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Lecture on Interest Rates

Goals

I Basic concepts of stochastic modeling in interest rate theory,
in particular the notion of numéraire.

I ”No arbitrage” as concept and through examples.

I Several basic implementations related to ”no arbitrage” in R.

I Basic concepts of interest rate theory like yield, forward rate
curve, short rate.

I Some basic trading arguments in interest rate theory.

I Spot measure, forward measures, swap measures and Black’s
formula.
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References

As a standard reference on interest rate theory I recommend
[Brigo and Mercurio(2006)].

In german language I recommend
[Albrecher et al.(2009)Albrecher, Binder, and Mayer], which
contains also a very readable introduction to interest rate theory
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Mathematical Finance

Modeling of financial markets

We are describing models for financial products related to interest
rates, so called interest rate models. We are facing several
difficulties, some of the specific for interest rates, some of them
true for all models in mathematical finance:

I stochastic nature: traded prices, e.g. prices of interest rate
related products, are not deterministic!

I information is increasing: every day additional information on
markets appears and this stream of information should enter
into our models.

I stylized facts of markets should be reflected in the model:
stylized facts of time series, trading opportunities (portfolio
building), etc.
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Mathematical Finance

Mathematical Finance 1

A financial market can be modeled by

I a filtered (discrete) probability space (Ω,F ,Q),

I together with price processes, namely K risky assets
(S1

n , . . . ,S
K
n )0≤n≤N and one risk-less asset S0 (numéraire),

i.e. S0
n > 0 almost surely (no default risk for at least one

asset),

I all price processes being adapted to the filtration.

This structure reflects stochasticity of prices and the stream of
incoming information.
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Mathematical Finance

A portfolio is a predictable process φ = (φ0n, . . . , φ
K
n )0≤n≤N , where

φin represents the number of risky assets one holds at time n. The
value of the portfolio Vn(φ) is

Vn(φ) =
K∑
i=0

φinS i
n.
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Mathematical Finance

Mathematical Finance 2

Self-financing portfolios φ are characterized through the condition

Vn+1(φ)− Vn(φ) =
K∑
i=0

φin+1(S i
n+1 − S i

n),

for 0 ≤ n ≤ N − 1, i.e. changes in value come from changes in
prices, no additional input of capital is required and no
consumption appears.
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Mathematical Finance

Self-financing portfolios can be characterized in discounted terms.

Ṽn(φ) = (S0
n )−1Vn(φ)

S̃ i
n = (S0

n )−1S i
n(φ)

Ṽn(φ) =
K∑
i=0

φinS̃ i
n

for 0 ≤ n ≤ N, and recover

Ṽn(φ) = Ṽ0(φ) + (φ · S̃) = Ṽ0(φ) +
n∑

j=1

K∑
i=1

φij(S̃ i
j − S̃ i

j−1)

for self-financing predictable trading strategies φ and 0 ≤ n ≤ N.
In words: discounted wealth of a self-financing portfolio is the
cumulative sum of discounted gains and losses. Notice that we
apply a generalized notion of “discounting” here, prices S i divided
by the numéraire S0 – only these relative prices can be compared.
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Mathematical Finance

Fundamental Theorem of Asset Pricing

A minimal condition for modeling financial markets is the
No-arbitrage condition: there are no self-financing trading
strategies φ (arbitrage strategies) with

V0(φ) = 0, VN(φ) ≥ 0

such that Q(VN(φ) 6= 0) > 0 holds (NFLVR).

9 / 53



Lecture on Interest Rates

Mathematical Finance

In the sequel we generate two sets of random numbers (normalized
log-returns) and introduce two examples of markets with constant
bank account and two assets. The first market allows for arbitrage,
then second one not. In both cases we run the same portfolio:

> Delta=250

> Z=rnorm(Delta,0,1/sqrt(Delta))

> Z1=rnorm(Delta,0,1/sqrt(Delta))
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Mathematical Finance

Incorrect modelling with arbitrage

> S=10000

> rho=0.0

> sigmaX=0.25

> sigmaY=0.1

> X=exp(sigmaX*cumsum(Z))

> Y=exp(sigmaY*cumsum(sqrt(1-rho^2)*Z+rho*Z1))

> returnsX=c(diff(X,lag=1,differences=1),0)

> returnsY=c(diff(Y,lag=1,differences=1),0)

> returnsP=((sigmaY*Y)/(sigmaX*X)*returnsX-returnsY)*S
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Mathematical Finance

