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Abstract

In this paper we derive a market value for with-profits guaranteed annuity options (GAOs) using martingale modelling
techniques. Furthermore, we show how to construct a static replicating portfolio of vanilla interest rate swaptions that replicates
the with-profits GAO. Finally, we illustrate with historical UK interest rate data from the period 1980 to 2000 that the static
replicating portfolio would have been extremely effective as a hedge against the interest rate risk involved in the GAO, that
the static replicating portfolio would have been considerably cheaper than up-front reserving and also that the replicating
portfolio would have provided a much better level of protection than an up-front reserve.
© 2003 Elsevier B.V. All rights reserved.

JEL classification: G13; G22

Keywords: Static option replication; Guaranteed annuity options; Hedging methodology

1. Introduction

Recently, considerable publicity is drawn to with-profits life-insurance policies with guaranteed annuity options
(GAOs). Equitable, a large British insurance office, had to close for new business as a portfolio of old insurance
policies with GAOs became an uncontrollable liability. In this paper we want to propose a hedging methodology
that can help insurance companies to avoid such problems in the future.

During the last few years, many authors have applied no-arbitrage pricing theory from financial economics to
calculate the value of embedded options in (life-)insurance contracts. Initially, the work was focussed on valuing
return guarantees embedded in equity-linked insurance policies, see for example,Brennan and Schwartz (1976),
Boyle and Schwartz (1977), Aase and Persson (1994), Boyle and Hardy (1997)andBacinello and Persson (2002).
In equity-linked contracts, the minimum return guarantee can be identified as an equity put-option, and hence the
“classical”Black and Scholes (1973)option pricing formula can be used to determine the value of the guarantee.
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Many life-insurance policies are not explicitly linked to the value of a reference equity fund. Traditionally,
life-insurance policies promise to pay a nominal amount of money to the policyholder at expiration of the contract.
In order to compensate the policyholder for the relatively low base rates which are used for premium calculation,
various profit-sharing schemes have been employed by insurance companies. Through a profit-sharing scheme, part
of the excess return (i.e. return on investments above the base rate) that the insurance company makes is being
returned to the policyholders. However, since only the excess return is being shared with the policyholders and not
the shortfall, having a profit-sharing scheme in place is equivalent to giving a minimum return guarantee (at the level
of the base rate) to the policyholders. This type of embedded return guarantees has only recently been analysed in
the literature, see for example,Aase and Persson (1997), Grosen and Jørgensen (1997, 2000, 2002), Miltersen and
Persson (1999, 2003)andBouwknegt and Pelsser (2002).

GAOs are another example of minimum return guarantees, but in the case of GAOs the guarantee takes the form
of the right to convert an assured sum into a life annuity at the better of the market rate prevailing at the time
of conversion and a guaranteed rate. Many life-insurance companies in the UK issued pension-type policies with
GAOs in the 1970s and 1980s. During this time UK interest rates were very high, above 10% between 1975 and
1985. Hence, adding GAOs with implicit guaranteed rates around 8% was considered harmless at that time due to
the fact that these option were so far “out-of-the-money”. Due to the fall of UK interest rates far below 8% (currently
UK long interest rates have dropped to a level of 4.5%), the GAOs have become an uncontrollable liability which
caused the downfall of Equitable in 2000. The issue of determining the value of GAOs has been addressed in recent
years byBolton et al. (1997), Lee (2001), Cairns (2002), Ballotta and Haberman (2002), Wilkie et al. (2003)and
Boyle and Hardy (2003).

As is evident from the literature overview provided here, the main focus has been given to determining the
value of embedded options. With the downfall of Equitable it has, in our view, become apparent that not only the
valuation should be addressed, but also thehedging of embedded options. Although the hedging issue seems trivial
at first sight: any derivative can be replicated by executing a delta-hedging strategy. However, the options written by
insurance companies have such long maturities and the insured amounts are so high that executing a delta-hedging
strategy can have disastrous consequences.

Typically, an insurance company has sold put-options to its policyholders. To create a delta-neutral position
the insurance company has to sell the underlying asset of the put-option. If markets fall, the insurance company
has to sell off more of its asset position to remain delta-neutral. This will create more downside pressure on
the asset prices, especially if the insurance company is trying to rebalance a large position. Hence, executing a
delta-hedging strategy for a short put position can create dangerous “feedback loops” in financial markets which
can have disastrous consequences. Similar feedback loops were present in Portfolio Insurance strategies which used
delta-hedging to create synthetic put-options and were very popular during the 1980s. Automated selling orders
generated by computers trying to follow blindly the delta-hedging strategy have been blamed for triggering the
October 1987 crash. After the 1987 crash, Portfolio Insurance strategies very quickly lost their appeal. A second
complication with executing a delta-hedging strategy is that delta-hedging requires frequent rebalancing of the
hedging assets in order to remain delta-neutral. Especially for long maturity options, this can be quite expensive
because of the transactions costs involved.

