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Goal of the talk



Exponential concavity

ϕ defined on an open convex D ⊂ Rn is exponentially concave if

Φ := eϕ

is concave.
Primarily interested in D = ∆, unit simplex in Rn.
positive coordinates, adds to 1.
Market: n stocks. µ = (µ1, . . . , µn) ∈ ∆.
Market weights:

µi = Proportion of the total capital that belongs to ith stock.



Portfolios

All long portfolio: π = (π1, . . . , πn) ∈ ∆.
Portfolio weights:

πi = Proportion of the total value that belongs to ith stock.

For us π = π(µ) : ∆→ ∆.
Function from unit simplex to its closure.
π(µ) ≡ µ - Market portfolio, a buy-and-hold portfolio.



Relative value

Vπ(·) - Value process of π. Vπ(0) = $1.
Vµ(·) - Index. Vµ(0) = $1. Self-financing.
Relative value process: V (t) = Vπ(t)/Vµ(t).
Relative arbitrage: for some q ∈ (0, 1) and T > 0,

P (V (T ) ≥ 1) = 1, P (V (T ) > 1) > 0, P
(

inf
0≤t≤T

V (t) ≥ q
)

= 1.

Qn: Do relative arbitrages exist? Can we estimate T?
Challenge: Make minimal modeling assumptions. Model-free
strategies.



The Fernholz decomposition

ϕ exponentially concave on ∆.
For µ ∈ ∆, define FGP

πi

µi
= 1 + Dei−µϕ, i = 1, 2, . . . , n.

Then π : ∆→ ∆ is a portfolio map. µ(t) Itô process:

logV (t) = ϕ(µ(t))− ϕ(µ(0))− 1
2

∫ t

0

1
Φ

HessΦ (dµ(s)) .

Under diversity, range(ϕ) is bounded. Under ‘volatility’, the second
part grows unbounded. Long term model-free relative arbitrage.



Long-term vs. Short-term relative arbitrages.

A high-dimensional Definition.
Family of equity markets for each n. Portfolio π(n) for each n.
π(n) beats the market by time Tn.
Long term: limn→∞ Tn =∞. Short term: limn→∞ Tn = 0.
Typical examples of FGP portfolios in SPT are long-term relative
arbitrages under diversity and volatility.

Relevant: P.-Wong (’14) proved the converse.
In discrete time, in the absence of any modeling assumptions, the
only relative arbitrage portfolios maps from ∆ to ∆ are FGP.



Are short-term relative arbitrages possible?

Do model-free short-term relative arbitrages exist?
Model dependent examples are known.
The source of arbitrage can be large in two ways:

− 1
Φ

Hess Φ(dµ(t))

Either very large volatility, or very concave Φ.
Very concave Φ affects its range, and hence risky.



The Volatility-Stabilized model example

A large volatility example provided by Fernholz-Karatzas ’05,
Banner-Fernholz ’08.
Let τi (t) - diffusion coefficient of logµi (t):

τi (t) =
d
dt
〈logµi (t)〉 =

1
µ2

i

d
dt
〈µi , µi 〉 (t).

Consider ranked market weights:
µ(n)(t) ≤ µ(n−1)(t) ≤ · · · ≤ µ(1)(t).



The Volatility-Stabilized model example

Assume ∃C > 0 such that

τ(n)(t) ≥ C
µ(n)(t)

≥ Cn, for all t ≥ 0.

(Fernholz-Karatzas ’05). Relative arbitrage exists over time [0,Tn]
where

Tn =
2Ent (µ(0))

n − 1
.

Proof is a direct application of Fernholz’s decomposition.
(Banner-Fernholz ’08) Exists over [0, δ] for any δ > 0 for any n.



Capital distribution curve
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Figure 1: Capital distribution curves: 1929–1999

cesses represented by continuous semimartingales (see, e.g., Duffie (1992) or Karatzas and Shreve
(1998)). The representation of market weights in terms of continuous semimartingales is straight-
forward, but in order to represent the ranked market weights, it is necessary to use semimartingale
local times to capture the behavior when ranks change. The methodology for this analysis was
developed in Fernholz (2001), and is outlined here in an Appendix. By using the representation of
ranked market weights given in Fernholz (2001), we are able to determine the asymptotic behavior
of the capital distribution. For a market with a stable capital distribution, this asymptotic behavior
provides insight into the steady-state structure of the market.

