr{D}_{\alpha_{1}}^{\gamma_{1}}(V), f_{2} \in \mathscr{D}_{\alpha_{2}}^{\gamma_{2}}(\bar{V})$, and let \star be a product on (V, \bar{V}). Then, the function f given by $f(x)=f_{1}(x) \star f_{2}(x)$ belongs to $\mathscr{D}_{\alpha}^{\gamma}$ with

$$
\alpha=\alpha_{1}+\alpha_{2}, \quad \gamma=\left(\gamma_{1}+\alpha_{2}\right) \wedge\left(\gamma_{2}+\alpha_{1}\right) .
$$

Remark

If $\Pi_{x} \tau$ happens to be a continuous function for every $\tau \in T$ and the product satisfies $\Pi_{x}(a \star b)=\Pi_{x}(a) \Pi_{x}(b)$ we also have
$\mathcal{R}\left(f_{1} \star f_{2}\right)(x)=\Pi_{x}\left(f_{1}(x) \star f_{2}(x)\right)(x)=\Pi_{x}\left(f_{1}(x)\right)(x) \Pi_{x}\left(f_{2}(x)\right)(x)=\mathcal{R} f_{1}(x) \mathcal{R} f_{2}(x)$.
This holds for example if $f_{i} \in \mathscr{D}_{0}^{\gamma}(V)$ with $\gamma>0$. Note however, that even if both $\mathcal{R} f_{1}$ and $\mathcal{R} f_{2}$ happen to be continuous functions, this does not in general imply that $\mathcal{R}\left(f_{1} \star f_{2}\right)(x)=\left(\mathcal{R} f_{1}\right)(x)\left(\mathcal{R} f_{2}\right)(x)$!

Multiplication

Definition (Composition with smooth functions)
Let V be a function-like sector (i.e., $V_{\alpha}=0$ if $\alpha<0$ and $V_{0}=\mathbf{R}$) endowed with a product $\star: V \times V \rightarrow V$. For any smooth function $G: \mathbf{R} \rightarrow \mathbf{R}$ and any $f \in \mathscr{D}^{\gamma}(V)$ with $\gamma>0$, we can then define $G(f)$ to be the V-valued function given by

$$
(G \circ f)(x)=\sum_{k \geq 0} \frac{G^{(k)}(\bar{f}(x))}{k!} \tilde{f}(x)^{\star k},
$$

where we have set

$$
\bar{f}(x)=\langle\mathbf{1}, f(x)\rangle, \quad \tilde{f}(x)=f(x)-\bar{f}(x) \mathbf{1} .
$$

Here, $G^{(k)}$ denotes the k th derivative of G and $\tau^{\star k}$ denotes the k-fold product $\tau \star \cdots \star \tau$. We also used the usual conventions $G^{(0)}=G$ and $\tau^{\star 0}=\mathbf{1}$.

Proposition (Regularity of composition with smooth function)

 In the same setting as above, provided that G is of class \mathcal{C}^{k} with $k>\gamma / \alpha_{0}$, the map $f \mapsto G \circ f$ is continuous from $\mathscr{D}^{\gamma}(V)$ into itself. If $k>\gamma / \alpha_{0}+1$, then it is locally Lipschitz continuous.
Multiplication

Definition

- Algebra (T, ∇, e) over \mathbb{R} : unital, associative, commutative.
- Coalgebra (T, Δ, ϵ) over \mathbb{R} : counital, coassociative.
- Compatibility: for all $p, q \in T$,

$$
\Delta(p q)=(\Delta p)(\Delta q), \quad \Delta e=e \otimes e, \quad \epsilon(p q)=\epsilon(p) \epsilon(q), \quad \epsilon(e)=1 .
$$

- Grading: $T=\bigoplus_{k \in \mathbb{Z}_{+}^{d}} T_{k}$ with $\operatorname{dim} T_{k}<\infty$ such that

$$
\nabla: T_{k} \times T_{\ell} \rightarrow T_{k+\ell}, \quad \Delta: T_{k} \rightarrow \bigoplus_{\ell+m=k} T_{\ell} \otimes T_{m}
$$

- Connectedness: $T_{0}=\operatorname{span}_{\mathbb{R}}\{e\}$.
- Antipode: linear mapping $\mathcal{A}: T_{k} \rightarrow T_{k}$ such that

Constructing a group acting on T

- Dual Hopf algebra ($\left.T^{*}, \nabla^{*}, e^{*}, \Delta^{*}, \epsilon^{*}, \mathcal{A}^{*}\right)$.
- Primitive elements $P\left(T^{*}\right)=\left\{f \in T^{*}: \Delta^{*} f=e^{*} \otimes f+f \otimes e^{*}\right\}$ form a Lie algebra with universal enveloping algebra T^{*} (Milnor-Moore Theorem).
- Define $G=\exp \left(P\left(T^{*}\right)\right) \subset T^{*}$. Then $\Delta^{*} g=g \otimes g$ holds, for all $g \in G$.
- Group action 1: $\left\langle f, \Gamma_{g} p\right\rangle=\langle f g, p\rangle$, for all $f \in T^{*}, g \in G, p \in T$.
- Group action 2: $\left\langle f, \Gamma_{g} p\right\rangle=\left\langle\left(\mathcal{A}^{*} g\right) f, p\right\rangle$, for all $f \in T^{*}, g \in G, p \in T$.