We want to propose the use ofstatic option replication as a viable alternative for insurance companies to hedge
their embedded options. A static option replication can be set up if a portfolio of actively traded options can be found
that (approximately) replicates the payoff of the derivative under consideration. Once the payoff of the derivative has
been replicated, the no-arbitrage condition implies that also for all prior times the value of the derivative is replicated
by the static portfolio. Static replication hedging techniques for exotic equity options have been introduced byBowie
and Carr (1994), Derman et al. (1995)andCarr et al. (1998). The advantages of static replication are obvious: once
the initial static hedge has been set up, no rebalancing is needed in order to keep the derivative hedged. In practice, it
is not always possible to find a set of actively traded options that perfectly replicates the payoff of a given derivative.
However, if the approximation is close enough the static replication portfolio will track the value of the derivative
under a wide range of market conditions.
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In this paper we want to show how GAOs can be statically replicated using a portfolio of vanilla interest rate
swaptions. Interest rate swaptions are actively traded for a wide variety of maturities and single trades can be
executed for large notional amounts. Using the history of UK interest rates, we demonstrate that a judiciously
chosen static portfolio of swaptions can hedge GAOs over a long time horizon and under a wide range of market
conditions. Hence, we illustrate that static replication offers a realistic possibility for insurance companies to hedge
their exposure to embedded options in their portfolios.

The remainder of this paper is organised as follows. InSection 2we describe the payoff of GAOs and we derive
a pricing formula using martingale modelling. InSection 3we construct the static replication portfolio consisting
of vanilla swaptions. InSection 4we illustrate the effectiveness of the static portfolio with a hypothetical back test
using UK interest rate data from 1980 to 2000. Finally, we conclude inSection 5.

2. Guaranteed annuity options

Let us consider the market value of annuities at the moment when they are bought. An annuity is financed by a
single premium, in our case this single premium equals the lump sum payment of the capital policy. Suppose the
annuity is bought at timeT by a person of agex. Conditional on the survival probabilitiesnpx from the mortality
table we can write the market value of the annuityäx(T) with an annual payment of 1 as

äx(T) =
ω−x∑
n=0

npx DT+n(T), (2.1)

wherenpx denotes the probability that anx year old person survivesn years andDT+n(T) denotes the market value
at timeT of a discount factor with maturityT + n. Also note that, the sum is truncated at ageω, the maximum age
in the mortality table.

In this paper we will make the assumption that the survival probabilitiesnpx evolve deterministically over time.
This allows for trends in the survival probabilities, which are important to take into consideration given the long time
horizons for this type of product. Although we know that the survival probabilities are stochastic, the assumption
of deterministic hazard rates is consistent with the actuarial practice in LIC offices.

Given the market valuëax(T), the market annuity payout raterx(T) over an initial single premium of 1 is given by

rx(T) = 1

äx(T)
. (2.2)

Note, that we assume that the lump sum paymentL at timeT is a deterministic quantity. This may seem inconsistent
with the fact that GAOs have been issued on unit-linked and with-profits contracts, because in these types of con-
tracts the value of the capital policy at timeT is unknown. The papers byBallotta and Haberman (2002), Wilkie et al.
(2003)andBoyle and Hardy (2003)explicitly model the uncertainty of the capital policy at timeT by treating the
policies as unit-linked contracts. In this paper we take a different approach. Our approach exploits the fact that most
of the policies offered, especially the policies of Equitable, are with-profits policies.Bolton et al. (1997, Appendix 2)
reported that with-profits policies account for 80% of the total liabilities for contracts which include GAOs.

In the case of with-profits policies, the capital paymentL to be paid out at timeT depends on the bonuses
declared. Under a traditional UK with-profits contract profits are assigned using reversionary and terminal bonuses.
Reversionary bonuses are assigned on a regular basis as guaranteed additions to the basic maturity valueL and are not
distributed until the maturity dateT. The terminal bonuses are not guaranteed. Via the profit-sharing mechanism,
the amountL can therefore only increase and never decrease. In each yeart the reversionary bonus will add an
additional “layer”Lt to the contract with an additional GAO. For the remainder of the contract this layerLt is fixed.
Hence, the analysis we offer in this paper is valid for with-profits policies, since each layerLt of profit-sharing can
be valued and hedged at timet when the reversionary bonus is declared.
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Suppose that anx year old policyholder has an amount of moneyL at his disposal at timeT which is the payout
of his capital policy. The GAO option gives the policyholder the right to choose either an annual payment ofLrx(T)
based on the current market rates (see formula (2.2)) or an annual paymentLrG

x using the guaranteed annuityrG
x .