Plot of the two Asset prices
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Mathematical Finance

Plot of the value process: an arbitrage
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Mathematical Finance

Correct arbitrage-free modelling

> Delta=250

> S=10000

> rho=0.0

> sigmaX=0.25

> sigmaY=0.1

> time=seq(1/Delta,1,by=1/Delta)

> X1=exp(-sigmaX^2*0.5*time+sigmaX*cumsum(Z))

> Y1=exp(-sigmaY^2*0.5*time+sigmaY*cumsum(sqrt(1-rho^2)*Z+rho*Z1))

> returnsX1=c(diff(X1,lag=1,differences=1),0)

> returnsY1=c(diff(Y1,lag=1,differences=1),0)

> returnsP1=((sigmaY*Y1)/(sigmaX*X1)*returnsX1-returnsY1)*S
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Mathematical Finance

Plot of two asset prices
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Mathematical Finance

Plot of the value process: no arbitrage
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Mathematical Finance

Theorem

Given a financial market, then the following assertions are
equivalent:

1. (NFLVR) holds.

2. There exists an equivalent measure P ∼ Q such that the
discounted price processes are P-martingales, i.e.

EP(
1

S0
N

S i
N |Fn) =

1

S0
n

S i
n

for 0 ≤ n ≤ N.

Main message: Discounted (relative to the numéraire) prices
behave like martingales with respect to one martingale measure.
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Mathematical Finance

What is a martingale?

Formally a martingale is a stochastic process such that today’s best
prediction of a future value of the process is today’s value, i.e.

E [Mn|Fm] = Mm

for m ≤ n, where E [Mn|Fm] calculates the best prediction with
knowledge up to time m of the future value Mn.
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Mathematical Finance

Random walks and Brownian motions are well-known examples of
martingales. Martingales are particularly suited to describe
(discounted) price movements on financial markets, since the
prediction of future returns is 0. This is not the most general
approach, but already contains the most important features. Two
implementations in R are provided here, which produce the
following graphs.
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Mathematical Finance

Pricing rules

(NFLVR) also leads to arbitrage-free pricing rules. Let X be the
payoff of a claim X paying at time N, then an adapted stochastic
process π(X ) is called pricing rule for X if

I πN(X ) = X .

I (S0, . . . ,SN , π(X )) is free of arbitrage.

This is obviously equivalent to the existence of one equivalent
martingale measure P such that

EP

( X

S0
N

|Fn

)
=
πn(X )

S0
n

holds true for 0 ≤ n ≤ N.
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Examples and Remarks

The previous framework for stochastic models of financial markets
is not bound to a ”discrete” setting even though one can perfectly
well motivate the theory there. We shall see two examples and
several remarks in the sequel

I the one-step binomial model.

I the Black-Merton-Scholes model.

I Hedging.
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Examples and Remarks

One step binomial model

We model one asset in a zero-interest rate environment just before
the next tick. We assume two states of the world: up, down. The
riskless asset is given by S0 = 1. The risky asset is modeled by

S1
0 = S0, S1

1 = S0 ∗ u > S0 or S1
1 = S0 ∗ d

where the events at time one appear with probability q and 1− q
(”physical measure”). The martingale measure is apparently given
through u ∗ p + (1− p)d = 1, i.e. p = 1−d

u−d .

Pricing a European call option at time one in this setting leads to
fair price

E [(S1
1 − K )+] = p ∗ (S0u − K )+ + (1− p) ∗ (S0d − K )+.
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Examples and Remarks
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Examples and Remarks

Black-Merton-Scholes model 1

We model one asset with respect to some numeraire by an
exponential Brownian motion. If the numeraire is a bank account
with constant rate we usually speak of the Black-Merton-Scholes
model, if the numeraire some other traded asset, for instance a
zero-coupon bond, we speak of Black’s model. Let us assume that
S0 = 1, then

S1
t = S0 exp(σBt −

σ2t

2
)

with respect to the martingale measure P. In the physical measure
Q a drift term can be added in the exponent, i.e.

S1
t = S0 exp(σBt −

σ2t

2
+ µt).
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Examples and Remarks

Black-Merton-Scholes model 2

Our theory tells that the price of a European call option on S1 at
time T is priced via

E [(S1
T − K )+] = S0Φ(d1)− KΦ(d2)

yielding the Black-Scholes formula, where Φ is the cumulative
distribution function of the standard normal distribution and

d1,2 =
log S0

K ±
σ2T
2

σ
√

T
.

