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Basic assumptions on vector fields

We shall always assume the following conditions on vector fields
X : RM × RN → RN :

1. X are measurable.

2. There is a constant C such that
||X (y , x1)− X (y , x2)|| ≤ C ||x1 − x2|| for all x1, x2 ∈ RN and
all y ∈ RM .

3. The function ||X (y , x)|| is bounded by a constant polynomial
in ||y || for all x ∈ RN .
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Main E&U theorem

Let T > 0 and given a probability space (Ω,F ,P) together with a
d-dimensional Brownian motion (Wt)0≤t≤T . Let A,A1, ...,Ad be
vector fields satisfying the above conditions and assume that there
are a continuous, adapted RM -valued process (Zt)t≥0 with

sup
t∈[0,T ]

||Zt ||p <∞

for all p ≥ 2 and a continuous adapted RN -valued process (αt)t≥0

with
sup

t∈[0,T ]
||αt ||q <∞

for some q ≥ 2, then the stochastic differential equation

Xt = αt +

∫ t

0
A(Zs ,Xs)ds +

d∑
i=1

∫ t

0
Ai (Zs ,Xs)dW i

s
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Main E&U theorem

has a unique continuous adapted solution (Xt)0≤t≤T with

sup
t∈[0,T ]

||Xt ||q <∞.

Furthermore the solution can be constructed as Lq-limit of the
iteration scheme

X n+1
t = αt +

∫ t

0
A(Zs ,X

n
s )ds +

d∑
i=1

∫ t

0
Ai (Zs ,X

n
s )dW i

s

X 0
t = αt

for 0 ≤ t ≤ T .



Malliavin Calculus: The Hörmander Theorem

This fundamental result leads to the following observations: given
a probability space (Ω,F ,P) together with a d-dimensional
Brownian motion (Wt)0≤t≤T in its natural filtration, we can ask
whether the solution of the stochastic differential equation

dX x
t = V (X x

t )dt +
d∑

i=1

Vi (X x
t )dW i

t

X x
0 = x

for x ∈ RN lies in D1,2(Ω;RN). Here we work with the isonormal
Gaussian process W : L2([0,T ],Rd)→ L2(Ω)

W (h) =
d∑

i=1

∫ T

0
hi (s)dW i

s .
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C∞-boundedness

We assume the following conditions on the vector fields
V ,V1, ...,Vd : RN → RN :

1. The vector fields are smooth.

2. All derivatives of order higher than 1 are bounded.

These conditions are usually referred to as C∞-boundedness
conditions.
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Malliavin derivative of Xt

Let V ,V1, ...,Vd : RN → RN be vector fields satisfying
C∞-boundedness conditions, then X x

t ∈ D∞ := ∩p≥1,k≥1Dk,p for
0 ≤ t ≤ T . The first Malliavin derivative satisfies the following
stochastic differential equation

Dk
r X x

t = Vk(X x
r )+

∫ t

r
dV (X x

s )Dk
r X x

s ds+
d∑

i=1

∫ t

r
dVi (X x

s )Dk
r X x

s dW i
s

for 0 ≤ r ≤ t ≤ T .
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For the proof we apply two observations. Given
u ∈ D1,2(Ω;RN)⊗ H predictable, then for t ≥ r

Dr

∫ t

0
usds =

∫ t

r
Drusds

by Riemannian approximations and closedness of the operator,
since Drus = 0 almost surely if r > s.

Given predictable u = (u1, ..., ud) ∈ D1,2(Ω;RN)⊗ H, then for
t ≥ r

Dk
r

∫ t

0

d∑
i=1

ui (s)dW i
s =

∫ t

r

d∑
i=1

Dk
r ui (s)dW i

s + uk(r),

again by Riemannian sums and closedness of the Malliavin
derivative operator.
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Going to the Picard approximation scheme we can apply these
results to obtain a sequence X n

t ∈ L∞−0 with X n ∈ D1,p for p ≥ 2
by induction and the chain rule for n ≥ 0.

