
UTILITY OPTIMIZATION IN A FINITE SCENARIO SETTING

J. TEICHMANN

Abstract. We introduce the main concepts of duality theory for utility opti-

mization in a setting of finitely many economic scenarios.

1. Utility optimization in discrete models

Definition 1.1. A function u : R→ R∪{−∞} is called utility function if a strictly
increasing, strictly concave C2-function on its domain dom(u), i.e. the set where it
is finitely valued. Furthermore we shall always assume that limx↓inf dom(u) u

′(x) =
∞.

We consider the general situation in discrete models, i.e. finite Ω. Given a
financial market (S0

t , . . . , S
d
t )t=0,...,T on (Ω,F , P ) and a utility function u, then we

define the utility optimization problem as determination of U(x) for x ∈ dom(u),
i.e.

sup
φ trading strategy
ξ self financing

V0(φ)=x

E(u(
1

S0
T

VT (ξ)) =: U(x).

We say that the utility optimization problem at x ∈ dom(u) is solvable if U(x)

is finitely valued and if we find an optimal self financing trading strategy ξ̂(x) for
x ∈ dom(u) such that

U(x) = E(u(
1

S0
N

VN (ξ̂(x))),

V0(ξ̂(x)) = x.

We shall introduce three methods for the solution of the utility optimization prob-
lem, where the number of variables involved differs.

We assume that F = 2Ω and P (ω) > 0 for ω ∈ Ω. We then have three character-
istic dimensions: the dimension of all random variables |Ω| (the number of paths),
then the dimension of discounted outcomes at initial wealth 0, denoted by dimK,
and the number of extremal points of the set of absolutely continuous martingale
measures m. We have the basic relation

m+ dimK = |Ω| .

• the pedestrian method is an unconstraint extremal value problem in dimK
variables.
• the Lagrangian method yields an unconstraint extremal value problem in
|Ω|+m variables.
• the duality method (martingale approach) yields an unconstraint extremal

value problem in m variables. Additionally one has to transform the dual
1
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value function to the original, which is a one dimensional extremal value
problem.

In financial mathematics usually dimK � m, which means that the duality
method is of particular importance.

1.1. Pedestrian’s method. We can understand utility optimization as unrestricted
optimization problem. Define S the vector space of all predictable strategies (ξt)t=0,...,T ,
then the utility optimization problem for x ∈ dom(u) is equivalent to solving the
following problem

Fx :

{
S → R ∪ {−∞}

(ξt)t=0,...,T 7→ E(u(x+ (ξ ·X)T ))

sup
ξ∈S

Fx(ξ) = U(x)

This is an ordinary extremal value problem for every x ∈ dom(u). Let (ξ̂t)t=0,...,T

be an optimal strategy (which is then necessarily in the interior of the domain of
Fx), then necessarily

gradFx((ξ̂t)t=0,...,T ) = 0

and therefore we can in principle calculate the optimal strategy. From this formu-
lation we take one fundamental conclusion.

Theorem 1.2. Let the utility optimization problem at x ∈ dom(u) be solvable and

let (ξ̂t)t=0,...,T be an optimal strategy, so

sup
φ∈S

Fx(ξ) = U(x) = Fx(ξ̂),

then the set of equivalent martingale measures Me of the discounted price process
X is non-empty.

Proof. We calculate the directional derivative with respect to 1A for A ∈ Fi−1 for
i = 1, . . . , T ,

d

ds
|s=0E(u(x+ (ξ̂ ·X)T + s1A∆Xi))

= E(u′(x+ (ξ̂ ·X)T )1A∆Xi).

Since (ξ̂t)t=0,...,T is an optimizer we necessarily have that the directional derivatives
in direction of the elements 1A∆Xi vanish. We define

λ := E(u′(x+ (ξ̂ ·X)T )) > 0

since u′(y) > 0 for y ∈ dom(U). Consequently

dQ

dP
:=

1

λ
u′(x+ (ξ̂ ·X)T )

defines a probability measure equivalent to P . Hence we obtain from the gradient
condition that

EQ(1A(Xi −Xi−1)) = 0

for all A ∈ Fi−1 and i = 1, . . . , T , which means

E(Xi | Fi−1) = Xi−1

for i = 1, . . . , T , therefore Q ∈Me. �

Condition 1.3. We shall always assume Me 6= ∅.
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Furthermore we can easily formulate a basis existence and regularity result by
the pedestrian’s method.

Proposition 1.4. Assume Me 6= ∅, then the utility optimization problem for x ∈
dom(u) has a unique solution Ŷ (x) ∈ x+K, which is also the unique local maximum,

and x 7→ Ŷ (x) is C1 on dom(u). If x /∈ dom(u), then supξ∈S Fx(ξ) = −∞.

Proof. The functional Y 7→ EP (u(Y )) is C2, strictly concave and increasing. As-

sume that there are two optimizers Ŷ1(x) 6= Ŷ2(x) ∈ x+K, then

EP (u(tŶ1(x) + (1− t)Ŷ2(x))) > tEP (u(Ŷ1(x))) + (1− t)EP (u(Ŷ2(x))) = U(x)

for t ∈]0, 1[, which is a contradiction. The argument also yields that two local
maxima have to coincide. Therefore the optimizer is also the unique local maximum.

