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Isonormal Gaussian process

A Gaussian space is a (complete) probability space together with a
Hilbert space of centered real valued Gaussian random variables
defined on it.

We speak about Gaussian spaces by means of a coordinate space.

Let (Ω,F ,P) be a complete probability space, H a Hilbert space,
and W : H → L2[(Ω,F ,P);R] a linear isometry. Then W is called
isonormal Gaussian process if W (h) is a centered Gaussian random
variable for all h ∈ H.

A Gaussian space is called irreducible if its σ-algebra is generated
by the elements of the distinguished Hilbert space. In the sequel
we shall mainly work with irreducible Gaussian spaces equipped
with one isonormal Gaussian process.
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Calculation rules

We denote the closed operator Malliavin derivative by
D : D1,2 → L2 ⊗ H and have that

D(FG ) = GDF + FDG

for F ,G ,FG ∈ D1,2 if the right hand side is square integrable. The
Skorohod integral is denoted by δ and we have the following rule,
which is the dual version of the previous Leibnitz rule:

δ(Fu) = F δ(u)− 〈u,DF 〉

for F ∈ D1,2 and u,Fu ∈ dom1,2(δ) if the right hand side is square
integrable.
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A one-dimensional theorem

Let F be a random variable in D1,2 and suppose that DF
||DF ||2H

is

Skorohod integrable. Then the law of F has a continuous and
bounded density f with respect to the Lebesgue measure λ given
by

f (x) = E

[
1{F>x}δ

(
DF

||DF ||2H

)]
for real x .
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Proof

We consider ψ(y) = 1[a,b](y) for a < b and φ(y) :=
∫ y
−∞ ψ(x)dx .

Since φ(F ) ∈ D1,2 we obtain

〈D(φ(F )),DF 〉H = ψ(F ) ||DF ||2H

which allows to compute ψ(F ). By integration by parts

E (ψ(F )) = E

(〈
D(φ(F )),

DF

||DF ||2H

〉
H

)
=

= E

(
φ(F ) δ

(
DF

||DF ||2H

))

which leads to
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P(a ≤ F ≤ b) = E

(∫ F

−∞
ψ(x)dx δ

(
DF

||DF ||2H

))
=

=

∫ b

a
E

(
1{F>x} δ

(
DF

||DF ||2H

))
dx

by Fubini’s theorem.
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The Gagliardo-Nirenberg inequality

It holds that

||f ||
L

N
N−1
≤

N∏
i=1

||∂i f ||
1
N

L1

for f ∈ C∞0 (Rm) and N ≥ 2.
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How to detect densities

Let µ be a finite measure on RN and assume that there are
constants ci for i = 1, ...,N such that∣∣∣∣∫

Rm

∂iφ(x)µ(dx)

∣∣∣∣ ≤ ci ||φ||∞

for all φ ∈ C∞0 (Rm), then µ is absolutely continuous with respect
to the Lebesgue measure.
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Proof

We show the case for N ≥ 2: we shall show that the density of µ

belongs to L
N

N−1 for N > 1. We take a Dirac sequence ψε for ε > 0
and a sequence of smooth bump functions 0 ≤ cM ≤ 1 with

cM(x) =

{
1 for ||x || ≤ M
0 for ||x || ≥ M + 1

where we assume that the partial derivatives are bounded
uniformly with respect to M. Then the measures cM (ψε ∗ µ) have
densities pM,ε belonging to C∞0 (RN).
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Proof

To apply the Gagliardo-Nirenberg inequality we have to estimate

||∂ipM,ε||L1 ≤
∫
RN

cM(x) |((∂iψε) ∗ µ)| (dx)

+

∫
RN

|∂icM(x)| (ψε ∗ µ)(dx)

≤
∫
RN

∫
RN

ψε(x − y)|νi |(dy)dx

+

∫
RN

|∂icM(x)| (ψε ∗ µ)(dx)

where νi denotes the signed finite measure on RN induced by
φ 7→

∫
∂iφµ(dx) for φ ∈ C∞0 (RN). This expression is bounded by

a constant independent of M and ε by Fubini’s theorem.
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Proof

The unit ball of L
N

N−1 is weakly compact, so we find a weak limit of

cM (ψε ∗ µ) in L
N

N−1 : on the one hand∫
RN

g(x)cM(x) (ψε ∗ µ)(dx)→
∫
RN

g(x)µ(dx)

for g ∈ L∞(RN) as M →∞ and ε→ 0 and µ(Rn) <∞. However,
since there exists a weak limit p ∈ L1(RN) we obtain∫

RN

g(x)µ(dx) =

∫
RN

g(x)p(x)dx

which is the desired result.
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Localization

We denote F ∈ D1,p
loc for some p ≥ 1, if there exists a sequence

(Ωn,Fn)n≥0, where Ωn is a measurable set and Fn ∈ D1,p for n ≥ 0
such that

Ωn ↑ Ω almost surely,

Fn1Ωn = F1Ωn almost surely.
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The Malliavin Covariance Matrix

Take now a random vector F := (F 1, ...,FN), which belongs to
D1,1

loc componentwise. We associate to F the Malliavin (covariance)
matrix γF , which is a non-negative, symmetric random matrix:

γ(F ) := γF := (
〈
DF i ,DF j

〉
H

)1≤i ,j≤N .