A rational policyholder will select the highest annuity payout given the current term-structure of interest rates.
Therefore, we can rewrite the value of the GAO at the exercise dateT as

L max(rG
x , rx(T))

ω−x∑
n=0

npx DT+n(T)

= L

(
rx(T)

ω−x∑
n=0

npx DT+n(T)

)
+ L max(rG

x − rx(T), 0)

ω−x∑
n=0

npx DT+n(T)

= L + L max(rG
x − rx(T), 0)äx(T). (2.3)

Hence, the market value of the GAO policy at the exercise date is equal to the lump sum paymentL plusL times
the value of the GAO put-option.

In the remainder of this paper we will focus only on the valueVG of the GAO put-option

VG(T) = max(rG
x − rx(T), 0)äx(T). (2.4)

To calculate the market valueVG(0) of the GAO put-option today at time 0, we can proceed along several paths.
The uncertainty about the value of the option is due to the fact that the discount factorsDS(T) at timeT are unknown
quantities at time 0. One possible approach therefore, is to model the complete term-structure of interest rates with a
term-structure model, like theHeath et al. (1992)model (HJM model), to obtain an option value. The disadvantage
of such an approach is that the option price cannot be determined analytically. Results have to be obtained through
numerical approximations which provide us with relatively little insight in the behaviour of the GAO.

To obtain a better handle on the behaviour of the GAO, we draw an analogy between the GAO and a swaption. A
swaption gives the holder of the option the right, but not the obligation, to enter into the underlying swap contract
for a given fixed rate. As the value of the swap depends on the term-structure of interest rates, we could use a
term-structure model to determine the value of the bond option. In the case of a swap, all uncertainty about the
term-structure of interest rates is reflected in a single quantity: the par swap rate. Hence, the value of a swaption can
be determined more direct by modelling the swap rate itself as a stochastic process. This is exactly the approach
that financial markets adopt to calculate the prices of swaptions with theBlack (1976)formula.

In the case of the GAO put-option, all the uncertainty about the term-structure of interest rates is reflected in the
market annuity payout raterx(T). Hence, if we model the market annuity payoutrx directly as a stochastic process,
we have sufficient information to price the GAO option. The approach of using market rates, such as LIBOR rates
and swap rates, has been applied in recent years with great success to term-structure models. This type of models,
which have become known asmarket models, was introduced independently byMiltersen et al. (1997), Brace et al.
(1997)andJamshidian (1998).

The main mathematical result on which this modelling technique is based is themartingale pricing theorem
which states that, given anumeraire (i.e. a reference asset that is used as a new basis to express all prices in the
economy in terms of this asset), an economy is arbitrage-free and complete if and only if there exists a unique
equivalent probability measure such that all numeraire rebased price processes are martingales under this measure.
For a proof of the martingale pricing theorem we refer to the original paper byGeman et al. (1995). For a general
introduction into the mathematics involved and the application of martingale methods to financial modelling we
refer toMusiela and Rutkowski (1997). The books byHunt and Kennedy (2000)andPelsser (2000)focus more
explicitly on interest rate derivatives.

In the economy we are considering, the traded assets are the discount bondsDS for the different maturitiesS. Any
arbitrage-free interest model can be embedded in the HJM framework. Under the risk-neutral measureQ∗ (which
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is the probability measure associated with the money-market account as the numeraire) the process forDS in the
HMJ framework is given by

dDS(t) = DS(t)(r(t) dt + bS(t) dW∗(t)), (2.5)

wherer(t) denotes the spot interest rate,W∗(t) denotes a one-dimensional Brownian Motion1 under the measure
Q∗ andbS(t) denotes the volatility of the discount bond. Note that in the HJM frameworkbS(t) is allowed to be
stochastic. Different specifications ofbS(t) lead to different interest rate models. For example, the choicebS(t) =
σ/κ(1 − e−κ(S−t)) leads to the well-known Vasicek–Hull–White model that is used in the papers byBallotta and
Haberman (2002), Wilkie et al. (2003)andBoyle and Hardy (2003)to determine prices of GAOs.

To illustrate the change of numeraire approach, we will also consider the processes of discount bond process
under theT-forward measureQT . This is the probability measure associated with the maturityT discount bond
DT as the numeraire, seeGeman et al. (1995). For a proof of the results we derive below, we refer toMusiela and
Rutkowski (1997, Section 13.2.2). The Radon–Nikodym derivativeρT for the change of measure is given by the
ratio of numeraires

ρT (t)
def= dQT

dQ∗ = DT (t)/DT (0)

exp
{∫ t

0r(s) ds
} = exp

{
−1

2

∫ t

0
b2
T (s) ds +

∫ t

0
bT (s) dW∗(s)

}
. (2.6)

Hence, the Girsanov exponent is equal tobT (t) and we have that under theT-forward measure the process dWT (t) =
dW∗(t) − bT (t) dt is a standard Brownian Motion. This implies that under theT-forward measure the process for a
discount bondDS with maturityS > T is given by

dDS(t) = DS(t)((r(t) + bS(t)bT (t)) dt + bS(t) dWT (t)). (2.7)

An application of It̂o’s Lemma confirms that theT-forward discount bond-priceDS(t)/DT (t) is indeed a martingale
under theT-forward measure:

d

(
DS(t)

DT (t)

)
=
(

DS(t)

DT (t)

)
(bS(t) − bT (t)) dWT (t). (2.8)

A particular convenient choice of the numeraire for the GAO put-option is the annuityäx(t) = ∑
npx DT+n(t).