The space K of terminal wealth with zero initial investment has the property
that for Y ∈ L2(Ω,F , P )

Y ∈ K ⇐⇒ EQ(Y ) = 0

for all Q ∈ Ma, where Ma denotes the set of absolutely continuous martingale
measures. Given an equivalent martingale measure Q ∈ Me, then we can prove
that for any x ∈ dom(u)

lim
Y ∈K

EQ(|Y |)→∞

EP (u(x+ Y )) = −∞.

The existence of the optimizer follows from a compactness consideration using the
previous assertion.

For the regularity assertion we take a basis of K denoted by (fi)i=1,...,dimK and
calculate the derivative with respect to this basis at the unique existing optimizer

Ŷ (x),

EP (u′(x+ Ŷ (x))fi) = 0

for i = 1, . . . ,dimK. Calculating the second derivative we obtain the matrix

(EP (u′′(x+ Y )fifj))i,j=1,...,dimK

which is invertible for any Y ∈ K, since u′′ is strictly negative. Therefore x 7→ Ŷ (x)
is C1 on dom(u). �

1.2. Duality methods. Since we have a dual relation between the set of martin-
gale measures and the set K of claims attainable at price 0, we can formulate the
optimization problem as constraint problem: for any Y ∈ L2(Ω,F , P )

Y ∈ K ⇐⇒ EQ(X) = 0

for Q ∈Ma and for any probability measure Q

Q ∈Ma ⇐⇒ EQ(Y ) = 0

for all Y ∈ K. Therefore we can formulate the problem as constraint optimization
problem and apply the method of Lagrangian multipliers.

First we define a function H : L2(Ω,F , P ) −→ R ∪ {−∞} via

H(Y ) := EP (u(Y ))

for a utility function u. For x ∈ dom(u) we can formulate the constraints

K + x = {Y ∈ L2(Ω,F , P ) such that EQ(Y ) = x for Q ∈Ma} .
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Consequently the utility optimization problem reads

sup
Y ∈K+x

EP (u(Y )) = U(x)

for x ∈ dom(u). Hence we can treat the problem by Lagrangian multipliers, i.e. if

Ŷ ∈ K + x is an optimizer, then

u′(Ŷ )−
m∑
i=1

η̂i
dQi
dP

= 0(LM)

EQi
(Ŷ ) = x

for i = 1, . . . ,m, Ma = 〈Q1, . . . , Qm〉 and some values η̂i. This result is obtained
by taking the gradient of the function

Y 7→ EP (u(Y )−
m∑
i=1

ηi(
dQi
dP

Y − x))

with respect to some basis. We can choose the η̂i positive, since u′(Ŷ ) represents a
positive multiple of an equivalent martingale measure and any equivalent martin-
gale measure is represented by a unique positive linear combination of Q1, . . . , Qm.

Notice that by assumption u′(x) > 0 for all x ∈ dom(u), and u′(Ŷ ) is finitely
valued.

Lemma 1.5. If (Ŷ , η̂1, . . . , η̂m) is a solution of the Lagrangian multiplier equation
(LM), then the multipliers η̂i > 0 are uniquely determined and

∑m
i=1 η̂i > 0. Given

x ∈ dom(u), the map x 7→ (η̂i(x))i=1,...,m is C1.

Proof. The coefficients η̂i are uniquely determined and the inverse function theorem
together with the previous result yields the C1-dependence. �

The Lagrangian L̃ is given through

L̃(Y, η1, . . . , ηm) = EP (u(Y ))−
m∑
i=1

ηi(EQi(Y )− x)

for Y ∈ L2(Ω,F , P ) and ηi ≥ 0. We introduce y := η1 + · · · + ηm and µi := ηi
y .

Therefore
L(Y, y,Q) = EP (u(Y ))− y(EQ(Y )− x)

for Y ∈ L2(Ω,F , P ), Q =
∑
i µiQi ∈Ma and y > 0. We define

Φ(Y ) := inf
y>0

Q∈Ma

L(Y, y,Q)

for Y ∈ L2(Ω,F , P ) and

ψ(y,Q) = sup
Y ∈L2(Ω,F,P )

L(Y, y,Q)

for y > 0 and Q ∈Ma. We can hope for

sup
Y ∈L2(Ω,F,P )

Φ(Y ) = inf
y>0

inf
Q∈Ma

ψ(y,Q) = U(x).

by a mini-max consideration.

Lemma 1.6. We have
sup

Y ∈L2(Ω,F,P )

Φ(Y ) = U(x) .
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Proof. We can easily prove the following facts:

Φ(Y ) = −∞ if EQ(Y ) > x

for at least one Q ∈Ma. Furthermore

Φ(Y ) = EP (u(Y )) if EQ(Y ) ≤ x
for all Q ∈Ma. Consequently

sup
Y ∈L2(Ω,F,P )

Φ(Y ) = sup
Y ∈L2(Ω,F,P )

EQ(Y )≤x for Q∈Ma

EP (u(Y )) = U(x)

since u is increasing. �

For the proof of the minimax statement we need to calculate ψ, which is done
in the next lemma. Therefore we assume the generic conditions for conjugation as
stated in the Appendix.

Lemma 1.7. The function

ψ(y,Q) = sup
Y ∈L2(Ω,F,P )

L(Y, y,Q)

can be expressed by the conjugate function v of u,

ψ(y,Q) = EP (v(y
dQ

dP
)) + yx.

