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Goal of the talk



Exponential concavity

m  defined on an open convex D C R" is exponentially concave if
d:=e”
is concave.
m Primarily interested in D = A, unit simplex in R”.
m positive coordinates, adds to 1.
m Market: n stocks. = (u1,...,un) € A.
m Market weights:

1j = Proportion of the total capital that belongs to ith stock.



Portfolios

All long portfolio: m = (m1,...,m,) € A.

Portfolio weights:

m; = Proportion of the total value that belongs to ith stock.

Forus m = m(u) : A — A.

Function from unit simplex to its closure.

m(1) = pu - Market portfolio, a buy-and-hold portfolio.



Relative value

V. (+) - Value process of w. V,(0) = $1.

V,.(+) - Index. V,,(0) = $1. Self-financing.

Relative value process: V/(t) = V(t)/V,.(t).
Relative arbitrage: for some g € (0,1) and T > 0,

P(V(T)>1)=1, P(V(T)>1)>0, P<0<irt1£TV(t) > q) ~ 1.

Qn: Do relative arbitrages exist? Can we estimate T7

Challenge: Make minimal modeling assumptions. Model-free
strategies.



The Fernholz decomposition

m ¢ exponentially concave on A.

m For € A, define FGP
B 14 D, i=1,2,....n.
Hi

m Then 7 : A — A is a portfolio map. u(t) It6 process:

log V(1) = p(u(1) — £(u(0)) ~ / > Hess (du(s)).

m Under diversity, range(ip) is bounded. Under ‘volatility’, the second
part grows unbounded. Long term model-free relative arbitrage.



Long-term vs. Short-term relative arbitrages.

A high-dimensional Definition.

Family of equity markets for each n. Portfolio 7(n) for each n.
m(n) beats the market by time T,.

Long term: lim,_, ., T, = co. Short term: lim,_,., T, = 0.

Typical examples of FGP portfolios in SPT are long-term relative
arbitrages under diversity and volatility.

m Relevant: P.-Wong ('14) proved the converse.

In discrete time, in the absence of any modeling assumptions, the
only relative arbitrage portfolios maps from A to A are FGP.



Are short-term relative arbitrages possible?

Do model-free short-term relative arbitrages exist?
Model dependent examples are known.

m The source of arbitrage can be large in two ways:

—%Hess d(du(t))

Either very large volatility, or very concave .

Very concave ¢ affects its range, and hence risky.



The Volatility-Stabilized model example

m A large volatility example provided by Fernholz-Karatzas '05,
Banner-Fernholz '08.

m Let 7;(t) - diffusion coefficient of log 1;(t):

1d

rilt) = g Bog (e) = 5 (o) ().

m Consider ranked market weights:
By () < pnm1)(t) < -0 < py(t).



The Volatility-Stabilized model example

m Assume 3C > 0 such that

T(m(t) > €
(= i (8)

> Cn, forallt>0.

m (Fernholz-Karatzas '05). Relative arbitrage exists over time [0, T,]
where
280t ((0))

" n—1

m Proof is a direct application of Fernholz's decomposition.
m (Banner-Fernholz '08) Exists over [0, §] for any ¢ > 0 for any n.



Capital distribution curve

T T
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Figure 1: Capital distribution curves: 1929-1999

m The extreme volatility assumption is crucial and does not fit capital
distribution curve.

m log /u(jy vs. log i data is roughly linear with slope ~ negative one.

m Volatility stabilized models do not produce such stable shapes.



Goal of the talk

m Will construct short-term relative arbitrages that work even under
bounded volatility 7; assumption.

m If time permits, we will talk a little bit about the underlying
geometry.

m The main idea is high dimensional convex geometry and
concentration of measure.



Short-term relative arbitrage in high dimensions



The Pareto distribution

1. Fixne N.

2. « € A such that a; o< 1/i, Pareto(—1).
i1

S l/j ilogn

Q=

3. Suppose 1(0) € K, a typical neighborhood around «.
4. Will discuss what typical means.
5. The indices (ju1, ..., pu,) are chosen by rank.