The derivatives converge to the solution of a stochastic differential
equation, so we conclude by closedness. The solution of this
stochastic differential equation exist due to the previous E&U
theorem. For higher derivatives we proceed by induction.
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Semi-martingale notations

We are working with Ito diffusions, i.e. continuous adapted
processes Xt of the form

Xt = X0 +

∫ t

0
v(s)ds +

d∑
i=1

∫ t

0
ui (s)dW i

s ,

where we assume all processes in question to be predictable and
satisfy some square integrability assumptions. Notice that this
decomposition into a finite variation process and a martingale is
unique. For two Ito processes X and Y the quadratic variation
process (〈X ,Y 〉t)0≤t≤T is a continuous, adapted process given by

〈X ,Y 〉t =

∫ t

0
(

d∑
i=1

uX
i (s)(uY

i (s))T)ds.
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Semi-martingale notations

The Stratonovich integral (in the one-dimensional case) is then
defined by ∫ t

0
Xs ◦ dYs :=

∫ t

0
XtdYs +

1

2
〈X ,Y 〉t .

We can therefore write by Ito’s formula for Ito diffusions

df (Xt) = (df )(Xt)dXt +
1

2
(d2f )(Xt)(dXt)(dXt)

= (df )(Xt) ◦ dXt .
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Semi-martingale notations

Consequently the Stratonovich calculus is of first order, however,
we can only integrate continuous semi-martingales. Given the
solution of our SDE, we can transform since integrands are
semi-martingales to Stratonovich notation and obtain

dX x
t = V0(X x

t )dt +
d∑

i=1

Vi (X x
t ) ◦ dW i

t ,

with the Stratonovich drift.
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Representing the Malliavin derivative

In order to find a good representation of the Malliavin derivative,
we introduce first variations of the solution of the stochastic
differential equation:

dJs→t(x) = dV0(X x
t ) · Js→t(x)dt+

+
d∑

i=1

dVi (X x
t ) · Js→t(x) ◦ dW i

t ,

Js→s(x) = idN ,

for t ≥ s.
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Representing the Malliavin derivative

A similar equation is satisfied by the Malliavin derivative itself
(except for the initial value!). The equation for the inverse is of
the same type, namely

d(Js→t(x))−1 = −Js→t(x)−1 · dV0(X x
t )dt−

−
d∑

i=1

Js→t(x)−1 · dVi (X x
t ) ◦ dW i

t .
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Representing the Malliavin derivative

Calculating the semi-martingale decomposition of
(J0→t(x))−1J0→t(x) yields the result, namely

(J0→t(x))−1J0→t(x) = idN ,

hence the statement on invertibility is justified.
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Representing the Malliavin derivative

Furthermore, we are able to write the Malliavin derivative,

D i
sX x

t = J0→t(x)J0→s(x)−1Vi (X x
s )1[0,t](s).

This is due to the fact that the RN -valued solution process
(Yt)r≤t≤T of

Yt = Vk(X x
r ) +

∫ t

r
dV (X x

s )Ysds +
d∑

i=1

∫ t

r
dVi (X x

s )YsdW i
s ,

is given through

Yt = J0→t(x)J0→r (x)−1Vk(X x
r )

for r ≤ t.
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Malliavin Covariance Matrix

We give ourselves a scalar product on RN , then we can calculate
the covariance matrix with respect to a orthonormal basis, i.e.

〈γ(X x
t )ξ, ξ〉 :=

d∑
i=1

∫ t

0

〈
J0→t(x)J0→s(x)−1Vi (X x

s ), ξ
〉2

ds.

Consequently, the covariance matrix can be calculated via the
reduced covariance matrix

〈Ctξ, ξ〉 :=
d∑

i=1

∫ t

0

〈
J0→s(x)−1Vi (X x

s ), ξ
〉2

ds,

γ(X x
t ) = J0→t(x)C tJ0→t(x)T.

In order to show invertibility of γ(X x
t ) it is hence sufficient to show

it for Ct , since the first variation process J0→t(x) is invertible.
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Uniform Hörmander Assumptions

〈V1(x), . . .Vd(x), [Vi ,Vk ](x)(i , k = 0, . . . , d), . . . 〉 = RN

for all x ∈ RN in a uniform way, i.e. there exists a finite number of
vector fields X1, . . . ,XN generated by the above procedure through
Lie-bracketing and c > 0 such that

inf
ξ∈SN−1

N∑
k=1

〈Xk(x), ξ〉2 ≥ c

for all x ∈ RN . Here we apply again the Stratonovich drift vector
field, i.e.