Proof. By definition we have

L(Y, y,Q) = EP (u(Y ))− y(EQ(Y )− x)

= EP (u(Y )− y dQ
dP

Y ) + yx.

If we fix Q ∈Ma and y > 0, then the calculation of the supremum over all random
variables yields

sup
Y ∈L2(Ω,F,P )

EP (u(Y )− y dQ
dP

Y )

= EP ( sup
Y ∈L2(Ω,F,P )

u(Y )− y dQ
dP

Y )

= EP (v(y
dQ

dP
))

by definition of the conjugate function. �

Definition 1.8. Given the above setting we call the optimization problem

V (y) := inf
Q∈Ma

EP (v(y
dQ

dP
))

the dual problem and V the dual value function for y > 0.

Next we formulate that the dual optimization problem has a solution.

Lemma 1.9. Let u be a utility function under the above assumptions and assume

Me 6= ∅, then there is a unique optimizer Q̂(y) such that

V (y) = inf
Q∈Ma

EP (v(y
dQ

dP
)) = EP (v(y

dQ̂(y)

dP
)).
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Furthermore

inf
y>0

(V (y) + xy) = inf
y>0

Q∈Ma

(EP (v(y
dQ

dP
)) + xy) .

Proof. Since v is strictly convex, C2 on ]0,∞[ and v′(0) = −∞ we obtain by com-

pactness the existence of an optimizer Q̂(y) and by v′(0) = −∞ that the optimizer

is an equivalent martingale measure (since one can decrease the value of v(y dQdP ) by
moving away from the boundary). By strict convexity the optimizer is also unique.

The gradient condition for Q̂(y) reads as follows

EP (v′(Q̂(y))(
dQ̂(y)

dP
− dQ

dP
)) = 0

for all Q ∈ Ma. The function V shares the same qualitative properties as v and
therefore we can define the concave conjugate. Fix x ∈ dom(u) and take the
optimizer ŷ = ŷ(x) > 0, then

inf
y>0

(V (y) + xy) = V (ŷ) + xŷ ≤ inf
Q∈Ma

EP (v(y
dQ

dP
)) + xy

≤ EP (v(y
dQ

dP
)) + xy

for all Q ∈Ma and y > 0, so

inf
y>0

(V (y) + xy) ≤ inf
y>0

Q∈Ma

(EP (v(y
dQ

dP
)) + xy).

Take y1 > 0 and Q1 ∈Me for some ε > 0 such that

inf
y>0

(V (y) + xy) + 2ε ≥ V (y1) + xy1 + ε

≥ EP (v(y1
dQ1

dP
)) + xy1

≥ inf
y>0

Q∈Ma

(EP (v(y
dQ

dP
)) + xy).

Since this holds for every ε > 0 we can conclude. �

Theorem 1.10. Let u a utility function with the above properties for an arbitrage-
free financial market, then

U(x) = inf
y>0

Q∈Ma

(EP (v(y
dQ

dP
)) + xy)

and the mini-max assertion holds.

Proof. Fix x ∈ dom(u) and take an optimizer Ŷ , then there are Lagrangian multi-
pliers η̂1, . . . , η̂m ≥ 0 such that ŷ :=

∑m
i=1 η̂i > 0 and

L̃(Ŷ , η̂1, . . . , η̂m) = U(x),

and the constraints are satisfied so EQi
(Ŷ ) = x and Ŷ is an optimizer. We define

a measure Q̂ via

u′(Ŷ ) = ŷ
dQ̂

dP
.



UTILITY OPTIMIZATION IN A FINITE SCENARIO SETTING 7

Since

u′(Ŷ )− ŷ
m∑
i=1

η̂i
ŷ

dQi
dP

= 0

by the Lagrangian multipliers method, we see that

ŷ
dQ̂

dP
= ŷ

m∑
i=1

η̂i
ŷ

dQi
dP

and therefore Q̂ ∈ Me (its Radon-Nikodym derivative is strictly positive). Fur-
thermore

EP (v(ŷ
dQ̂

dP
)) + xŷ = inf

Q∈Ma
(EP (v(ŷ

dQ

dP
)) + xŷ),

since v′(y) = −(u′)−1(y) and Q∗ ∈Me is a minimum if and only if

EP (v′(y
dQ∗
dP

)(
dQ∗
dP
− dQ

dP
)) = 0

for all Q ∈Ma(S̃). This is satisfied by ŷ and Q̂. By definition of v we obtain

EP (v(ŷ
dQ̂

dP
)) + xŷ = sup

Y ∈L2(Ω,F,P )

L(Y, ŷ, Q̂)

= L(Ŷ , ŷ, Q̂),

since u′(Ŷ ) = ŷ dQ̂dP , v(y) = u((u′)−1(y) − y(u′)−1(y), so v(ŷ dQ̂dP ) = u(Ŷ ) − dQ̂
dP ŷŶ .