Note, that under the assumption that the survival probabilitiesnpx are deterministic, this is a portfolio of traded
assets (the discount bonds) and hence a permissible choice as numeraire.2

The annuity payoutrx(T) rate for timeT was defined in (2.2). At timest prior to T we can consider the value of
the portfolio of discount bonds that replicates the cash flows of an annuity starting fromT. A person that will be
x years old at timeT, has at timet an age ofx − (T − t). Hence, the market value at timet of a forward annuity
starting atT is given by

ω−x∑
n=0

n+(T−t)px−(T−t) DT+n(t) = (T−t)px−(T−t)

ω−x∑
n=0

npx DT+n(t) = (T−t)px−(T−t)äx(t), (2.9)

where we have used the actuarial identityn+mpx = mpx npx+m (see, e.g.Bowers et al., 1997, Chapter 3).
At time t, an insurance company can finance the forward annuity by borrowing money from timet to T. Only in

the cases the insured survives until timeT, will the insurance company have to repay the loan. Hence, the market
value at timet of this loan is given by

(T−t)px−(T−t)DT (t). (2.10)

1 We use a one-dimensional Brownian Motion for ease of exposition. All results derived here are also valid for the multi-dimensional case.
2 Although this is a dividend paying numeraire, no dividends are paid before the maturity dateT of the GAO, and this is therefore a valid

choice of numeraire to analyse the price of the GAO. Note, that similar numeraires are used in Swap Market Models to analyse the price of
swaptions. See, e.g.,Jamshidian (1998).
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CombiningEqs. (2.9) and (2.10), we can define theforward annuity rate as

rx(t) = DT (t)

äx(t)
. (2.11)

Note, that ift = T this definition coincides with (2.2) sinceDT (T) ≡ 1. Also note that the forward annuity rate
rx(t) is the numeraire rebased price of the discount bondDT (t) using the numerairëax(t).

Finally, it is important to notice that the survival probability factor(T−t)px−(T−t) in the numerator and the
denominator has cancelled in the expression of the forward annuity rate. This is a well-known phenomenon:3

by using the annuity as the numeraire we have implicitly conditioned all prices in the economy on the survival
probability (T−t)px−(T−t). As Milevsky and Promislow (2001)have shown, the annuity can be interpreted as a
defaultable coupon bearing bond, where the default occurs at the exogenous time of death. Hence, in order to obtain
the market price of a contract, we are interested in the “unconditional” value and we therefore have to premultiply
the price with(T−t)px−(T−t). We will return to this issue then we derive the price of the GAO at the end of this
section.

The change of numeraire theorem states that under the martingale probability measureQA associated with the
numerairëax(t), all äx-rebased price processes are martingales. Hence, also the price process for the forward annuity
rx(t) is a martingale under the measureQA.

The Radon–Nikodym derivativeρA(t) for the change of measure toQA is given by the ratio of numeraires:

ρA(t)
def= dQA

dQ∗ =
ω−x∑
n=0

npx

äx(0)

DT+n(t)

exp
{∫ t

0r(s) ds
} . (2.12)

By an application of It̂o’s Lemma we obtain thatρA(t) follows the process

dρA(t) =
ω−x∑
n=0

npx

äx(0)

DT+n(t)

exp
{∫ t

0r(s) ds
}bT+n(t) dW∗(t). (2.13)

The Girsanov exponentκA(t) is the volatility of theρA(t) process. Hence, we can identifyκA(t) from (2.13) as

κA(t) =
ω−x∑
n=0

wnbT+n(t) with wn(t) = npx DT+n(t)∑ω−x
m=0 mpx DT+m(t)

, (2.14)

and we have that underQA the process dWA(t) = dW∗(t) − κA(t) dt is a standard Brownian Motion. We can now
derive that the forward annuity rate is a martingale under the measureQA and follows the process

drx(t) = −rx(t)

(
ω−x∑
n=0

wn(t)(bT+n(t) − bT (t))

)
︸ ︷︷ ︸

σr(t)

dWA(t). (2.15)

From this expression we see that the forward annuity rate volatilityσr(t) is a weighted average of the forward
discount bond volatilities (2.8).