From regular invertibility of this matrix we shall obtain the basic
condition on the existence of a density.
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Main theorem

Let F be a random vector satisfying

1. F i ∈ D2,4
loc for all i = 1, ...,N.

2. The matrix γF is invertible almost surely.

Then the law of F is absolutely continuous with respect to the
Lebesgue measure.
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Proof

We shall assume F i ∈ D2,4 for each i = 1, ...,N first. We fix a test
function φ ∈ C∞0 (RN), then by the chain rule φ(F ) ∈ D2,4,
consequently

D(φ(F )) =
N∑
i=1

∂φ

∂xi
(F )DF i ,

〈
D(φ(F )),DF j

〉
H

=
N∑
i=1

∂φ

∂xi
(F ) γ ijF

and therefore by invertibility

∂φ

∂xi
(F ) =

N∑
j=1

〈
D(φ(F )),DF j

〉
H

(γ−1
F )ij .
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Proof

In the sequel we have to apply a localization argument: consider
the compact subset Km ⊂ GL(N) of matrices σ with |σij | ≤ m and
| det(σ)| ≥ 1

m for i , j = 1, ...,m. We can define ψm ∈ C∞0 (MN(R))
with ψm ≥ 0, ψm|Km = 1 and ψm|GL(N)\Km+1

= 0, which is easily
possible since Km is an exhaustion of GL(N) by compact sets such
that Km ⊂ (Km+1)◦. Now we can integrate reasonably the above
equation

E (ψm(γF )
∂φ

∂xi
(F )) =

N∑
j=1

E (ψm(γF )
〈
D(φ(F )),DF j

〉
H

(γ−1
F )ij).
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Proof

Remark that ψm(γF )DF j (γ−1
F )ij ∈ dom1,2(δ), since

ψm(γF ) (γ−1
F )ij is a bounded random variable (it equals the

inversion rational function applied to γF times a smooth function
with compact support applied to γF , but γF ∈ D2,4) and

E
((
ψm(γF )(γ−1

F )ij
)2 〈

DF j ,DF j
〉
H

)
<∞.

Consequently we can apply integration by parts to arrive at

E (ψm(γF )
∂φ

∂xi
(F )) = E (φ(F )

N∑
j=1

δ
(
ψm(γF )DF j (γ−1

F )ij
)
)

≤ ||φ||∞E

∣∣∣∣∣∣
N∑
j=1

δ
(
ψm(γF )DF j (γ−1

F )ij
)∣∣∣∣∣∣
 .
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Proof

Hence we obtain that for any A ∈ B(RN) with zero Lebesgue
measure ∫

F−1(A)
ψm(γF )dP = 0

holds true, but as m→∞ – via property 2 of the assumptions –∫
F−1(A) dP = 0. Therefore F∗P � λ.

In general – for F ∈ D2,4
loc – we calculate for Fn and obtain the

result by the property that F−1
n (A)→ F−1(A).
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Detection of smooth densities

Let µ be a finite measure on RN and A ⊂ RN open. Assume that
there are constants cα for a multiindex α such that∣∣∣∣∫

RN

∂αφ(x)µ(dx)

∣∣∣∣ ≤ cα||φ||∞

for all φ ∈ C∞b (RN) with compact support in A, then the
restriction of µ to A is absolutely continuous with respect to the
Lebesgue measure and the density is smooth.
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Main theorem in the smooth case

Let F be a random vector satisfying

1. F i ∈ D∞ for all i = 1, ...,N.

2. The matrix γF is invertible almost surely and 1
det(γF ) ∈ L∞−0.

Then the law of F is absolutely continuous with respect to
Lebesgue measure and the existing density is smooth.
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A more geometric point of view

Let g : Ω→ RN be a random variable with well-defined covariance
matrix γ(g), then we can define for any vector z ∈ RN the
covering vector field Z ∈ L2(Ω,F ,P)⊗ H via

〈Dg j ,Z 〉H = z j .

Apparently one solution is given by

Z =
N∑
i=1

Dg i (γ(g)−1z)
i
,

since for j = 1, . . . ,N

〈Dg j ,Z 〉H =
N∑
i=1

〈Dg j ,Dg i 〉H (γ(g)−1z)
i

= z j .
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A more geometric point of view

Hence the previously calculated solutions are in fact lifts of vectors
to covering vector fields on the given Gaussian space. Usually Z
can be chosen to be Skorohod-integrable, whence integration by
parts will work. This leads to the following theorem:

Let F ∈ D∞ and 1
det(γF ) ∈ L∞−0, then for any multiindex α ∈ NN

we obtain for all φ ∈ C∞b (RN).

E (∂αφ(F )) = E (φ(F )Qα)

by integration by parts for some random variable Qα ∈ D∞
(independent of φ).
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We do the proof by induction: for α = 0 there is nothing to show.
Let us assume now that it holds for |α| < k and we choose some β
of order k . Without restriction we assume that ∂α = ∂β∂1, whence

E (∂β∂1φ(F )) = E (∂1φ(F )Qβ)

= E (〈Dφ(F ),Z 〉Qβ)

= E (φ(F )(Qβδ(Z )− 〈DQβ,Z 〉)) ,

where Z is a covering vector field for e1. This proves the statement
for ∂α and completes the induction.
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Proof for the smooth case

Choose φξ(x) = exp(〈ξ, x〉), then

||ξ||k |E (exp(〈ξ,F 〉)| ≤ |E (exp(〈ξ,F 〉)Qk) ≤ E (|Qk |) <∞,

which means that the characteristic function of g tends to zero as
ξ →∞ faster than any polynomial in the Fourier variable ξ. This
in turn means that there is a smooth density with bounded
derivatives of all orders.

With the same methodology one can show that the density is in
fact Schwarz.