V0(x) := V (x)− 1

2

d∑
i=1

DVi (x) · Vi (x).
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Main Theorem (Malliavin)

Let (Ω,F ,P, (Ft)t≥0) be a filtered probability space and let
(Wt)t≥0 be a d-dimensional Brownian motion adapted to the
filtration (which is not necessarily generated by the Brownian
motion). Let V ,V1, . . . ,Vd , the diffusion vector fields be
C∞-bounded on RN and consider the solution (X x

t )0≤t≤T of a
stochastic differential equation (in Stratonovich notation). V0

denotes the Stratonovich corrected drift term,

dX x
t = V0(X x

t )dt +
d∑

i=1

Vi (X x
t ) ◦ dW i

t ,

X x
0 = x .
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Main Theorem (Malliavin)

Assume uniform Hörmander condition. Then for any p ≥ 1 we find
numbers ε0(p) > 0 and an integer K (p) ≥ 1 such that for each
0 < s < T

sup
ξ∈SN−1

P(〈C sξ, ξ〉 < ε) ≤ εp

holds true for 0 ≤ ε ≤ sK(p)ε0(p). The result holds uniformly in x .

The last statement implies that 1
det(γ(X x

t )) ∈ L∞−0 and hence due

to the fact that X x
t ∈ D∞ for t > 0 the law of X x

t has a density
with respect to the Lebesgue measure, which is Schwarz.
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Take t > 0. We have to form the Malliavin covariance matrix γt ,
which is done by well-known formulas on the first variation. The
covariance matrix can be decomposed into

γ(X x
t ) = J0→t(x)CtJ0→t(x)T,

where Ct , the reduced covariance matrix, is defined via

〈y ,Cty〉 =
d∑

p=1

∫ t

0

〈
y , J0→s(x)−1 · Vp(X x

s )
〉2

ds.



Malliavin Calculus: The Hörmander Theorem

We first show that Ct is a positive operator. We denote the kernel
of Ct by Kt ⊂ RN and get a decreasing sequence of closed random
subspaces of RN . V = ∪t>0Kt is a deterministic subspace by the
Blumenthal zero-one law, i.e. there exists a null set N such that V
is deterministic on Nc . We shall do the following calculus on Nc .

We fix y ∈ V , then we consider the stopping time

θ := inf{s, qs > 0}

with respect to the continuous semi-martingale

qs =
d∑

p=1

〈
y , J0→s(x)−1 · Vp(X x

s )
〉2
,

Then θ > 0 almost surely and qs∧θ = 0 for s ≥ 0.
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Now, a continuous L2-semi-martingale with values in R

Ms −M0 =
d∑

k=1

∫ s

0
αk(u)dW k

u +

∫ s

0
β(u)du

for s ≥ 0, which vanishes up to the stopping time θ, satisfies – due
to the Doob-Meyer decomposition –

αk(s ∧ θ) = 0

for k = 1, . . . , d , and β(s ∧ θ) = 0, for s ≥ 0.
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We shall apply this consideration for the continuous
semi-martingales ms :=

〈
y , J0→s(x)−1 · Vp(X x

s )
〉

on [0, t] for
p = 1, . . . , d . Therefore we need to calculate the Doob-Meyer
decomposition of (ms)0≤s≤t .
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dms = −
〈
y , J0→s(x)−1dV0(X x

s )Vp(X x
s )
〉

ds−

−
d∑

i=1

〈
y , J0→s(x)−1dVi (X x

s )Vp(X x
s )
〉
◦ dW i

s +

+
〈
y , J0→s(x)−1dVp(X x

s ) · V0(X x
s )
〉

ds+

+
d∑

i=1

〈
y , J0→s(x)−1dVp(X x

s ) · Vi (X x
s )
〉
◦ dW i

s

=
〈
y , J0→s(x)−1[Vp,V0](X x

s )
〉

ds+

+
d∑

i=1

〈
y , J0→s(x)−1[Vp,Vi ](X x

s )
〉
◦ dW i

s ,

where we denote by d the stochastic differential of m and the first
derivative of Vi .
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From the Doob-Meyer decomposition this leads to〈
y , J0→s(x)−1 · [Vp,Vi ](X x

s )
〉

= 0〈
y , J0→s(x)−1 · [Vp,V0](X x

s )
〉

= 0

for i = 1, . . . , d , p = 1, . . . , d and 0 ≤ s ≤ θ.
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Consequently the above equation leads by iterative application to〈
y , J0→s(x)−1 · D(X x

s )
〉

= 0

for s ≤ θ, where D(x) is the set of Lie brackets at x . Evaluation at
s = 0 yields y = 0, since D(x) spans RN , hence Ct is invertible.