Furthermore, the numeraire rebased market valueVG/äx of the GAO put-option is also a martingale process
under the probability measureQA. UsingEq. (2.4)which gives the value of the GAO put-option at timeT, the value
of the GAO option for any timet ≤ T can be expressed as

VG(t)

äx(t)
= EA

[
VG(T)

äx(T)

]
= EA

[
max(rG

x − rx(T), 0)äx(T)

äx(T)

]
= EA[max(rG

x − rx(T), 0)], (2.16)

3 Hunt and Kennedy (2000)have coined the phrase “numeraire based sub-economy”.
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whereEA[ ] denotes an expectation under the probability measureQA. The “unconditional” market price of the
GAO can now be found by multiplying the annuity with the survival probability:

VG(t) = (T−t)px−(T−t)äx(t)EA[max(rG
x − rx(T), 0)]. (2.17)

Given the process (2.15) forrx(t) under the measureQA, we can use expression (2.17) to calculate the value of the
GAO option explicitly. However, since the weightswn(t) are stochastic, it is quite complicated to evaluate (2.17)
analytically.

An alternative approach is to approximate the process (2.15) as drx(t) = −rx(t)σ̄r dWA(t) with deterministic
volatility σ̄r. This implies that we approximate the probability distribution ofrx(T) by a lognormal distribution.
Given such an approximation, we can inferσ̄r from (2.15) by “freezing” the stochastic weights at their current
valueswn(t). If the discount bond volatilitiesbS(t) are deterministic functions (like in the Vasicek–Hull–White
model), we can then approximateσ̄2

r (T − t) by the quadratic variation of lnrx(T) as

σ̄2
r (T − t) =

∫ T

t

(
ω−x∑
n=0

wn(t)(bT+n(s) − bT (s))

)2

ds. (2.18)

Instead of presuming a particular functional form for the discount bond volatilitiesbS(t), we can also estimatēσr

directly from historical observations of the forward annuity rate. Given a value forσ̄r, we can approximate the price
for the GAO put-option via theBlack (1976)formula as:

VG(t) = (T−t)px−(T−t)äx(t)(r
G
x N(−d2) − rx(t)N(−d1)), (2.19)

d1,2 = ln(rx(t)/rG
x ) ± (1/2)σ̄2

r (T − t)

σ̄r

√
T − t

.

We have adopted the latter approach inSection 4of this paper.

3. Static replicating portfolio

The GAO put-option we have discussed in the previous section, is not a standard interest rate option. To hedge the
risk of such a non-standard option, an insurance company can execute a dynamic replication strategy (delta-hedging).
This replication strategy requires continuous rebalancing of a portfolio of discount bonds. Discussions on how to
set up delta-hedging strategies can be found byBoyle and Hardy (2003)andWilkie et al. (2003). Executing such
a trading strategy in practice can be costly due to transaction costs or even unsuccessful due to inconsistencies in
the model assumptions and the actual behaviour of the market. Especially the long time horizons that are typically
involved in life-insurance products make the implementation of a delta-hedging strategy a challenging task.

We therefore want to propose a static options replication strategy that can be used to hedge the risk of GAOs. In a
static options replication strategy one sets up a portfolio of actively traded options such that the payoff of the GAO
at maturity is exactly replicated. Due to the fact that this portfolio matches the payoff of the GAO at maturity, the
portfolio will also accurately track at all previous times the value of the GAO. Were this not the case, an arbitrage op-
portunity would arise. Hence, once the initial portfolio of options is bought, its composition never needs to be adjusted
until the time that the GAO expires. Even when the actual behaviour of the market is inconsistent with the model
assumptions of the underlying options, this has still no impact on the hedge effectiveness of the static replicating
portfolio. In other words, not only the market risk but also the “model risk” is eliminated by a static hedge portfolio.

In the remainder of this section we show how a static replication portfolio of vanilla interest rate swaptions can
be set up for with-profits GAOs. In interest rate markets, interest rate swaptions are the most actively traded options
contracts and can be traded in large quantities for a wide variety of maturities and exercise prices. The construction
we propose for GAOs is inspired by the static replication strategy proposed byHunt and Kennedy (2000, Chapter 15)
for irregular swaptions.
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Note that the use of swaptions as a hedging strategy has been proposed previously byBolton et al. (1997), Lee
(2001)andWilkie et al. (2003). However, none of the mentioned contributions uses the idea of static hedging.
Bolton et al. (1997)propose a particular simple approach, where they buy receiver swaptions with a strike equal
to the rate of interest underlying the GAO. However since the stream of cash flows associated with an interest rate
swap has a radically different structure from the cash flows of an annuity, such a hedging strategy will not be very
effective in practice.