However L(Ŷ , ŷ, Q̂) = U(x) by assumption on optimality of Ŷ . Therefore

EP (v(ŷ
dQ̂

dP
)) + xŷ = U(x)

and ŷ is the minimizer since

EP (v′(ŷ
dQ̂

dP
)
dQ̂

dP
) = −x

by assumption. Calculating with the formulas for v yields

inf
y>0

Q∈Ma

(EP (v(y
dQ

dP
))) + xy) = inf

y>0
(EP (v(y

dQ̂

dP
)) + xy)

= U(x)

= EP (u(Ŷ ))

by definition. �

This Theorem enables us to formulate the following duality relation. Given a
utility optimization problem for x ∈ dom(u)

sup
Y ∈K

EP (u(x+ Y )) = U(x),

then we can associate a dual problem, namely

inf
Q∈Ma

EP (v(y
dQ

dP
)) = V (y)

for y > 0. The main assertion of the minimax considerations is that

inf
y>0

(V (y) + xy) = U(x),
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so the concave conjugate of V is U and since V shares the same regularity as U ,
also U is the convex conjugate of V . First we solve the dual problem (which is

much easier) and obtain y 7→ Q̂(y). For given x ∈ dom(u) we can calculate ŷ(x)
and obtain

V (ŷ(x)) + xŷ(x) = U(x)

u′(Ŷ (x)) = ŷ(x)
dQ̂(ŷ(x))

dP
.

2. Appendix: methods from convex analysis

In this chapter basic duality methods from convex analysis are discussed. We
shall also apply the notions of dual normed vector spaces in finite dimensions. Let
V be a real vector space with norm and real dimension dimV < ∞, then we can
define the pairing

〈., .〉 : V × V ′ → R
(v, l) 7→ l(v)

where V ′ denotes the dual vector space, i.e. the space of continuous linear func-
tionals l : V → R. The dual space carries a natural dual norm namely

||l|| := sup
||v||≤1

|l(v)|.

We obtain the following duality relations:

• If for some v ∈ V it holds that 〈v, l〉 = 0 for all l ∈ V ′, then v = 0.
• If for some l ∈ V ′ it holds that 〈v, l〉 = 0 for all v ∈ V , then l = 0.
• There is a natural isomorphism V → V ′′ and the norms on V and V ′′

coincide (with respect to the previous definition).

If V is an euclidean vector space, i.e. there is a scalar product 〈., .〉 : V ×V → R,
which is symmetric and positive definite, then we can identify V ′ with V and every
linear functional l ∈ V ′ can be uniquely represented l = 〈., x〉 for some x ∈ V .

Definition 2.1. Let V be a finite dimensional vector space. A subset C ⊂ V is
called convex if for all v1, v2 ∈ C also tv1 + (1− t)v2 ∈ C for t ∈ [0, 1].

Since the intersection of convex sets is convex, we can define the convex hull of
any subset M ⊂ V , which is denoted by 〈M〉conv. We also define the closed convex

hull 〈M〉conv, which is the smallest closed, convex subset of V containing M . If M
is compact the convex hull 〈M〉conv is already closed and therefore compact.

Definition 2.2. Let C be a closed convex set, then x ∈ C is called extreme point
of C if for all y, z ∈ C with x = ty+ (1− t)z and t ∈ [0, 1], we have either t = 0 or
t = 1. This is equivalent to saying that there are no two different points x1 6= x2

such that x = 1
2 (x1 + x2).

First we treat a separation theorem, which is valid in a fairly general context
and known as Hahn-Banach Theorem.

Theorem 2.3. Let C be a closed convex set in an euclidean vector space V , which
does not contain the origin, i.e. 0 /∈ C. Then there exists a linear functional ξ ∈ V ′
and α > 0 such that for all x ∈ C we have ξ(x) ≥ α.
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Proof. Let r be a radius such that the closed ball B(r) intersects C. The continuous
map x 7→ ||x|| achieves a minimum x0 6= 0 on B(r) ∩ C, which we denote by x0,
since B(r)∩C is compact. We certainly have for all x ∈ C the relation ||x|| ≥ ||x0||.
By convexity we obtain that x0 + t(x− x0) ∈ C for t ∈ [0, 1] and hence

||x0 + t(x− x0)||2 ≥ ||x0||2.

This equation can be expanded for t ∈ [0, 1],

||x0||2 + 2t 〈x0, x− x0〉+ t2||(x− x0)||2 ≥ ||x0||2,
2t 〈x0, x− x0〉+ t2||(x− x0)||2 ≥ 0.

Take now small t and assume 〈x0, x− x0〉 < 0 for some x ∈ C, then there appears
a contradiction in the previous inequality, hence we obtain

〈x0, x− x0〉 ≥ 0

and consequently 〈x, x0〉 ≥ ||x0||2 for x ∈ C, so we can choose ξ = 〈., x0〉. �

As a corollary we have that each subspace V1 ⊂ V , which does not intersect
with a convex, compact and non-empty subset K ⊂ V can be separated from K,
i.e. there is ξ ∈ V ′ such that ξ(V1) = 0 and ξ(x) > 0 for x ∈ K. This is proved by
considering the set

C := K − V := {w − v for v ∈ V and w ∈ K},

which is convex and closed, since V,K are convex and K is compact, and which
does not contain the origin. By the above theorem we can find a separating linear
functional ξ ∈ V ′ such that ξ(w− v) ≥ α for all w ∈ K and v ∈ V , which means in
particular that ξ(w) > 0 for all w ∈ K. Furthermore we obtain from ξ(w)−ξ(v) ≥ α
for all v ∈ V that ξ(v) = 0 for all v ∈ V (replace v by λv, which is possible since V
is a vector space, and lead the assertion to a contradiction in case that ξ(v) 6= 0).