We shall assume that we operate in a continuously-traded, frictionless market in which the stock
prices vary continuously and the companies pay no dividends. We assume that companies neither
enter nor leave the market, nor do they merge or break up, and that the total number of shares of a
company remains constant. Shares of stock are assumed to be infinitely divisible, so we can assume
without loss of generality that each company has a single share of stock outstanding.

Section 2 of the paper contains some basic definitions and results regarding the basic market
model that we use. In Section 3 we present a model for a stable capital distribution, and we apply
this model to the U.S. equity market in Section 4. Section 5 is a summary, and the Appendix
contains some technical mathematical results that we need in the other sections.

2 The market model

In this section we introduce the general market model that we shall use in the rest of the paper. This
model is consistent with the usual market models of continuous-time mathematical finance, found
in, e.g., Duffie (1992) or Karatzas and Shreve (1998), but follows the logarithmic representation used
in, e.g., Fernholz (1999).

Consider a family of n stocks represented by their price processes X1, . . . , Xn. We assume that

2

The extreme volatility assumption is crucial and does not fit capital
distribution curve.
logµ(i) vs. log i data is roughly linear with slope ≈ negative one.
Volatility stabilized models do not produce such stable shapes.



Goal of the talk

Will construct short-term relative arbitrages that work even under
bounded volatility τi assumption.
If time permits, we will talk a little bit about the underlying
geometry.
The main idea is high dimensional convex geometry and
concentration of measure.



Short-term relative arbitrage in high dimensions



The Pareto distribution

1. Fix n ∈ N.
2. α ∈ ∆ such that αi ∝ 1/i , Pareto(−1).

αi =
1/i∑n
j=1 1/j

≈ 1
i log n

.

3. Suppose µ(0) ∈ K , a typical neighborhood around α.
4. Will discuss what typical means.
5. The indices (µ1, . . . , µn) are chosen by rank.



Main theorem: idea

Main idea: the top ranks fluctuate less than the bottom ranks.

Let Xi = nµi . Assume continuous semimartingales.

µi =
Xi∑n
j=1 Xj

, i = 1, 2, . . . , n.

Intuition: Xi is approximately price of the ith stock price if∑n
i=1 Xi ≈ n.

Divide the index as

A =

[
1,

n
(log n)2

]
, B =

[
n

(log n)2 + 1, n
]
.

If n = 5000, |A| ≈ 68. Vanishing fraction of n for large n.
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Main theorem:assumptions

Suppose ∃ T ∈ (0, 1), and α(T ),C (T ), λ(T ) > 0 independent of n
such that ...

For i ∈ A, exponential tails:

P

(
sup

0≤t≤T

Xi (t)− Xi (0)

tα
√

Xi (0)
> a

)
≤ Ce−λa.

For i ∈ B, moment bound:

E

(
sup

0≤t≤T

Xi (t)− Xi (0)

tα
√

Xi (0)

)2

≤ C .

Assume ∃ τ > 0 such that

τi =
d
dt
〈logµi (t)〉 ≥ τ , for all i .
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Main theorem:statement

Theorem (P.-’15)
Suppose ∃ (Ω,F ,P) such that, for every n, a market of dimension n
exists satisfying the previous conditions. There exists portfolio maps πn,
for each n, such that

Almost surely, ∃ n0 such that for all n ≥ n0, the relative value of πn
is strictly larger than one by time

O
(

(log n)2

n

)
.

For all n ≥ n0, a.s., the relative value never drops below 1/2 during
that time interval.

High dimensional short-term strong relative arbitrage.
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Interpretation and remarks

Idea: Big ranks do not change drastically very fast.

What processes satisfy exponential tails?
Example: Xi is BESQ(δ) with Xi (0)� 1.

What processes satisfy the variance bound?
Example: Xi is GBM and Xi (0) bounded.

VSM satisfies all conditions.
We only need local bounds T ≈ 0.
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The construction: high-dimensional convex analysis



(K,N) exponential concavity

(Erbar-Kuwada-Sturm ’14) A function ϕ is (K ,N) exponentially
concave if Φ := exp (ϕ/N) is concave and satisfies:

1
Φ

Hess Φ ≤ −K
N
I .

They have somewhat general definition. Related to
curvature-dimension inequalities. Bochner inequalities.
Entropy is (1, n) exponentially concave in P2(Rn, ‖·‖).

