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Introduction

• The goal of this chapter is to explain how historical data can be used to
produce estimates of the current and future levels of volatilities and
correlations.

• This problem is relevant both for the calculation of risk measures (such as
Value-at-Risk) and for the valuation of derivatives.

• We consider the following three models:
(i) the exponentially weighted moving average (EWMA) model;
(ii) the autoregressive conditional heteroscedascity (ARCH) model;
(iii) the generalized ARCH (GARCH) model.

• The distinctive feature is that these models recognize that volatilities and
correlations are not constant.

• During some periods, a particular volatility or correlation may be relatively
low, whereas during other periods it may be relatively high.

• The models attempt to keep track of the variations in the volatility or
correlation through time.
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Introduction
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Introduction

• To estimate the volatility of a stock from (empirical) data, the price of the
stock is observed at fixed intervals of time (e.g. every day, week, or month).

• Consider

n + 1 : number of observations

Si : stock price at the end of the i th interval, with i = 0, 1, ...n

τ : length of the time intervals in years

and let

ui = log

(
Si

Si−1

)
i = 1, 2, ..., n.

• The usual estimate s of the standard deviation of the ui ’s is given by

s =

√√√√ 1

n − 1

n∑
i=1

(ui − u)2,

where u is the sample mean of ui .

• The annualized volatility σ can be estimated as σ̂ = s√
τ

• The standard error of this estimate can be shown to be
approximatively σ̂/(

√
2n).
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Introduction

• Choosing an appropriate value for n is not easy.

• More data generally leads to more accuracy, but σ does change over time
and data that is too old may not be relevant for predicting the future
volatility.

• A compromise that seems to work reasonably well is to use closing prices
from daily data over the most recent 90 to 180 days.

• An often used rule of thumb is to set n equal to the number of days to
which the volatility is applied.

• Thus, if the volatility estimate is used to value a 2-year option, daily data
for the last 2 years are used.
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Introduction: Example
A sequence of stock prices during 21 consecutive trading days:

Day Closing price Si/Si−1 log(Si/Si−1)

0 20.00
1 20.10 1.00500 0.00499
2 19.90 0.99005 0.01000
3 20.00 1.00503 0.00501
4 20.50 1.02500 0.02469
5 20.25 0.98780 -0.01227
6 20.90 1.03210 0.03159
7 20.90 1.00000 0.00000
8 20.90 1.00000 0.00000
9 20.75 0.99282 -0.00720

10 20.75 1.00000 0.00000
11 21.00 1.01205 0.01198
12 21.10 1.00476 0.00475
13 20.90 0.99052 -0.00952
14 20.90 1.00000 0.00000
15 21.25 1.01675 0.01661
16 21.40 1.00706 0.00703
17 21.40 1.00000 0.00000
18 21.25 0.99299 -0.00703
19 21.75 1.02353 0.02326
20 22.00 1.01149 0.01143

In this case ∑
ui = 0.09531 and

∑
u2
i = 0.00326
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Introduction: Example

• The estimate of the standard deviation of daily returns is√
0.00326

19
−

0.095312

20 · 19
= 0.01216 or 1.216%.

• Assuming that there are 252 trading days per year, i.e., τ = 1/252, an
estimate for the volatility per annum is

0.01216×
√

252 = 0.193 or 19.3%.

• The standard error of this estimate is

0.193
√

2× 20
= 0.031 or 3.1% per annum.

• With dividend paying stocks: the return ui during a time interval that
includes an ex-dividend day is given by

ui = log
Si + Di

Si−1

where Di is the amount of the dividend at time i .
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Introduction: Trading days vs. calendar days

• An important issue is whether time should be measured in calendar days or
trading days when volatility parameters are being estimated and used.

• Practitioners tend to ignore days on which the exchange is closed when
estimating volatility from historical data (and when calculating the life of
an option).

• The volatility per annum is calculated from the volatility per trading day
using the formula

Vol per annum = Vol per tr. day×
√

nr. of tr. days per annum.
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Introduction: What causes volatility?