Theorem 2.4. Let C be a compact convex non-empty set, then C is the convex
hull of all its extreme points.

Proof. We have to show that there is an extreme point. We take a point x ∈ C
such that the distance ||x||2 is maximal, then x is an extreme point. Assume that
there are two different points x1, x2 such that x = 1

2 (x1 + x2), then

||x||2 = ||1
2

(x1 + x2)||2 < 1

2
(||x1||2 + ||x2||2)

≤ 1

2
(||x||2 + ||x||2) = ||x||2,

by the parallelogram law 1
2 (||y||2+||z||2) = || 12 (y+z)||2+|| 12 (y−z)||2 for all y, z ∈ V

and the maximality of ||x||2. This is a contradiction. Therefore we obtain at least
one extreme point.

The set of all extreme points is a compact set, since it lies in C and is closed.
Take now the convex hull of all extreme points, which is a closed convex subset S of
C and hence compact. If there is x ∈ C \ S, then we can separate by a hyperplane
l the point x and S such that l(x) ≥ α > l(y) for y ∈ S. The set {l ≥ α} ∩ C is
compact, convex, nonempty and has therefore an extreme point z, which is also an
extreme point of C. So z ∈ S, which is a contradiction. �
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Next we treat basic duality theory in the finite dimensional vector space V
with euclidean structure. We identify the dual space V ′ with V by the above
representation.

Definition 2.5. A subset C ⊂ V is called convex cone if for all v1, v2 ∈ C the sum
v1 + v2 ∈ C and λv1 ∈ C for λ ≥ 0. Given a cone C we define the polar C0

C0 := {l ∈ V such that 〈l, v〉 ≤ 0 for all v ∈ C}.

The intersection of convex cones is a convex cone and therefore we can speak of
the smallest convex cone containing an arbitrary set M ⊂ V , which is denoted by
〈M〉cone. We want to prove the bipolar theorem for convex cones.

Theorem 2.6 (Bipolar Theorem). Let C ⊂ V be a convex cone, then C00 ⊂ V is
the closure of C.

Proof. We show both inclusions. Take v ∈ C, then 〈l, v〉 ≤ 0 for all l ∈ C0 by
definition of C0 and therefore v ∈ C00. If there were v ∈ C00 \C, where C denotes
the closure of C, then for all l ∈ C0 we have that 〈l, v〉 ≤ 0 by definition. On the
other hand we can find l ∈ V such that

〈
l, C
〉
≤ 0 and 〈l, v〉 > 0 by the separation

theorem since C is a closed cone. By assumption we have l ∈ C0, however this
yields a contradiction since 〈l, v〉 > 0 and v ∈ C00. �

Definition 2.7. A convex cone C is called polyhedral if there is a finite number
of linear functionals l1, . . . , lm such that

C := ∩ni=1{v ∈ V | 〈li, v〉 ≤ 0}.
In particular a polyhedral cone is closed as intersection of closed sets.

Lemma 2.8. Given e1, . . . , en ∈ V . For the cone C = 〈e1, . . . , en〉con the polar can
be calculated as

C0 = {l ∈ V such that 〈l, ei〉 ≤ 0 for all i = 1, . . . , n}.

Proof. The convex cone C = 〈e1, . . . , en〉cone is given by

C = {
n∑
i=1

αiei for αi ≥ 0 and i = 1, . . . , n}.

Given l ∈ C0, the equation 〈l, ei〉 ≤ 0 necessarily holds and we have the inclusion
⊂. Given l ∈ V such that 〈l, ei〉 ≤ 0 for i = 1, . . . , n, then for αi ≥ 0 the equation∑n
i=1 αi 〈l, ei〉 ≤ 0 holds and therefore l ∈ C0 by the explicit description of C as∑n
i=1 αiei for αi ≥ 0. �

Corollary 2.9. Given e1, . . . , en ∈ V , the cone C = 〈e1, . . . , en〉con has a polar
which is polyhedral and therefore closed.

Proof. The polyhedral cone is given through

C0 = {l ∈ V such that 〈l, ei〉 ≤ 0 for all i = 1, . . . , n}
= ∩ni=1{l ∈ V | 〈l, ei〉 ≤ 0}.

�

Lemma 2.10. Given a finite set of vectors e1, . . . , en ∈ V and the convex cone
C = 〈e1, . . . , en〉con, then C is closed.
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Proof. Assume that C = 〈e1, . . . , en〉con for vectors ei ∈ V . If the ei are linearly
independent, then C is closed by the argument, that any x ∈ C can be uniquely
written as x =

∑n
i=1 αiei. Suppose next that there is a non-trivial linear combina-

tion
∑n
i=1 βiei = 0 with β ∈ Rn non-zero. We can write x ∈ C as

x =

n∑
i=1

αiei =

n∑
i=1

(αi + t(x)βi)ei =
∑
j 6=i(x)

α′iei

with

i(x) ∈ {i such that |αi
βi
| = max

βj<0
|αj
βj
|},

t(x) = −
αi(x)

βi(x)

Then α′j ≥ 0 by definition. Consequently we can construct by variation of x a
decomposition

C = ∪n
′

i=1Ci

where Ci are cones generated by n − 1 vectors from the set e1, . . . , en. By induc-
tion on the number of generators n we can conclude by the statement on linearly
independent generators. �

Proposition 2.11. Let C ⊂ V be a convex cone generated by e1, . . . , en and K a
subspace, then K − C is closed convex.