Notice that this price corresponds to the value of a portfolio
mimicking the European option at time T .
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Examples and Remarks

Hedging

Having calculated prices of derivatives we can ask if it is possible
to hedge as seller against the risks of the product. By the very
construction of prices we expect that we should be able to build –
at the price of the premium which we receive – a portfolio which
hedges against some (all) risks. In the Black-Scholes model this
hedging is perfect.
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Interest Rate Models

A time series of yields

I AAA yield curve of the euro area from ECB webpage.

I Yield curves exist in all major economies and are calculated
from different products like deposit rates, swap rates, zero
coupon bonds, coupon bearing bonds.

I Interest rates express the time value of money quantitatively.
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Interest Rate Models

Interest Rate mechanics 1

Prices of zero-coupon bonds (ZCB) with maturity T are denoted by
P(t,T ). Interest rates are governed by a market of (default free)
zero-coupon bonds modeled by stochastic processes (P(t,T ))0≤t≤T for
T ≥ 0. We assume the normalization P(T ,T ) = 1.

I T denotes the maturity of the bond, P(t,T ) its price at a time t
before maturity T .

I The yield

Y (t,T ) = − 1

T − t
log P(t,T )

describes the compound interest rate p. a. for maturity T .

I f is called the forward rate curve of the bond market

P(t,T ) = exp(−
∫ T

t

f (t, s)ds)

for 0 ≤ t ≤ T .
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Interest Rate Models

Interest Rate mechanics 2

I The short rate process is given through Rt = f (t, t) for t ≥ 0
defining the “bank account process”

(B(t))t≥0 := (exp(

∫ t

0
Rsds))t≥0.

I No arbitrage is guaranteed if on the filtered probability space
(Ω,F ,Q) with filtration (Ft)t≥0,

E (exp(−
∫ T

t
Rsds)|Ft) = P(t,T )

holds true for 0 ≤ t ≤ T for some equivalent (martingale)
measure P.
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Interest Rate Models

Simple forward rates

Consider a bond market (P(t,T ))t≤T with P(T ,T ) = 1 and
P(t,T ) > 0. Let t ≤ T ≤ T ∗. We define the simple forward rate
through

F (t; T ,T ∗) :=
1

T ∗ − T

(
P(t,T )

P(t,T ∗)
− 1

)
.

and the simple spot rate through

F (t,T ) := F (t; t,T ).
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Interest Rate Models

Apparently P(t,T ∗)F (t; T ,T ∗) is the fair value at time t of a
contract paying F (T ,T ∗) at time T ∗.

Indeed, note that

P(t,T ∗)F (t; T ,T ∗) =
P(t,T )− P(t,T ∗)

T ∗ − T
,

F (T ,T ∗) =
1

T ∗ − T

(
1

P(T ,T ∗)
− 1

)
.

Fair value means that we can build a portfolio at time t and at
price P(t,T )−P(t,T∗)

T∗−T yielding F (T ,T ∗) at time T ∗:

I Holding a ZCB with maturity T at time t has value P(t,T ),
being additionally short in a ZCB with maturity T ∗ amounts
all together to P(t,T )− P(t,T ∗).

I at time T we have to rebalance the portfolio by buying with
the maturing ZCB another bond with maturity T ∗, precisely
an amount 1/P(T ,T ∗).

I at time T ∗ we receive 1/P(T ,T ∗)− 1.
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Interest Rate Models

Caps

In the sequel, we fix a number of future dates

T0 < T1 < . . . < Tn

with Ti − Ti−1 ≡ δ.

Fix a rate κ > 0. At time Ti the holder of the cap receives

δ(F (Ti−1,Ti )− κ)+.

Let t ≤ T0. We write

Cpl(t; Ti−1,Ti ), i = 1, . . . , n

for the time t price of the ith caplet, and

Cp(t) =
n∑

i=1

Cpl(t; Ti−1,Ti )

for the time t price of the cap.
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Interest Rate Models

Floors

At time Ti the holder of the floor receives

δ(κ− F (Ti−1,Ti ))+.

Let t ≤ T0. We write

Fll(t; Ti−1,Ti ), i = 1, . . . , n

for the time t price of the ith floorlet, and

Fl(t) =
n∑

i=1

Fll(t; Ti−1,Ti )

for the time t price of the floor.
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Interest Rate Models

Swaps

Fix a rate K and a nominal N. The cash flow of a payer swap at
Ti is

(F (Ti−1,Ti )− K )δN.