Properties of the group action

- If $p \in T_{\gamma}$, then $\Gamma_{g} p-p \in T_{\gamma}^{-}$.
- Multiplication on T is regular.

$$
\Gamma_{g}(p q)=\Gamma_{g}(p) \Gamma_{g}(q), \quad \forall g \in G
$$

as a consequence of $\Delta^{*} g=g \otimes g$.

Multiplication

Definition

- $A=\mathbb{N}_{0}, T=\mathbb{R}\left[X_{1}, \ldots, X_{d}\right], G=\mathbb{R}^{d}$.
- Group action $\left(\Gamma_{g} p\right)(X)=p(X+g)$.

Hopf algebra structure on T

- Multiplication ∇ as usual; unit $e=1$.
- Comultiplication Δ is the unique homomorphism satisfying $\Delta X_{i}=1 \otimes X_{i}+X_{i} \otimes 1$ ("divided powers"); counit ϵ is evaluation at zero.
- Antipode \mathcal{A} is the unique antihomomorphism satisfying $\mathcal{A} X_{i}=-X_{i}$.

Dual structure on T^{*}

- T^{*} identified with formal differential operators $\sum_{n \geq 0} a_{i_{1}, \ldots, i_{n}} \frac{\partial}{\partial X^{\prime} \ldots . . \partial X^{\prime \prime} n}$ with constant coefficients.
- Pairing with T given by differentiation and evaluation at zero.
- Multiplication ∇^{*} is composition of differential operators.
- Comultiplication Δ^{*} is the unique homomorphism satisfying $\Delta^{*} \frac{\partial}{\partial X^{\prime}}=\frac{\partial}{\partial X^{\prime}} \otimes \mathrm{id}+\mathrm{id} \otimes \frac{\partial}{\partial X^{\prime}}$.

Group and group action

- Primitive elements $P\left(T^{*}\right)$ are first order differential operators because $\Delta^{*} f=e^{*} \otimes f+f \otimes e^{*} \Leftrightarrow\langle f, p q\rangle=p(0)\langle f, q\rangle+\langle f, p\rangle q(0)$.
- $G=\exp \left(P\left(T^{*}\right)\right)$ are translations.
- This is group action 1: $\left\langle f, \Gamma_{g} p\right\rangle=\langle f g, p\rangle$.

Standard model

- $\left(\Pi_{x} X_{k}\right)(y)=(y-x)^{k}$
- $\Gamma_{x y}=x-y \in G$

Multiplication

Definition

- $\gamma>0, E=\mathbb{R}^{d}$.
- $A=\gamma \mathbb{N}_{0}, T=\bigoplus_{k=0}^{\infty} T_{\gamma k}$ with $T_{\gamma k}=\left(E^{*}\right)^{\otimes k}, G=\exp (\operatorname{Lie}(E))$.
- Group action $\left\langle f, \Gamma_{g} p\right\rangle=\left\langle g^{-1} f, p\right\rangle$, for all $f \in \prod_{k=0}^{\infty} E^{\otimes k}, g \in G, p \in T$.

Hopf algebra structure on T

- Multiplication $\nabla=\omega$ is the shuffle product; unit $e=1 \in \mathbb{R}$.
- Comultiplication Δ obtained by duality from multiplication on T^{*}, i.e., $\langle f \otimes g, \Delta p\rangle=\langle f g, p\rangle$; counit ϵ extracts the \mathbb{R}-component.
- Antipode \mathcal{A} is the unique antihomomorphism satisfying $\mathcal{A} x=-x, \forall x \in E^{*}$.

Dual structure on T^{*}

- $T^{*}=\prod_{k=0}^{\infty} E^{\otimes k}$ is the (pre-)dual of T.
- Multiplication ∇^{*} is concatenation (alias tensorisation); unit $e^{*}=1 \in \mathbb{R}$.
- Comultiplication Δ^{*} obtained by duality from multiplication on T, i.e., $\left\langle\Delta^{*} f, p \otimes q\right\rangle=\langle f, p \amalg q\rangle$; counit ϵ^{*} extracts the \mathbb{R}-component.

Group and group action

- Primitive elements $P\left(T^{*}\right)=\operatorname{Lie}(E) \subset T^{*}$.
- $G=\exp \left(P\left(T^{*}\right)\right) \subset T^{*}$ has the property $\mathcal{A} g=g^{-1}, \forall g \in G$.
- This is group action 2: $\left\langle f, \Gamma_{g} p\right\rangle=\langle(\mathcal{A g}) f, p\rangle=\left\langle g^{-1} f, p\right\rangle$.

Standard model

- $\left(\Pi_{s} a\right)(t)=\left\langle\boldsymbol{X}_{s t}, a\right\rangle$
- $\Gamma_{s t}=X_{s t} \in G$