Therefore we obtain that there is a null set N, such that on Nc the
matrix Ct has an empty kernel. Hence the law is absolutely
continuous with respect to Lebesgue measure, since J0→t(x) is
invertible and therefore γt has vanishing kernel.
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Smoothness – Step 1

Consider the random quadratic form

〈Csξ, ξ〉 =
d∑

i=1

∫ s

0

〈
J0→u(x)−1Vi (X x

u ), ξ
〉2

du.

We define

Σ′0 := {V1, . . . ,Vd}
Σ′n :=

{
[Vk ,V ], k = 1, . . . , d ,V ∈ Σ′n−1; [V0,V ]+

+
1

2

d∑
i=1

[Vi ,[Vi ,V ]],V ∈ Σ′n−1

}

for n ≥ 1.
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Then we know that there exists j0 such that

inf
ξ∈SM−1

j0∑
j=0

∑
V∈Σ′j

〈V (x), ξ〉2 ≥ c

uniformly in x ∈ RM .
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Smoothness – Step 2

We define m(j) := 2−4j for 0 ≤ j ≤ j0 and the sets

Ej := {
∑
V∈Σ′j

∫ s

0

〈
J0→u(x)−1V (X x

u ), ξ
〉2

du ≤ εm(j)}.

We consider the decomposition

E0 = {〈C sξ, ξ〉 ≤ ε} ⊂ (E0 ∩ E c
1 ) ∪ (E1 ∩ E c

2 ) ∪ · · · ∪ (Ej0−1 ∩ E c
j0) ∪ F ,

F = E0 ∩ · · · ∩ Ej0 .

and proceed with

P(F ) ≤ Cε
qβ
2 ,

for ε ≤ ε1. Furthermore 0 < β < m(j0), any q ≥ 2, a constant C
depending on q and the norms of the derivatives of the vector
fields V0, . . . ,Vd . The number ε1 is determined by the following
two (!) equations

(j0 + 1)ε
m(j0)
1 <

cεβ1
4
,

εβ1 < s.

Hence ε1 depends on j0, c , s and the choice of β, via

ε1 < min

(
s

1
β ,

(
c

4(j0 + 1)

) 1
m(j0)−β

)
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Smoothness – Step 3

We obtain furthermore with n(j) = #Σ′j

P(Ej ∩ E c
j+1)

≤
∑
V∈Σ′j

P

(∫ s

0

〈
J0→u(x)−1V (X x

u ), ξ
〉2

du ≤ εm(j),

d∑
k=1

∫ s

0

〈
J0→u(x)−1[Vk ,V ](X x

u ), ξ
〉2

du+

+

∫ s

0

〈
J0→u(x)−1

(
[V0,V ] +

1

2

d∑
i=1

[Vi , [Vi ,V ]]

)
(X x

u ), ξ

〉2

du

>
εm(j+1)

n(j)

)
,
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Since we can find the bounded variation and the quadratic variation
part of the martingale (

〈
J0→u(x)−1V (X x

u ), ξ
〉
)0≤u≤s in the above

expression, we are able to apply Norris’ Lemma. We observe that
8m(j + 1) < m(j), hence we can apply it with q = m(j)

m(j+1) .
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Smoothness – Step 4

We obtain for p ≥ 2 – still by the Norris’ Lemma – the estimate

P(Ej ∩ E c
j+1) ≤ d1

(
εm(j+1)

n(j)

)rp

+ d2 exp

(
−(
εm(j+1)

n(j)
)−ν

)

for ε ≤ ε2. Furthermore r , ν > 0 with 18r + 9ν < q − 8, the
numbers d1, d2 depend on the vector fields V0, . . . ,Vd , and on p,
T . The number ε2 can be chosen like ε2 = ε3sk1 , where ε3 does
not depend on s anymore.
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Smoothness – Step 5

Putting all together we take the minimum of ε1and ε2 to obtain
the desired dependence on s by applying the following lemma:

