Elliptische Kurven und Kryptographie

Serie 11

Rechnen in Körpern der Ordnung 128 und 64

Musterlösungen

- 33. Sei $r_7 = X^7 + X^5 + X^2 + X + 1$; dann ist $\mathbb{F}_{128} = \mathbb{F}_2[X]/\langle r_7 \rangle$ ein Körper der Ordnung 128.
 - (a) Berechne $X^8, X^{10}, X^{12} \pmod{r_7}$.
 - (b) Berechne tr(X), $tr(X^2)$, $tr(X^5)$.
 - (c) Finde in \mathbb{F}_{128} eine Lösung der Gleichung $z^2 + z + X = 0$.

Lösung:

(a)
$$X^8 = X^7 X \equiv X^6 + X^3 + X^2 + X \pmod{r_7}$$

 $X^{10} = X^7 X^3 \equiv X^8 + X^5 + X^4 + X^3 \equiv X^6 + X^5 + X^4 + X^2 + X \pmod{r_7}$
 $X^{12} = X^7 X^5 \equiv X^{10} + X^7 + X^6 + X^5 \equiv X^7 + X^4 + X^2 + X \equiv X^5 + X^4 + 1 \pmod{r_7}$

(b) Eine aufwendige Rechnung zeigt tr(X) = 0. Daraus folgt $tr(X^2) = tr(X)^2 = 0$. Nun stellen wir fest, dass

$$\operatorname{tr}(X^5) = \operatorname{tr}(X^5)^2 = \operatorname{tr}(X^{10}) = \operatorname{tr}(X^6 + X^5 + X^4 + X^2 + X) = \operatorname{tr}(X^6) + \operatorname{tr}(X^5),$$

also muss $tr(X^6) = 0$ sein. Daraus erhalten wir

$$0 = \operatorname{tr}(X^{12}) = \operatorname{tr}(X^5) + \operatorname{tr}(X^4) + \operatorname{tr}(1) = \operatorname{tr}(X^5) + 1$$

und somit $tr(X^5) = 1$.

- (c) Eine Lösung ist $\tau(X)$, also (mit etwas Rechenaufwand) $X^4+X^3+X^2$. Die zweite Lösung ist $X^4+X^3+X^2+1$.
- **34.** Sei $r_6 = X^6 + X^5 + 1$; dann ist $\mathbb{F}_{64} = \mathbb{F}_2[X]/\langle r_6 \rangle$ ein Körper der Ordnung 64.
 - (a) Bestimme welche der folgenden Gleichungen in \mathbb{F}_{64} lösbar sind:

i.
$$z^2 + z = X^4 + 1$$

ii.
$$z^2 + z = (X^5 + X^2 + 1)^2$$

(b) Entscheide jeweils, ob ein $y_0 \in \mathbb{F}_{64}$ existiert, so dass gilt:

i.
$$(X^4, y_0) \in C[0, X^3]$$

ii.
$$(X^4, y_0) \in C[X^2 + X + 1, X^3]$$

iii.
$$(X^4, y_0) \in C[X^5 + 1, X^3]$$

Hinweis: $X^3 \equiv X^8(X+1) \pmod{r_6}$.

Lösung:

- (a) Mit viel Aufwand (oder mit sage) erhalten wir tr(X) = 1 und $tr(X^5) = 1$.
 - i. Es gilt $tr(X^4) = tr(X)^4 = 1$ und (da m gerade ist) tr(1) = 0. Somit haben wir $tr(X^4 + 1) = 0$ und die Gleichung ist nicht lösbar.
 - ii. Es gilt $\operatorname{tr}((X^5+X^2+1)^2)=\operatorname{tr}(X^5)^2+\operatorname{tr}(X)^4+\operatorname{tr}(1)=0$, also ist die Gleichung lösbar.
- (b) Wir dividieren jeweils die Kurvengleichung durch $x_0^2 = X^8$. Da durchgehend $a_6 = X^3 \equiv X^8(X+1)$ gilt, erhalten wir $a_6/x_0^2 \equiv X+1$. Schliesslich berechnen wir $\operatorname{tr}(x_0+a_2+a_6/x_0^2)$.
 - i. Ohne den Wert von $\operatorname{tr}(X)$ zu kennen, kann man sehen, dass $\operatorname{tr}(X^4+X+1)=\operatorname{tr}(X)^4+\operatorname{tr}(X)+1=0$. Es gibt also eine Lösung.
 - ii. Auch in $tr(X^4 + X^2 + X + 1 + X + 1)$ löschen sich vor und nach Umformen schliesslich alle Terme aus. Auch hier existiert also ein y_0 .
 - iii. Hier erhalten wir

$$tr(X^4 + X^5 + 1 + X + 1) = tr(X)^4 + tr(X) + tr(X^5) = tr(X^5) = 1.$$