Main theorem: idea

m Main idea: the top ranks fluctuate less than the bottom ranks.
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S Xi = n.



Main theorem: idea

m Main idea: the top ranks fluctuate less than the bottom ranks.
m Let X; = nu;. Assume continuous semimartingales.
X

I .
bi==m—o, [=1,2,...,n.
XX

m Intuition: X; is approximately price of the ith stock price if

S Xi = n.
m Divide the index as
n n
A= {1’ (k,g,,)z} P [(lognﬁ “’”] |

m If n=5000, |A| ~ 68. Vanishing fraction of n for large n.



Main theorem:assumptions

m Suppose 3 T € (0,1), and «(T), C(T),A\(T) > 0 independent of n
such that ...



Main theorem:assumptions

m Suppose 3 T € (0,1), and «(T), C(T),A\(T) > 0 independent of n
such that ...

m For i € A, exponential tails:

Xi(t) — X;
P| sup Xi(t) — Xi(0) >a| < Ce e
o<t<T t*/X;(0)

m For / € B, moment bound:

2
E ( sup 7Xi(t) — X,-(O)) <C
o<t<T  t*/X;(0)

m Assume 3 7 > 0 such that

T = % (log pi(t)) >z, forall i.



Main theorem:statement

Theorem (P.-'15)

Suppose 3 (2, F, P) such that, for every n, a market of dimension n

exists satisfying the previous conditions. There exists portfolio maps m,,
for each n, such that

m Almost surely, 3 ng such that for all n > ng, the relative value of 7,
is strictly larger than one by time

S(Eta)

m For all n > ng, a.s., the relative value never drops below 1/2 during
that time interval.



Main theorem:statement

Theorem (P.-'15)

Suppose 3 (2, F, P) such that, for every n, a market of dimension n

exists satisfying the previous conditions. There exists portfolio maps m,,
for each n, such that

m Almost surely, 3 ng such that for all n > ng, the relative value of 7,
is strictly larger than one by time

S(Eta)

m For all n > ng, a.s., the relative value never drops below 1/2 during
that time interval.

m High dimensional short-term strong relative arbitrage.
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Interpretation and remarks

Idea: Big ranks do not change drastically very fast.

What processes satisfy exponential tails?
Example: X; is BESQ(d) with X;(0) > 1.

What processes satisfy the variance bound?
Example: X; is GBM and X;(0) bounded.

VSM satisfies all conditions.
We only need local bounds T =~ 0.



The construction: high-dimensional convex analysis



(K,N) exponential concavity

m (Erbar-Kuwada-Sturm '14) A function ¢ is (K, N) exponentially
concave if ® :=exp (¢/N) is concave and satisfies:
1

K
EHess b < fN/.

m They have somewhat general definition. Related to
curvature-dimension inequalities. Bochner inequalities.

m Entropy is (1, n) exponentially concave in Po(R", ||-]|)-



(K,N) exponential concavity

m (Erbar-Kuwada-Sturm '14) A function ¢ is (K, N) exponentially
concave if ® :=exp (¢/N) is concave and satisfies:
1

K
EHess b < fN/.

m They have somewhat general definition. Related to
curvature-dimension inequalities. Bochner inequalities.

m Entropy is (1, n) exponentially concave in P>(R", ||-||).

m We are interested in (n, 1) exponentially concave functions in
dimension n. That is, ¢ is exponentially concave and

1
aHess o < —nl.



Do such functions exist?

m The diameter of the domain of the function must be at most
0 (1/v).

m Example: Fix xo € R” and let

T
.y - ol < =X
¢(x) = logcos (vn||x — xol|), [Ix — ol NG

m What other natural set has diameter 1//n ?



Do such functions exist?

m The diameter of the domain of the function must be at most
0 (1/v).

m Example: Fix xo € R” and let

T
¢(x) = logcos (Vnllx —xal), [x—xl| < z=.

