Research description for Ventotene 2013

Mark Hagen

September 4, 2013

I'm very interested in $\operatorname{CAT}(0)$ cube complexes and the groups that act on them. A typical way to see that a group G acts on a $\operatorname{CAT}(0)$ cube complex is to find a finite collection of "immersed walls" in a presentation complex (or similar) X of G, and hope that for each such immersed wall $W \rightarrow X$, the image \bar{W} of the lift $\widetilde{W} \rightarrow \widetilde{X}$ of the universal cover of W to the universal cover of X is a wall. Here, this means that $\underset{\sim}{X}-\bar{W}$ has two components, each containing vertices arbitrarily far from $\bar{W} \cap \widetilde{X}^{1}$ (as measured by the usual graph metric on the 1 -skeleton of \widetilde{X}). At this point, a construction of Sageev yields an action of G on a $\operatorname{CAT}(0)$ cube complex.

If G is word-hyperbolic, then any such G-cube complex obtained from a G-finite collection of walls in \widetilde{X} will be G-cocompact, provided each wall has quasiconvex stabilizer in G. If in addition there are enough walls to "cut" every axis in \widetilde{X}^{1}, then the action on the cube complex is proper.

Recently, Dani Wise and I have put this into practice in the situation where G is a sufficiently nice ascending HNN extension of a finitely generated free group. More precisely:

Theorem 1 (H.-Wise 2013). Let $\Phi: F \rightarrow F$ be an injective endomorphism of the finite-rank free group F. Suppose that $G=F *_{\Phi}$ is word-hyperbolic and that Φ is irreducible. Then G acts freely and cocompactly on a CAT(0) cube complex.

The motivating case is that in which G is (f.g. free)-by-cyclic, i.e. Φ is an automorphism. In this situation, the same techniques seem to yield a geometric G-action on a cube complex even in the absence of the hypothesis that Φ is irreducible, although some things remain to be sorted out in this case. It is very interesting to wonder to what extent the hypothesis of hyperbolicity can be relaxed. In such a setting, one cannot expect cocompactness, but it is plausible that the same construction of immersed walls in the mapping torus of Φ will yield enough walls to guarantee a free action on a (possibly infinite-dimensional?) CAT(0) cube complex.