At the exercise dateT, the GAO put-option gives the holder the right, but not the obligation, to enter into an
annuity at the guaranteed raterG

x :

VG(T) = max(rG
x − rx(T), 0)äx(T) = max

(
ω−x∑
n=0

(npx rG
x )DT+n(T) − 1, 0

)
, (3.1)

where we have substituted the definitionäx given inEq. (2.1). Hence, the GAO gives the right to obtain a series of
cash paymentsnpx rG

x at the different datesT + n for the price of 1 at timeT. Note that, due to the fact that the
annuity payments are made at the beginning of each year, at timeT one has to pay 1 but one receivesrG

x immediately
so that the net cash flow at timeT is equal to 1− rG

x .
A vanilla interest rate swaption gives the right, but not the obligation, to enter at timeT into an interest rate swap

in which duringN years the floating LIBOR interest rate is exchanged for a fixed interest rateKN . It is well-known
that the market valueSN of a receiver swap in which the fixed rate is received annually is given by (see, e.g.Hull,
2000, Chapter 5)

SN(T) =
(

N−1∑
n=1

KNDT+n(T) + (1 + KN)DT+N(T)

)
− 1. (3.2)

Hence, the market valueVN of a receiver swaption that gives the right to enter into anN-year receiver swap at time
T can be expressed as

VN(T) = max(SN(T), 0) = max

((
N−1∑
n=1

KNDT+n(T) + (1 + KN)DT+N(T)

)
− 1, 0

)
. (3.3)

From expression (3.3) we see that, similar to the GAO, a swaption also gives the right to obtain a series of cash
payments for a price of 1. However, the pattern of the cash payments is very different in the two options. The
cash flowsnpx rG

x associated with the guaranteed annuity are gradually decreasing over time due to the gradually
decreasing survival probabilitiesnpx. The cash flows associated with anN-year swap follow a very different
pattern: the firstN − 1 years one receives an amount ofKN , whereas in theNth year, a cash amount of(1+ KN) is
received.

By combining positions in receiver swap contracts all starting at dateT with different maturitiesN, it is possible
to replicate the cash flow patternnpx rG

x of the guaranteed annuity for all datesT +n. To find the right amounts that
has to be invested in each swap, we proceed backwards from timeT + (ω − x) to timeT + 1. To replicate the cash
flow ω−xpx rG

x we have to enter into the(ω−x)-year receiver swapSω−x with fixed rateKω−x. At timeT + (ω−x)

this swap has a cash flow of(1 + Kω−x). Hence, if we invest an amountLω−x = ω−xpx rG
x /(1 + Kω−x) in swap

Sω−x we replicate the cash flow of the guaranteed annuity at timeT + (ω − x).
One year earlier, at timeT + (ω − x − 1), the guaranteed annuity pays out a cash flow ofω−x−1px rG

x . From the
positionLω−x in swapSω−x we already receive a cash flow ofKω−xLω−x = ω−xpx rG

x −Lω−x. Hence, if we invest
an amountLω−x−1 = (Lω−x + rG

x (ω−x−1px − ω−xpx))/(1+ Kω−x−1) in swapSω−x−1 we replicate the cash flow
of the guaranteed annuity at timeT + (ω − x − 1).

Continuing this backward construction, we find that we can replicate the cash flow of the guaranteed annuity at
a general dateT + n by investing an amountLn = (Ln+1 + rG

x (npx − n+1px))/(1 + Kn) in swapSn. Proceeding
backwards in this fashion, we continue to match all the cash payments of the guaranteed annuity up until timeT +1.
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However, there is a catch. FromEq. (3.2)we see that at the start dateT of the swap contract we require an initial
cash payment of 1. Hence, the total portfolio of receiver swaps constructed above to replicate the cash flows of
the guaranteed annuity requires an initial cash payment of

∑ω−x
n=1Ln. But in Eq. (3.1)we derived that the GAO

put-option gives the right to enter the guaranteed annuity for an initial net cash payment of 1− rG
x . Fortunately, we

can adjust the amountsLn by considering receiver swaps with different fixed ratesKn. This implies that we have to
choose a set of fixed ratesK∗

n for all the swapsSn such that the invested amountsL∗
n satisfy

∑ω−x
n=1L∗

n = 1 − rG
x .

With the portfolio of swaps
∑

L∗
nS

n we have replicated all the cash flows of the guaranteed annuity with rate
rG
x . Hence, the GAO which gives the right, but not the obligation, at timeT to enter into the guaranteed annuity is

equivalent to the option to enter into the portfolio
∑

L∗
nS

n. This implies that the valueVG(T) at timeT of the GAO
can be expressed in terms of swaptionsVn as:

VG(T) = max

(
ω−x∑
n=1

L∗
nS

n(T), 0

)
≤

ω−x∑
n=1

L∗
n max(Sn(T), 0) =

ω−x∑
n=1

L∗
nV

n(T), (3.4)

where the inequality stems from the fact that the value an option on a portfolio of swaps is less than or equal to the
value of the portfolio of the corresponding swaptions. An intuitive explanation for this fact is that in the option on
the portfolio you have only an “all-or-nothing” choice to obtain all underlying swaps at once or none at all, whereas
in the portfolio of swaptions you can “cherry pick” the individual swaps that have positive market values at timeT.