Proof. First we prove that K − C is a convex cone. Taking v1, v2 ∈ K − C, then
v1 = k1 − c1 and v2 = k2 − c2, therefore

v1 + v2 = k1 + k2 − (c1 + c2) ∈ K − C,
λv1 = λk1 − λc1 ∈ K − C.

In particular 0 ∈ K−C. The convex cone is generated by a generating set e1, . . . , en
for C and a basis f1, . . . , fp for K, which has to be taken with − sign, too. So

K − C = 〈−e1, . . . ,−en, f1, . . . , fp,−f1, . . . ,−fp〉con
and therefore K − C is closed by Lemma 2.10. �

Lemma 2.12. Let C be a polyhedral cone, then there are finitely many vectors
e1, . . . , en ∈ V such that

C = 〈e1, . . . , en〉con .

Proof. By assumption C = ∩pi=1{v ∈ V | 〈li, v〉 ≤ 0} for some vectors li ∈ V . We
intersect C with [−1, 1]m and obtain a convex, compact set. This set is generated
by its extreme points. We have to show that there are only finitely many extreme
points. Assume that there are infinitely many extreme points, then there is also
an adherence point x ∈ C. Take a sequence of extreme points (xn)n≥0 such that
xn → x as n → ∞ with xn 6= x. We can write the defining inequalities for
C ∩ [−1, 1]m by

〈kj , v〉 ≤ aj
for j = 1, . . . , r and we obtain limn→∞ 〈kj , xn〉 = 〈kj , x〉. Define

ε := min
〈kj ,x〉<aj

aj − 〈kj , x〉 > 0.
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Take n0 large enough such that | 〈kj , xn0
〉 − 〈kj , x〉 | ≤ ε

2 , which is possible due to
convergence. Then we can look at xn0 + t(x− xn0) ∈ C for t ∈ [0, 1]. We want to
find a continuation of this segment for some δ > 0 such that xn0 + t(x− xn0) ∈ C
for [−δ, 1]. Therefore we have to check three cases:

• If 〈kj , xn0〉 = 〈kj , x〉 = aj , then we can continue for all t ≤ 0 and the
inequality 〈kj , xn0 + t(x− xn0)〉 = aj remains valid.
• If 〈kj , x〉 = aj and 〈kj , xn0

〉 < aj , we can continue for all t ≤ 0 and the
inequality 〈kj , xn0

+ t(x− xn0
)〉 ≤ aj remains valid.

• If 〈kj , x〉 < aj , then we define δ = 1 and obtain that for −1 ≤ t ≤ 1 the
inequality 〈kj , xn0 + t(x− xn0)〉 ≤ aj remains valid.

Therefore we can find δ and continue the segment for small times. Hence xn
cannot be an extreme point, since it is a nontrivial convex combination of xn0

−
δ(x− xn0) and x, which is a contradiction. Therefore C ∩ [−1, 1]m is generated by
finitely many extreme points e1, . . . , enand so

C = 〈e1, . . . , en〉con
by dilatation. �

3. Appendix: optimization Theory

We shall first consider general principles in optimization theory related to anal-
ysis and proceed to special functionals.

Definition 3.1. Let U ⊂ Rm be a subset with U ⊂ V , where V is open in Rm.
Let F : V → R be a C2-function. A point x ∈ U is called local maximum (local
minimum) of F on U if there is a neighborhood Wx of x in V such that for all
y ∈ U ∩Wx

F (y) ≤ F (x)

or respectively F (y) ≥ F (x).

Lemma 3.2. Let U ⊂ Rm be a subset with U ⊂ V , where V is open in Rm and let
F : V → R be a C2-function. Given a local maximum (or local minimum) x ∈ U
of F on U and a C2-curve c :] − 1, 1[→ V such that c(0) = x and c(t) ∈ U for
t ∈]− 1, 1[, the following necessary condition holds true,

d

dt
|t=0F (c(t)) = 〈gradF (x), c′(0)〉 = 0.

Proof. The function t 7→ F (c(t)) has a local extremum at t = 0 and therefore the
first derivative at t = 0 must vanish. �

We shall now prove a version of the Lagrangian multiplier theorem for affine
subspaces U ⊂ Rm. We take a affine subspace U ⊂ Rm and an open neighborhood
V ⊂ Rm such that U ∩ V 6= ∅, where a C2-function F : V → R is defined.

Theorem 3.3. Let x be a local maximum (local minimum) of F on U ∩ V and
assume that there are k := m − dimU vectors l1, . . . , lk ∈ Rm and real numbers
a1, . . . , ak ∈ R such that

U = {x ∈ V with 〈li, x〉 = ai for i = 1, . . . , k}.

Then

gradF (x) ∈ 〈l1, . . . , lk〉
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or in other words there are real numbers λ1, . . . , λk ∈ R such that

gradF (x) = λ1l1 + · · ·+ λklk.

Proof. Take a C2-curve c :]− 1,+1[→ V , then c takes values in U if and only if

c(0) ∈ U

and

〈li, c′(t)〉 = 0

for i = 1, . . . , k and t ∈]− 1, 1[. The proof is simply done by Taylor’s formula. Fix
t ∈]− 1, 1[ and take

c(t) = c(0) +

∫ t

0

c′(s)ds.