2y/n

m What other natural set has diameter 1//n ?

m Unit simplex in dimension n has typical diameter = 1/./n around
xo=(1/n,...,1/n).

m Concentration of measure. Most of the volume is at most 1,/n away
from xg. But not all ...



Back to Pareto

m Recalla € A, aj x 1/1.
m We will take xg = . Atypical for uniform distribution on A.

m Reference measure: Dirichlet(na). Density

n
p(x) Hx{’o"'_l, x € A.
i=1

m Same exponential family as uniform. Just a shift of mean.

E(X) = a, X~ Diri(na),
Var(X) =~ %.



Typical neighborhood

m Domain of ¢(x) = log cos (ﬁHx _ a||) is

{x:Vnlx—all <m/2}.

m Lemma: For any r > 0,

c
iy _ <
Diri (Vn|[X —al| >1+7r) < (1+r)2logn



Typical neighborhood

m Domain of ¢(x) = logcos (v/n||x — af|) is

{x:Vnlx—a| <m/2}.

m Lemma: For any r > 0,

c
iy _ S —
Diri (Vn[|[X —af >1+7r) < (L1+r)2logn
m Let

K={xeA: Vnlx—al <m/31}, 1l<m/3l<m/2

m Then Diri(K) =~ 1 and K C Dom(yp). Assume u(0) € K.



The drift process

m Choose K C K; C Domain(y). Say

Ky = {XZ ﬁ||x—a||<%}.

m Starting from inside K, how long does it take to exit Ki?



The drift process

m Choose K C K; C Domain(y). Say

Ky = {XZ ﬁ||x—a||<%}.

m Starting from inside K, how long does it take to exit Ki?
m At least reciprocal of poly-log n with high probability

1
(log n)?”




Exit time from a typical set

Lemma
Letc=inf{t >0: u(t) ¢ Ki}. If u(0) € K, then

1 1
P> o) 2170 () oo

On Ky, we get
n

(log )’

1 T
- > = .
q)Hess d(du(t)) > . dt

The range of ¢ on Ky is bounded by
—log cos (7/3) = log 2.



Construction of the relative arbitrage

m Recall Fernholz's decomposition:

0 V(£) = ¢(u(6) ~ ¢(u(0) ~ 5 | Hess (du(s)).

m Within Ki, the first part is bounded by log 2, while drift increases at
rate n/(log n)?.
m Thus, relative arbitrage happens by time

o (to?),

unless ¢ < 1/(log n)?, which is very unlikely.

m Use Borel-Cantelli to get almost sure statement. Done!



Information geometry of the unit simplex



Multiplicative cyclical monotonicity

m Why are exponentially concave functions necessary?

m Relative value process V =V, /V,,.

NGRS -~ Api(t)
v 200

m Fix T>0. V(0)=1.

V(T) = Tﬂl (1 + <7T(M(t)),,u(t 1) M(t)>> .

polrs p(t)




The special case of cycles

Mo/ ,ul \/iz
HTm ﬁi
N

m Market cycles through a sequence of size m.
m Let n = V(m+ 1). Dichotomy:

n<l o n>1

m After k cycles: V(k(m+ 1)) = n*.



Multiplicative Cyclical Monotonicity

m Ifnp<1,the
lim V(t) = lim n* =o0.

t—o0 k—o00

m 7 not a relative-arbitrage.



Multiplicative Cyclical Monotonicity

m Ifnp<1,the
lim V(t) = lim n* =o0.

t—o0 k—o00
m 7 not a relative-arbitrage.

m Say 7 is not MCM if such a cycle exists.
m Otherwise 7 is MCM.



What if 7 is MCM?

Theorem (P.-Wong '14)
Suppose 7 is MCM. 3 & : A — (0,0), concave:

LR De;— . log ®(p1).
Hi
If ® not affine, 7 is a pseudo-arbitrage in discrete/continuous time.

Outperformance over cycles < asymptotic outperformance over all paths.



Many congratulations to Joseph and Walter!