Given a random matrix γ ∈ ∩p≥1Lp(Ω) and assume that for p ≥ 1
there is ε0(p) such that

sup
ξ∈SM−1

P(〈γξ, ξ〉 < ε) ≤ εp

for 0 ≤ ε ≤ ε0(p), then 1
det(γ) ∈ ∩p≥1Lp(Ω).
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Definition

Let (X x
t )t≥0 denote the solution of our SDE and assume the

uniform Hörmander condition. Fix t > 0 and x ∈ RN . Fix a
direction v ∈ RN . We define a set of Skorohod-integrable processes

At,x ,v = {a ∈ dom(δ) such that
d∑

i=1

∫ t

0
J0→s(x)−1Vi (X x

s )aisds = v}.
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Let (X x
t )t≥0 denote the unique solution of our SDE and assume

d = N. Fix t > 0 and x ∈ RN . Assume furthermore uniform
ellipticity, i.e., there is c > 0 such that

inf
ξ∈SM−1

N∑
k=1

〈Vk(x), ξ〉2 ≥ c .

Then At,x ,v 6= ∅ and there exists a real valued random variable π
(which depends linearly on v) such that for all bounded random
variables f we obtain

d

dε

∣∣∣∣
ε=0

E (f (X x+εv
t )) = E (f (X x

t )π).
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Here the proof is particularly simple, since we can take a matrix
σ(x) := (V1(x), . . . ,VN(x)), which is uniformly invertible with
bounded inverse. We define

as :=
1

t
σ(X x

s )−1 · J0→s(x)v

for 0 ≤ s ≤ t and obtain that a ∈ At,x ,v . Furthermore

π =
d∑

i=1

∫ t

0
aisdW i

s ,

since the Skorohod integrable process a is in fact adapted,
continuous and hence Ito-integrable.
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Let (X x
t )t≥0 denote the unique solution of our SDE and assume

uniform Hörmander condition. Fix t > 0 and x ∈ RN . Fix a
direction v ∈ RN . Then At,x ,v 6= ∅ and there exists a real valued
random variable π (which depends linearly on v) such that for all
bounded random variables f we obtain

d

dε

∣∣∣∣
ε=0

E (f (X x+εv
t )) = E (f (X x

t )π).

We can choose π to be the Skorohod integral of any element
a ∈ At,x ,v 6= ∅.
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We take f bounded with bounded first derivative, then we obtain

d

dε

∣∣∣∣
ε=0

E (f (X x+εv
t )) = E (df (X x

t )J0→t(x) · v).

If there is a ∈ At,x ,v , we obtain

E (df (X x
t )J0→t(x) · v)

= E (df (X x
t )

d∑
i=1

∫ t

0
J0→t(x)J0→s(x)−1Vi (X x

s )aisds)

= E (
d∑

i=1

∫ t

0
df (X x

t )J0→t(x)J0→s(x)−1Vi (X x
s )aisds)

= E (
d∑

i=1

∫ t

0
D i
s f (X x

t )aisds) = E (f (X x
t )δ(a)).
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Here we cannot assert that the strategy is Ito-integrable, since it
will anticipative in general. In order to see that At,x ,v 6= ∅ we
construct an element, namely

ais :=
〈
J0→s(x)−1Vi (X x

s ), (C t)−1v
〉
,

where C t denotes the reduced covariance matrix.
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Indeed

d∑
i=1

〈∫ t

0
J0→s(x)−1Vi (X x

s )aisds, ξ

〉

=
d∑

i=1

∫ t

0

〈
J0→s(x)−1Vi (X x

s ), ξ
〉 〈

J0→s(x)−1Vi (X x
s ), (C t)−1v

〉
ds

=
〈
ξ,C t(C t)−1v

〉
= 〈ξ, v〉

for all ξ ∈ RN , since C t is a symmetric random operator defined via

〈
ξ,C tξ

〉
=

d∑
i=1

∫ t

0

〈
J0→s(x)−1Vi (X x

s ), ξ
〉2

ds

for ξ ∈ RN .
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References

[1] P. Malliavin: Stochastic Analysis, Grundlehren der
mathematischen Wissenschaften, Vol. 313, Springer (1997).

[2] D. Nualart: The Malliavin calculus and related topics,
Springer, 2nd edition, Berlin Heidelberg New-York (2006).

9