If all the interest rates in the economy are perfectly correlated, i.e. all interest rates move all the time in perfect
lockstep, then there exists only one single set of market swap ratesK∗

n for which the swapsSn exactly replicate the
cash flow stream of the guaranteed annuity. Due to the perfect correlation of the interest rates, all market swap rates
will either be simultaneously above the ratesK∗

n or simultaneously below. Hence, in the case of perfectly correlated
interest rates, the inequality inEq. (3.4)becomes an equality for the set of swaptions with strikesK∗

n.4 But this
implies that in the case of perfectly correlated interest rates, we have replicated the payoff of the GAO via a portfolio
of vanilla interest rate swaptions and, a fortiori, that we have identified a static options replication for the GAO.

In practice we know that the interest rates in the economy are not perfectly correlated, and therefore that the
portfolio of swaptions has a higher price than the GAO due to the inequality inEq. (3.4). However, GAOs typically
are products with a very long maturity. Therefore, their value depends mainly on the behaviour of interest rates with
long maturities and these interest rates are very highly correlated. We therefore conjecture that the price of the static
hedge replication will be very close to the true price of the GAO.

4. Historical test

To test the performance of the static replication strategy we have proposed inSection 3, we have conducted a
hypothetical historical test using UK interest rate data. This is only a hypothetical test, because in 1980 the swap
market in the UK was not as far developed as it is today. This means that the swaps and swaptions needed to execute
the static hedge would not have been available in 1980. However, since the historical period from 1980 to 2000 does
provide a very interesting stress-test for our static hedge approach, we resort to a hypothetical test were we impute
swap and swaption prices on the basis of UK Government Bond yield data.

We downloaded from Datastream UK Government Bond yields with maturities 2, 3, 5, 7, 10, 15, 20 and 30
years. We used the data at the last trading day of each year from 1980 to 2000. On the basis of the UK Government
Bond yields we constructed hypothetical swap rates by taking the bond yields as proxies for the par swap rates
with the same maturities. In each year we used aNelson and Siegel (1987)parameterisation to obtain a complete
term-structure of zero-rates. In each year the Nelson–Siegel parameters were obtained by a least squares fit of the

4 This remarkable result was derived for the first time byJamshidian (1989)where he showed that in a one-factor interest rate model an option
on a coupon bearing bond can be expressed as a portfolio of options on zero coupon bonds. Note also, that in the case of perfectly correlated
rates the apparent ambiguity in choosing the ratesK∗

n is resolved.



292 A. Pelsser / Insurance: Mathematics and Economics 33 (2003) 283–296

Table 1
Nelson–Siegel zero-curves

Beta 0 Beta 1 Beta 2 Tau

31 December 1980 0.0000 0.1255 0.2242 20.2
31 December 1981 0.0000 0.1412 0.2675 12.0
31 December 1982 0.0374 0.0622 0.1396 10.0
30 December 1983 0.0649 0.0269 0.1068 5.0
31 December 1984 0.0291 0.0669 0.1696 7.0
31 December 1985 0.0873 0.0295 0.0275 3.0
31 December 1986 0.0566 0.0524 0.0582 10.0
31 December 1987 0.0417 0.0452 0.0993 12.7
30 December 1988 0.0531 0.0628 0.0243 10.0
29 December 1989 0.1059 0.0252 −0.0852 10.0
31 December 1990 0.0845 0.0324 0.0095 10.0
31 December 1991 0.0878 0.0100 0.0238 3.0
31 December 1992 0.1005 −0.0139 −0.0867 1.6
31 December 1993 0.0657 −0.0256 0.0252 4.1
30 December 1994 0.0806 −0.0123 0.0430 3.0
29 December 1995 0.0644 −0.0087 0.0643 10.0
31 December 1996 0.0778 −0.0195 0.0157 3.0
31 December 1997 0.0616 0.0106 −0.0064 3.0
31 December 1998 0.0440 0.0224 −0.0252 1.5
31 December 1999 0.0367 0.0201 0.0552 2.3
29 December 2000 0.0241 0.0293 0.0233 10.0

Forward Annuity (annual payoff per 1£ capital) 
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Fig. 1. Forward annuity rate for UK data and PMA92 mortality table.

swap rates implied by the zero-curve to the observed Government Bond yields. The results of the parameter fits
are reported inTable 1. Note that, in order to stress-test our static hedge, we have also allowed the “time-scale”
parameter tau to vary over time, to obtain as much as possible variation in the interest rates with long maturities.
Practitioners usually keep the value of tau constant to stabilise the long end of the yield curve.

Given the Nelson–Siegel parameterisation, we have zero-rates available for all possible maturities. Using the
PMA92 mortality table,5 we determined the forward annuity rates using formula (2.11). InFig. 1, we have plotted

5 The author would like to thank Andrew Cairns for supplying the PMA92 tables.
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Fig. 2. Market value of the GAO put-option.

the forward annuity rates for a male that was 45 years old in 1980 and that would retire at age 65 in 2000. Initially,
the forward annuity rate was above the guaranteed level of 11.1%. However, due to the falling interest rates we see
that the forward annuity rate dropped below the guaranteed level very quickly after 1980.