By definition c(t) ∈ U if and only if 〈li, c(t)〉 = ai, but

〈li, c(t)〉 = 〈li, c(0)〉+

∫ t

0

〈li, c′(s)〉 ds

= ai

by assumption for i = 1, . . . , k. We denote the span of l1, . . . , lk by T and can
consequently state that a C2-curve c :] − 1,+1[→ V takes values in U if and only
if c(0) ∈ U and c′(t) ∈ T 0 for all t ∈] − 1, 1[. Furthermore we can say that T 0 is
generated by all derivatives of C2-curves c :] − 1,+1[→ V taking values in U at
time t = 0 (simply take a line with direction a vector in T 0 through some point of
U).

By the previous lemma we know that for all C2-curves c :] − 1,+1[→ V with
c(0) = x the relation

〈gradF (x), c′(0)〉 = 0

holds. Therefore gradF (x) ∈ T 00. By the bipolar theorem we know that T 00 =
T = 〈l1, . . . , lk〉, which proves the result. �

Remark 3.4. This leads immediately to the receipt of Lagrangian multipliers as it
is well known from basic calculus: a necessary condition for an extremal point of
F : V → R subject to the conditions 〈li, x〉 = ai for i = 1, . . . , k is to solve the
extended problem with the Lagrangian L

L(x, λ1, . . . , λk) = F (x)−
k∑
i=1

λi(〈li, x〉 − ai).

Taking the gradients leads to the system of equations

gradF (x)−
k∑
i=1

λili = 0

〈li, x〉 = ai

for i = 1, . . . , k, which necessarily has a solution if there is an extremal point at x.

Remark 3.5. How to calculate a gradient? The gradient of a C1-function F : V → R
on a finite dimensional vector space V is defined through

〈gradF (x), w〉 =
d

ds
|s=0F (x+ sw),
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for x ∈ V and w ∈ Rn (and a scalar product!). This can be calculated with
respect to any basis and gives a coordinate representation. The derivative of F is
understood as element of the dual space

dF (x)(w) :=
d

ds
|s=0F (x+ sw)

for x ∈ V and w ∈ Rn (even without scalar product!). The derivative can be calcu-
lated with respect to a basis (ei)i=1,...,dimV . That means that it simply represents
a collection of directional derivatives of a function, i.e.

grad(ei) F (x) := (
d

ds
|s=0F (x+ sei))i=1,...,dimV

for x ∈ V .

4. Appendix: conjugate functions

Given a concave, increasing function u : R → R ∪ {−∞}, which usual conven-
tions for the calculus with −∞. We denote by dom(u) the set {u > −∞} and
assume that the closure of dom(u) is either [a,∞[ or R. We shall always assume
that u is strictly concave and C2 on dom(u).

In this and more general cases we can define the conjugate function

v(y) := sup
x∈R

(u(x)− yx)

for y > 0.
Since the function x 7→ u(x) − yx is strictly concave for every y > 0, there is

some hope for a maximum. If there is one, let’s say x̂, then it satisfies

(4.1) u′(x̂) = y.

Since the second derivative exists and is strictly negative, x̂ is a local maximum if
the above equation is satisfied. By strict concavity the local maximum is unique
and global, too.

We need basic assumptions for the existence and regularity of the conjugate
function:

(1) If the interior of dom(u) equals ]a,∞[ (wealth below a not allowed), then
we assume

lim
x↓a

u′(x) =∞,

lim
x→∞

u′(x) = 0 (marginal utility tends to 0).

(2) If dom(u) = R (negative wealth allowed), then we assume

lim
x↓−∞

u′(x) =∞,

lim
x→∞

u′(x) = 0 (marginal utility tends to 0).

Under these assumptions we can state the following theorem on existence and
convexity of v.
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Theorem 4.1. Let u : R → R ∪ {−∞} be a concave function satisfying the above
assumptions, then the conjugate function is strictly convex and C2 on dom(v) =
]0,∞[. Additionally for dom(u) =]0,∞[ we have

v′(0) := lim
y↓0

v′(y) = −∞,

lim
y→∞

v′(y) = 0

and for dom(u) = R
v′(0) := lim

y↓0
v′(y) = −∞,

lim
y→∞

v′(y) =∞

Furthermore the inversion formula

u(x) = inf
y>0

(v(y) + xy)

holds true.

Proof. By formula 4.1 and our assumptions we see that for every y > 0 there is
exactly one x̂, since u′ is strictly decreasing and C1. We denote the inverse of
u′ by (u′)−1. Therefore v is well-defined and at least C1, since the inverse is C1.
Furthermore

v(y) = u((u′)−1(y))− y · (u′)−1(y)

v′(y) = u′((u′)−1(y))((u′)−1)′(y)− (u′)−1(y)− y((u′)−1)′(y)