The total value Πp(t) of the payer swap at time t ≤ T0 is

Πp(t) = N

(
P(t,T0)− P(t,Tn)− Kδ

n∑
i=1

P(t,Ti )

)
.

The value of a receiver swap at t ≤ T0 is

Πr (t) = −Πp(t).

The swap rate Rswap(t) is the fixed rate K which gives
Πp(t) = Πr (t) = 0. Hence

Rswap(t) =
P(t,T0)− P(t,Tn)

δ
∑n

i=1 P(t,Ti )
, t ∈ [0,T0].
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Interest Rate Models

Swaptions

A payer (receiver) swaption is an option to enter a payer (receiver)
swap at T0. The payoff of a payer swaption at T0 is

Nδ(Rswap(T0)− K )+
n∑

i=1

P(T0,Ti ),

and of a receiver swaption

Nδ(K − Rswap(T0))+
n∑

i=1

P(T0,Ti ).
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Interest Rate Models

Spot measure

From now on, let P be a martingale measure in the bond market
(P(t,T ))t≤T , i.e. for each T > 0 the discounted bond price
process

P(t,T )

B(t)

is a martingale. This leads to the following fundamental formula of
interest rate theory

P(t,T ) = E (exp(−
∫ T

t
Rsds))|Ft)

for 0 ≤ t ≤ T .
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Interest Rate Models

Forward measures

For T ∗ > 0 define the T ∗-forward measure PT∗
such that for any

T > 0 the discounted bond price process

P(t,T )

P(t,T ∗)
, t ∈ [0,T ]

is a PT∗
-martingale.
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Interest Rate Models

Forward measures

For any T < T ∗ the simple forward rate

F (t; T ,T ∗) =
1

T ∗ − T

(
P(t,T )

P(t,T ∗)
− 1

)
is a PT∗

-martingale.
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Interest Rate Models

For any time derivative X ∈ FT∗ paid at T ∗ we have that the fair
value via “martingale pricing” is given through

P(t,T ∗)ET∗
[X |Ft ].

The fair price of the ith caplet is therefore given by

Cpl(t; Ti−1,Ti ) = δP(t,Ti )ETi [(F (Ti−1,Ti )− κ)+|Ft ].

By the martingale property we obtain therefore

ETi [F (Ti−1,Ti )|Ft ] = F (t; Ti−1,Ti ),

what was proved by trading arguments before.
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Interest Rate Models

Black’s formula

Let X ∼ N(µ, σ2) and K ∈ R. Then we have

E[(eX − K )+] = eµ+
σ2

2 Φ

(
− log K − (µ+ σ2)

σ

)
− KΦ

(
− log K − µ

σ

)
,

E[(K − eX )+] = KΦ

(
log K − µ

σ

)
− eµ+

σ2

2 Φ

(
log K − (µ+ σ2)

σ

)
.
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Interest Rate Models

Black’s formula for caps and floors

Let t ≤ T0. From our previous results we know that

Cpl(t; Ti−1,Ti ) = δP(t,Ti )ETi
t [(F (Ti−1,Ti )− κ)+],

Fll(t; Ti−1,Ti ) = δP(t,Ti )ETi
t [(κ− F (Ti−1,Ti ))+],

and that F (t; Ti−1,Ti ) is an PTi -martingale.
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Interest Rate Models

We assume that under PTi the forward rate F (t; Ti−1,Ti ) is an
exponential Brownian motion

F (t; Ti−1,Ti ) = F (s; Ti−1,Ti )

exp

(
− 1

2

∫ t

s
λ(u,Ti−1)2du +

∫ t

s
λ(u,Ti−1)dW Ti

u

)
for s ≤ t ≤ Ti−1, with a function λ(u,Ti−1).
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Interest Rate Models

We define the volatility σ2(t) as

σ2(t) :=
1

Ti−1 − t

∫ Ti−1

t
λ(s,Ti−1)2ds.

The PTi -distribution of log F (Ti−1,Ti ) conditional on Ft is
N(µ, σ2) with

µ = log F (t; Ti−1,Ti )−
σ2(t)

2
(Ti−1 − t),

σ2 = σ2(t)(Ti−1 − t).