We are interested in (n, 1) exponentially concave functions in
dimension n. That is, ϕ is exponentially concave and

1
Φ

Hess Φ ≤ −nI .
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Do such functions exist?

The diameter of the domain of the function must be at most
O
(
1/
√
n
)
.

Example: Fix x0 ∈ Rn and let

ϕ(x) = log cos
(√

n ‖x − x0‖
)
, ‖x − x0‖ <

π

2
√
n
.

What other natural set has diameter 1/
√
n ?

Unit simplex in dimension n has typical diameter ≈ 1/
√
n around

x0 = (1/n, . . . , 1/n).
Concentration of measure. Most of the volume is at most 1

√
n away

from x0. But not all ...
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Back to Pareto

Recall α ∈ ∆, αi ∝ 1/i .
We will take x0 = α. Atypical for uniform distribution on ∆.
Reference measure: Dirichlet(nα). Density

p(x) ∝
n∏

i=1

xnαi−1
i , x ∈ ∆.

Same exponential family as uniform. Just a shift of mean.

E(X ) = α, X ∼ Diri(nα),

Var(X ) ≈ αi

n
.



Typical neighborhood

Domain of ϕ(x) = log cos
(√

n ‖x − α‖
)
is{

x :
√
n ‖x − α‖ < π/2

}
.

Lemma: For any r > 0,

Diri
(√

n ‖X − α‖ > 1 + r
)
≤ c

(1 + r)2 log n
.

Let

K =
{
x ∈ ∆ :

√
n ‖x − α‖ ≤ π/3.1

}
, 1 < π/3.1 < π/2.

Then Diri(K ) ≈ 1 and K ⊆ Dom(ϕ). Assume µ(0) ∈ K .
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The drift process

Choose K ⊂ K1 ⊂ Domain(ϕ). Say

K1 :=
{
x :
√
n ‖x − α‖ < π

3

}
.

Starting from inside K , how long does it take to exit K1?

At least reciprocal of poly-log n with high probability

1
(log n)2 .
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Exit time from a typical set

Lemma
Let ς = inf {t ≥ 0 : µ(t) /∈ K1}. If µ(0) ∈ K, then

P
(
ς >

1
(log n)2

)
≥ 1− O

(
1
nγ

)
, γ > 1.

On K1, we get

− 1
Φ

Hess Φ(dµ(t)) ≥ τ

4
n

(log n)2 dt.

The range of ϕ on K1 is bounded by

− log cos (π/3) = log 2.



Construction of the relative arbitrage

Recall Fernholz’s decomposition:

logV (t) = ϕ(µ(t))− ϕ(µ(0))− 1
2

∫ t

0

1
Φ

HessΦ (dµ(s)) .

Within K1, the first part is bounded by log 2, while drift increases at
rate n/(log n)2.
Thus, relative arbitrage happens by time

O
(

(log n)2

n

)
,

unless ς < 1/(log n)2, which is very unlikely.
Use Borel-Cantelli to get almost sure statement. Done!



Information geometry of the unit simplex



Multiplicative cyclical monotonicity

Why are exponentially concave functions necessary?
Relative value process V = Vπ/Vµ.

∆V (t)

V (t)
=

n∑
i=1

πi (t)
∆µi (t)

µi (t)
.

Fix T > 0. V (0) = 1.

V (T ) =
T−1∏
t=0

(
1 +

〈
π(µ(t))

µ(t)
, µ(t + 1)− µ(t)

〉)
.



The special case of cycles
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Market cycles through a sequence of size m.
Let η = V (m + 1). Dichotomy:

η < 1, or η ≥ 1.

After k cycles: V (k(m + 1)) = ηk .



Multiplicative Cyclical Monotonicity

If η < 1, the
lim

t→∞
V (t) = lim

k→∞
ηk = 0.

π not a relative-arbitrage.

Say π is not MCM if such a cycle exists.
Otherwise π is MCM.
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What if π is MCM?

Theorem (P.-Wong ’14)
Suppose π is MCM. ∃ Φ : ∆→ (0,∞), concave:

πi

µi
= 1 + Dei−µ logΦ(µ).

If Φ not affine, π is a pseudo-arbitrage in discrete/continuous time.

Outperformance over cycles ⇔ asymptotic outperformance over all paths.



Many congratulations to Joseph and Walter!