= −(u′)−1(y)

v′′(y) = −((u′)−1)′(y) = − 1

u′′((u′)−1(y))
> 0

Hence v is C2 on ]0,∞[ and a fortiori, by v′′ > 0, strictly convex.
We know that u′ is positive and strictly decreasing from ∞ to 0 by the previous

assumptions, hence the two limiting properties for v, since v′(y) = −(u′)−1(y).
Replacing v by −v, we can apply the same reasoning for existence of the concave

conjugate of v. Take ŷ > 0 such that infy>0(v(y) + xy) takes the infimum, then
necessarily

v′(ŷ) = −x,
hence −(u′)−1(ŷ) = −x and therefore ŷ(x) = u′(x). Inserting yields

v(u′(x)) + xŷ(x) = u((u′)−1(u′(x)))− u′(x)(u′)−1(u′(x)) + xu′(x)

= u(x),

which is the desired relation. �

5. Catalogue of questions for the oral exam

For the oral exam I shall choose randomly three questions from the following
list, from which you have the right to select two for your exam. The exam is
“open book”, i.e. you can use the book of Föllmer-Schied as well as my lecture
notes (however, no Musterlösungen!) during the preparation of the answers. To
guarantee equal conditions we shall provide the ’books’ in my office, no personal
copies are allowed. You will have about 10 minutes of time for each question after
about 10 minutes of preparation. I expect you to speak about the question like in
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a seminar, i.e. explaining the structure of the answer and important details such
that a good mathematician, who does not know precisely about the topic could in
principle follow.

(1) (Chapter 5 of FS) Explain the multi-period market model, portfolios, self-
financing portfolios, discounting, Prop 5.7.

(2) (Chapter 5 of FS) Arbitrage and time-localization of arbitrage: Def 5.10
and Prop. 5.11.

(3) (Chapter 5 of FS) characterization of martingale measures: Theorem 5.14.
(a) to (b) to (c).

(4) (Chapter 5 of FS) characterization of martingale measures: Theorem 5.14.
(c) to (d) to (a).

(5) (Chapter 5 of FS) Theorem 5.16 with the knowledge of Theorem 1.55
(FTAP result in the one period case).

(6) (Chapter 1 of FS) Theorem 1.55 with the knowledge of the Lemmata; ex-
plain where the problem lies.

(7) (Chapter 1 of FS) Lemma 1.57 and Lemma 1.58.
(8) (Chapter 1 of FS) Lemma 1.59 with the help of the Hahn-Banach theorem,

explain its meaning and idea of the proof of the Hahn-Banach theorem.
(9) (Chapter 1 of FS) Lemma 1.60 and Theorem 1.62 (explain its meaning).

(10) (Chapter 1 of FS) Lemma 1.64 and its meaning for the proof of FTAP.
(11) (Chapter 1 of FS) Lemma 1.66 and its meaning for the proof of FTAP.
(12) (Chapter 1 of FS) Lemma 1.68 and its meaning for the proof of FTAP.
(13) (Chapter 5 of FS) Prop. 5.17 (change of numeraire theorem) with Remark

5.18.
(14) (Chapter 5 of FS) attainable claims and Theorem 5.25.
(15) (Chapter 5 of FS) Def 5.28 and Theorem 5.29 (arbitrage free prices of

claims).
(16) (Chapter 5 of FS) Theorem 5.32 (characterization of attainable claims by

arbitrage-free prices).
(17) (Chapter 5 of FS) Theorem 5.32 (characterization of non-attainable claims

upper and lower bounds).
(18) (Chapter 5 of FS) CRR model and Theorem 5.39.
(19) (Chapter 5 of FS) Prop 5.41 and Prop 5.44 (pricing and hedging in CRR

model)
(20) (Chapter 6 of FS) American Options, exercise strategy, Prop 6.1 (Doob

decomposition), Def 5.8 (Snell envelope) [complete case].
(21) (Chapter 6 of FS) Prop 6.10 (Snell envelope is smallest supermartingale

dominating the payoff) [complete case].
(22) (Chapter 6 of FS) Theorem 6.11 [complete case].
(23) (Chapter 6 of FS) Theorem 6.15 (optional stopping theorem).
(24) (Chapter 6 of FS) Theorem 6.18 (smallest optimal stopping time).
(25) (Chapter 6 of FS) Prop. 6.20 (characterization of optimal stopping times)

and Proposition 6.21 (maximal optimal stopping time).
(26) (Chapter 6 of FS) Def 6.29 and Theorem 6.31 under the assumption that

one can interchange inf (sup) and sup [incomplete case].
(27) (Chapter 6 of FS) define lower and upper Snell envelope and explain in a

sketch why one can interchange inf (sup) and sup.
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(28) explain the notion of super-hedging of European claims and connect it to
the bi-polar theorem, prove the existence of a super-hedging strategy.

(29) Exercise 9.2
(30) Exercise 11.1
(31) Exercise 11.2
(32) Exericse 11.3
(33) (Lecture Notes) Theorem 1.2 and Prop 1.4.
(34) (Lecture Notes) Lemma 1.6 and Lemma 1.7.
(35) (Lecture Notes) Lemma 1.9 and its meaning for the theory.
(36) (Lecture Notes) Theorem 1.10.
(37) (Chapter 4 of FS) define convex and coherent risk measures, prove Lemma

4.3 and Prop 4.6.
(38) (Chapter 4 of FS) Prop. 4.15 (which coincides with Prop. 2.83).
(39) (Chapter 4 of FS) Theorem 4.16.
(40) (Chapter 4 of FS) Remark 4.18 and the relationship to Fenchel-Legendre

transforms.
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