From the time-series of the forward annuity rates, we estimated the volatility of the forward annuity rate process
at 11.3%. To account for the fact that implied volatilities are higher than historical volatilities, we multiplied the
historical volatility with a factor of 1.25. On the basis of a volatility of 14.2% in formula (2.19), we calculated the
market value of the GAO put-option.

The calculated market value of the GAO put-option have been plotted inFig. 2. Again, we see that the value of
the GAO put-option increased dramatically in value with the falling interest rates during the late 1990s. In fact, the
value of the GAO increased almost a factor 30: from 1.56% in 1980 to 51.24% in December 2000.

This already indicates what the disadvantages are of “only” reserving for maturity guarantees instead of replica-
tion: reserving is very expensive and does not give complete protection. See for example, the results reported by
Wilkie et al. (2003, Table 2.5.1). They calculate, on the basis of the 1984 Wilkie model, that the reserve at a 99%
level that would have to be set aside in 1980 for the policy with term 20 was equal to 15.36%. As we see here, the
actual value of the GAO at the end of the 20-year period (51.24%) was much higher than this 99% reserve. Hence,
even reserving at a 99% probability-level would not have provided sufficient protection against the explosive growth
in value of the GAO put-option during the 20-year period from 1980 to 2000.

Setting up the static replication portfolio of vanilla swaptions would have been considerably cheaper than “only”
reserving, and would have provided superior protection. In 1980, the insurance company should have forecasted
the annuity payments for a 45 year old person which would reach the retirement age 65 in the year 2000. InFig. 3a
we have plotted the (hypothetical) forward swap rates of December 1980. All swap rates are 20-year forward rates,
with various swap maturities. We see that the forward swap rates slowly decreased from 12.79% for the 20-year
forward 1-year swap rate to 10.25% for the 20-year forward 45-year swap rate.

As was explained inSection 3, to set up the static replicating portfolio, we have to select a set of fixed rates
K∗

n. If all the interest rates are correlated perfectly, this will be the swap rates for which the GAO will be exactly
“at-the-money”. To construct the static hedge portfolio, we have made the assumption that all interest rates are
perfectly correlated and also that all interest rates move exactly parallel.6 Hence, we have shifted all the rates by

6 A more sophisticated approach would be to select a one-factor interest rate model to model the possible changes in the term-structure more
accurately. Such an approach would lead to an even lower price for the static hedge. However, for ease of exposition we are using just a parallel
shift.
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Fig. 3. (a) Forward swap rates and static hedge fixed rates in December 1980. (b) Static replication portfolio of annuity cash flows.

the same amount until the invested amountsL∗
n satisfied

∑ω−65
n=1 L∗

n = 1 − 0.111= 0.889. We found that this was
achieved for a downward shift of 1.13%-point. The set of fixed ratesK∗

n obtained by this parallel shift of the swap
rates has also been depicted inFig. 3a.

In Fig. 3b, we have plotted the projected cash flows for the annuity for the years 2001–2045. Also, we have
plotted the weightsL∗

n that would have to be invested in all the swaps with fixed ratesK∗
n for n = 1–45. Hence,

with the weightsL∗
n the insurance company could have bought the portfolio of vanilla swaptions

∑
n L∗

n Vn. This
portfolio of swaptions would have costed7 0.0187 per 1£ capital in 1980, which is only 0.0031 per 1£ capital more
expensive than the true market value of the GAO put-option. Once this portfolio of swaptions would have been
attained, no further buying or selling would have been necessary until December 2000, when the portfolio would
have been unwound to cover the cost of the GAO put-option.

7 We have calculated the historical volatility of each forward swap rate. To calculate the price of each swaption we used an implied volatility
which was 1.25 times higher than the historical volatility.
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Fig. 4. Performance of static hedge portfolio vs. GAO put-option.

In Fig. 4we have plotted the value of the static replicating portfolio against the market value of the GAO put-option
for the period December 1980–December 2000. The lines with diamonds and squares depict the market value per
1£ capital of the static replicating portfolio and the market value of the GAO put-option respectively. We see that
the value of the static replicating portfolio tracks the market value of the GAO extremely closely during the whole
period of 20 years.

5. Summary and conclusion

In this paper we have derived a market value for with-profits GAOs using martingale modelling techniques.
Furthermore, we have shown how to construct a static replicating portfolio of vanilla swaptions that replicates the
with-profits GAO. Finally, we have shown in a hypothetical back test using historical UK interest rate data from
1980 to 2000 that the static replicating portfolio would have been extremely effective as a hedge against the interest
rate risk involved in the GAO, and that the static replicating portfolio would have been considerably cheaper than
up-front reserving and also that the replicating portfolio would have provided a much better level of protection than
a fixed reserve.
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