In particular

µ+
σ2

2
= log F (t; Ti−1,Ti ),

µ+ σ2 = log F (t; Ti−1,Ti ) +
σ2(t)

2
(Ti−1 − t).
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Interest Rate Models

We have

Cpl(t; Ti−1,Ti ) = δP(t,Ti )(F (t; Ti−1,Ti )Φ(d1(i ; t))− κΦ(d2(i ; t))),

Fll(t; Ti−1,Ti ) = δP(t,Ti )(κΦ(−d2(i ; t))− F (t; Ti−1,Ti )Φ(−d1(i ; t))),

where

d1,2(i ; t) =
log
(F (t;Ti−1,Ti )

κ

)
± 1

2σ(t)2(Ti−1 − t)

σ(t)
√

Ti−1 − t
.
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Interest Rate Models

Concrete calculation of caplet price

Consider the setting t = 0, T0 = 0.25y and T1 = 0.5y . Market
data give us P(0,T1) = 0.9753, F (0,T0,T1) = 0.0503 and
λ(u,T0) = 0.2 is constant, hence we can calculate

σ(t)2(T0 − t) = 0.2 ∗ 0.25,

and therefore by Black’s formula gives the caplet price for κ = 0.03

0.25 ∗ 0.9753 ∗ (0.0503 ∗ Φ(
log(0.0503)− log(0.03) + 0.5 ∗ 0.2 ∗ 0.25√

0.2 ∗ 0.25
)−

− 0.03 ∗ Φ(
log(0.0503)− log(0.03)− 0.5 ∗ 0.2 ∗ 0.25√

0.2 ∗ 0.25
)),

where Φ is the cumulative distribution function of a standard
normal random variable, which yields 0.004957.
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Interest Rate Models

Exercises

Simulate a simple interest rate model:

I We choose a simple interest rate model of Vasiček type, i.e.

Rt = exp(−0.2t)0.05 + 0.03

∫ t

0
exp(−0.2(t − s))dBs .

I First we simulate the bank account, i.e. we calculate the
value B(t) for different trajectories of Brownian motion.
Write an R-function called vasicek with input parameter t and
discretization parameter n which provides the value of B(t).
Use the following iteration for this: B(0) = 1, R(0) = 0.05
and

B(t
i + 1

n
) = B(t

i

n
)

(
1+(R(t

i

n
)−0.2R(t

i

n
)

t

n
+0.03

√
t

n
N)

t

n

)
,

where N is a standard normal random variable. 48 / 53
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Interest Rate Models

Bank account in the Vasiček model

> B0=1; X0=0.05; b=0.00; beta=-0.2; alpha=0.03; time=1; n=250; m=20

> x<-(1:657) # R-colors in numbers

> y<-sample(x) # a random sample of x

> for (j in (1:m)) # the loop for the m timeseries

+ {

+ B=vector(length=n+1); X=vector(length=n+1)

+ X[1]<-X0; B[1]<-1

+ for (i in (1:n)) # inner loop along the euler discretization

+ {

+ W<-rnorm(1) # drawing of m normally distributed random number

+ X[i+1]<-(X[i] + W *(sqrt(time/n))*alpha*2)*exp(beta*time/n)+b*time/n

+ B[i+1]<-B[i]*(1+X[i+1]*time/n)

+ }

+ if (j==1) plot(B,type="l",ylim=c(0.9,1.1)) # plot the first time series

+ else lines(B,col=colors()[y[j]]) # add all additional ones with a randomly chosen color

+ }
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Interest Rate Models

Bank account Scenarios with Vasiček-short-rate
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Interest Rate Models

I Second we take the simulation results and calculate the bond
price (or any other derivative price) by the law of large
numbers

P(0, t) = E (1/B(t)) ∼ 1

m

m∑
i=1

1/B(t)(ωi ).

I Collect the result again in a function called vasicekZCB with
input parameters t, n and m. For large m we should obtain
nice yield curves.
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Interest Rate Models

Exam

I No arbitrage theory: discounting, numéraire, martingale
measure for discounted prices, arbitrage.

I Notions of interest rate theory: yield, forward rate, short rate,
simple forward rate, zero coupon bond, cap, floor.

I one calculation with Black’s formula in the forward measure.
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[Albrecher et al.(2009)Albrecher, Binder, and Mayer] Hansjörg
Albrecher, Andreas Binder, and Philipp Mayer.

Einführung in die Finanzmathematik.

Mathematik Kompakt. [Compact Mathematics]. Birkhäuser
Verlag, Basel, 2009.

[Brigo and Mercurio(2006)] Damiano Brigo and Fabio Mercurio.

Interest rate models—theory and practice.

Springer Finance. Springer-Verlag, Berlin, second edition, 2006.

With smile, inflation and credit.
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