5

Local-global principle. Conclusion of proof

We now complete the proof of the local-global principle for conics using the theorem of the last section. We recall that we had reduced the proof to that for

$$
f_{1} X_{1}^{2}+f_{2} X_{2}^{2}+f_{3} X_{3}^{2}=0
$$

where $f_{1}, f_{2}, f_{3} \in \mathbf{Z}$ and $f_{1} f_{2} f_{3}$ is square free. We assume that there are points everywhere locally and we showed that this implied certain congruences to primes p dividing $2 f_{1} f_{2} f_{3}$.

We first define a subgroup Λ of \mathbf{Z}^{3} by imposing congruence conditions on the components of $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$.

First case. $p \neq 2, p \nmid f_{1} f_{2} f_{3}$, say $p \mid f_{1}$. We saw (end of §3) that then there is an $r_{p} \in \mathbf{Z}$ and that

$$
f_{2}+r_{p}^{2} f_{3} \equiv 0 \quad(p)
$$

We impose the condition

$$
x_{3} \equiv r_{p} x_{2} \quad(p)
$$

Then

$$
\begin{aligned}
F(\mathbf{x}) & =f_{1} x_{1}^{2}+f_{2} x_{2}^{2}+f_{3} x_{3}^{2} \\
& \equiv\left(f_{2}+r_{p}^{2} f_{3}\right) x_{2}^{2} \\
& \equiv 0 \quad(p)
\end{aligned}
$$

Second case. $p=2,2 \backslash \not f_{1} f_{2} f_{3}$. Then without loss of generality

$$
f_{2}+f_{3} \equiv 0
$$

We impose the conditions

$$
\left.\begin{array}{ll}
x_{1} \equiv 0 & (2) \\
x_{2} \equiv x_{3} & (2)
\end{array}\right\}
$$

which imply

$$
F(\mathbf{x}) \equiv 0
$$

Third case. $p=2,2 \mid f_{1} f_{2} f_{3}$, say $2 \mid f_{1}$. Then

$$
s^{2} f_{1}+f_{2}+f_{3} \equiv 0
$$

where $s=0$ or 1 . We impose the conditions

$$
\left.\begin{array}{ll}
x_{2} \equiv x_{3} & (4) \\
x_{1} \equiv s x_{3} & (2)
\end{array}\right\}
$$

which imply

$$
\begin{equation*}
F(\mathbf{x}) \equiv 0 \tag{8}
\end{equation*}
$$

To sum up. The group Λ is of index m (say) $=4\left|f_{1} f_{2} f_{3}\right|$ in \mathbf{Z}^{3}, where throughout this section $\|$ is the absolute value. Further,

$$
F(\mathbf{x}) \equiv 0 \quad\left(4\left|f_{1} f_{2} f_{3}\right|\right)
$$

for $\mathbf{x} \in \Lambda$.
We apply the theorem of the previous section to Λ and the convex symmetric set

$$
\mathcal{C}:\left|f_{1}\right| x_{1}^{2}+\left|f_{2}\right| x_{2}^{2}+\left|f_{3}\right| x_{3}^{2}<4\left|f_{1} f_{2} f_{3}\right|
$$

School geometry shows that

$$
\begin{aligned}
V(\mathcal{C}) & =(\pi / 3) \cdot 2^{3} \cdot\left|4 f_{1} f_{2} f_{3}\right| \\
& >2^{3}\left|4 f_{1} f_{2} f_{3}\right| \\
& =m
\end{aligned}
$$

Hence there is an $\mathbf{c} \neq 0$ in $\Lambda \cap \mathcal{C}$. For this \mathbf{x} we have

$$
F(\mathbf{x}) \equiv 0 \quad\left(4\left|f_{1} f_{2} f_{3}\right|\right)
$$

and

$$
\begin{aligned}
|F(\mathbf{x})| & \leq\left|f_{1}\right| x_{1}^{2}+\left|f_{2}\right| x_{2}^{2}+\left|f_{3}\right| x_{3}^{2} \\
& <4\left|f_{1} f_{2} f_{3}\right|
\end{aligned}
$$

so

$$
F(\mathbf{x})=0,
$$

as required.
We conclude with some remarks.

Remark 1. We have not merely shown that there is a solution of $F(\mathbf{x})=0$, but we have found that there is one in a certain ellipsoid. This facilitates the search in explicitly given cases.

Remark 2. We have made no use of the condition of solubility in \mathbf{Q}_{p} for $p \nmid 2 f_{1} f_{2} f_{3}$. In fact this condition tells us nothing [cf. §3, Exercises 2, 3]. It is left to the reader to check that for any f_{1}, f_{2}, f_{3} and p with $p \nmid 2 f_{1} f_{2} f_{3}$ there is always a point defined over \mathbf{Q}_{p} on

$$
f_{1} X_{1}^{2}+f_{2} X_{2}^{2}+f_{3} X_{3}^{2}=0
$$

Remark 9. We have also nowhere used that there is local solubility for $\mathbf{Q}_{\infty}=\mathbf{R}$.

Hence solubility at \mathbf{Q}_{∞} is implied by solubility at all the $\mathbf{Q}_{p}(p \neq \infty)$. This phenomenon is connected with quadratic reciprocity. In fact for any conic over \mathbb{Q}, the number of p (including ∞) for which there is not a point over \mathbf{Q}_{p} is always even [cf. $\S 3$, Exercises 6,7]. See a book on quadratic forms (such as the author's).

§5. Exercises

1. Let

$$
F(X, Y, Z)=5 X^{2}+3 Y^{2}+8 Z^{2}+6(Y Z+Z X+X Y)
$$

Find rational integers x, y, z not all divisible by 13 , such that

$$
F(x, y, z) \equiv 0\left(\bmod 13^{2}\right)
$$

[Hint. cf. Hensel's Lemma 2 of $\S 10$.
2. Let

$$
F(X, Y, Z)=7 X^{2}+3 Y^{2}-2 Z^{2}+4 Y Z+6 Z X+2 X Y
$$

Find rational integers x, y, z not all divisible by 17 such that

$$
F(x, y, z) \equiv 0\left(\bmod 17^{3}\right)
$$

