Local-global principle. Conclusion of proof

We now complete the proof of the local-global principle for conics using the theorem of the last section. We recall that we had reduced the proof to that for

$$f_1 X_1^2 + f_2 X_2^2 + f_3 X_3^2 = 0$$

where $f_1, f_2, f_3 \in \mathbb{Z}$ and $f_1 f_2 f_3$ is square free. We assume that there are points everywhere locally and we showed that this implied certain congruences to primes p dividing $2f_1 f_2 f_3$.

We first define a subgroup Λ of \mathbb{Z}^3 by imposing congruence conditions on the components of $\mathbf{x} = (x_1, x_2, x_3)$.

First case. $p \neq 2$, $p \not\mid f_1 f_2 f_3$, say $p \mid f_1$. We saw (end of §3) that then there is an $r_p \in \mathbb{Z}$ and that

$$f_2 + r_p^2 f_3 \equiv 0 \quad (p).$$

We impose the condition

$$x_3 \equiv r_p x_2 \quad (p).$$

Then

$$F(\mathbf{x}) = f_1 x_1^2 + f_2 x_2^2 + f_3 x_3^2$$

$$\equiv (f_2 + r_p^2 f_3) x_2^2$$

$$\equiv 0 \quad (p).$$

Second case. $p = 2, 2 \not\mid f_1 f_2 f_3$. Then without loss of generality $f_2 + f_3 \equiv 0$ (4). We impose the conditions

$$\left. \begin{array}{c} x_1 \equiv 0 \quad (2) \\ x_2 \equiv x_3 \quad (2) \end{array} \right\},$$

which imply

$$F(\mathbf{x}) \equiv 0$$
 (4).

Third case. $p = 2, 2 | f_1 f_2 f_3$, say $2 | f_1$. Then $s^2 f_1 + f_2 + f_3 \equiv 0$ (8),

where s = 0 or 1. We impose the conditions

$$\begin{array}{c} x_2 \equiv x_3 \quad (4) \\ x_1 \equiv sx_3 \quad (2) \end{array} \right\},$$

which imply

$$F(\mathbf{x}) \equiv 0$$
 (8).

To sum up. The group Λ is of index $m(say) = 4|f_1 f_2 f_3|$ in \mathbb{Z}^3 , where throughout this section || is the absolute value. Further,

$$F(\mathbf{x}) \equiv 0 \qquad (4 |f_1 f_2 f_3|)$$

for $\mathbf{x} \in \Lambda$.

We apply the theorem of the previous section to Λ and the convex symmetric set

$$\mathcal{C}: |f_1|x_1^2 + |f_2|x_2^2 + |f_3|x_3^2 < 4|f_1f_2f_3|.$$

School geometry shows that

$$V(\mathcal{C}) = (\pi/3) \cdot 2^3 \cdot |4f_1 f_2 f_3|$$

> 2³ |4f_1 f_2 f_3|
- m

Hence there is an $\mathbf{c} \neq \mathbf{0}$ in $\Lambda \cap \mathcal{C}$. For this \mathbf{x} we have

$$F(\mathbf{x}) \equiv 0 \ (4|f_1f_2f_3|)$$

and

$$|F(\mathbf{x})| \le |f_1|x_1^2 + |f_2|x_2^2 + |f_3|x_3^2$$

 $< 4|f_1f_2f_3|;$

so

 $F(\mathbf{x})=0,$

as required.

We conclude with some remarks.

Remark 1. We have not merely shown that there is a solution of $F(\mathbf{x}) = 0$, but we have found that there is one in a certain ellipsoid. This facilitates the search in explicitly given cases.

Remark 2. We have made no use of the condition of solubility in \mathbf{Q}_p for $p \not\mid 2f_1f_2f_3$. In fact this condition tells us nothing [cf. §3, Exercises 2, 3]. It is left to the reader to check that for any f_1 , f_2 , f_3 and p with $p \not\mid 2f_1f_2f_3$ there is always a point defined over \mathbf{Q}_p on

$$f_1 X_1^2 + f_2 X_2^2 + f_3 X_3^2 = 0.$$

Remark 3. We have also nowhere used that there is local solubility for $\mathbf{Q}_{\infty} = \mathbf{R}$.

Hence solubility at \mathbf{Q}_{∞} is implied by solubility at all the \mathbf{Q}_p $(p \neq \infty)$. This phenomenon is connected with quadratic reciprocity. In fact for any conic over \mathbf{Q} , the number of p (including ∞) for which there is not a point over \mathbf{Q}_p is always even [cf. §3, Exercises 6,7]. See a book on quadratic forms (such as the author's).

§5. Exercises

1. Let

$$F(X,Y,Z) = 5X^{2} + 3Y^{2} + 8Z^{2} + 6(YZ + ZX + XY).$$

Find rational integers x, y, z not all divisible by 13, such that

$$F(x, y, z) \equiv 0 \pmod{13^2}.$$

[Hint. cf. Hensel's Lemma 2 of §10.]

2. Let

$$F(X, Y, Z) = 7X^{2} + 3Y^{2} - 2Z^{2} + 4YZ + 6ZX + 2XY.$$

Find rational integers x, y, z not all divisible by 17 such that

$$F(x, y, z) \equiv 0 \pmod{17^3}.$$