• It is natural to assume that the volatility of a stock is caused by new
information reaching the market.

• New information causes people to revise their opinions about the value of
the stock: the price of the stock changes and volatility results.

• With several years of daily stock price date researchers have calculated:
(i) the variance of the stock price returns between the close of trading on one day and the close

of trading on the next day when there are no intervening non-trading days (in fact a variance
of returns over a 1-day period);

(ii) the variance of the stock price returns between the close of trading on Friday and the close
of trading on Monday (in fact a variance of returns over 3-day period).
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Introduction: What causes volatility?

• We might be tempted to expect the second variance to be three times as
great as the first variance but this is not the case (Fama 1965, French
1980, French and Roll 1980: second variance is, respectively, only 22%,
19% and 10.7% higher than the first variance).

• It seems that volatility is to a large extent caused by trading itself.
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Estimating volatility

• Define σn the volatility of a market variable on day n, as estimated at the
end of day n − 1.

• The square of the volatility σ2
n on day n is the variance rate.

• Recall that the variable ui is defined as the continuously compounded
return between the end of day i − 1 and the end of day i :

ui = log
Si

Si−1
.

• An unbiased estimate of the variance rate per day, σ2
n, using the most

recent m observations on the ui is

σ2
n =

1

m − 1

m∑
i=1

(un−i − u)2

where the mean u is given by

u =
1

m

m∑
i=1

un−i .
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Estimating volatility

• For the purposes of monitoring daily volatility the last formula is usually
changed in a number of ways

(i) ui is defined as the percentage change in the market variable between the end of day i − 1
and the end of day i , so that

ui =
Si − Si−1

Si−1

;

(ii) u is assumed to be zero;
(iii) m − 1 is replaced by m.

• These three changes make very little difference to the estimates that are
calculated but they allow us to simplify the formula for the variance rate to

σ2
n =

1

m

m∑
i=1

u2
n−i .

• The last expression gives equal weight to u2
n−1, u

2
n−2, ..., u

2
n−m.

• Our objective is to estimate the current level of volatility σn, therefore it
makes sense to give more weight to recent data.
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Estimating volatility

• We can accomplish this with a model that sets:

σ2
n =

m∑
i=1

αiu
2
n−i . (1)

• The coefficient αi > 0 is the weight given to the observation i days ago.

• If we choose them so that αi < αj when i > j , less weight is given to older
observations.

• The weights must sum up to unity, so we have

m∑
i=1

αi = 1.
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Estimating volatility

• An extension of the idea in Eq. (1) is to assume that there is a long-run
average variance rate and that this should be given some weight.

• This leads to a model that takes the form

σ2
n = γVL +

m∑
i=1

αiu
2
n−i , (2)

where VL is the long-run variance rate and γ is the weight assigned to VL.

• Because the weights must sum to unity, we have

γ +
m∑
i=1

αi = 1.
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Estimating volatility

• This is known as an ARCH(m) model and it was first suggested by Robert
Engle in 1982.

• The estimate of the variance is based on a long-run average variance and
m observations: the older an observation, the less weight it is given.

• Defining ω = γVL the model in Eq. (2) can be written as

σ2
n = ω +

m∑
i=1

αiu
2
n−i .

• This is the version of the model used when the parameters are estimated.
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The EWMA model

• The exponentially weighted moving average (EWMA) model is a particular
case of the model in Eq. (1) where the weights αi decrease exponentially as
we move back through time.

• Specifically αi+1 = λαi where λ is a constant between 0 and 1.

• It turns out that this weighting scheme leads to a particularly simple
formula for updating volatility estimates:

σ2
n = λσ2

n−1 + (1− λ)u2
n−1. (3)

• The estimate σn is the volatility for day n (made at the end of day n− 1) is
calculated from σn−1 (the estimate that was made at the end of day n − 2
of the volatility for day n − 1) and un−1 (the most recent percentage
change).
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The EWMA model

• To understand why Eq. (3) corresponds to weights that decrease
exponentially, we substitute for σ2

n−1 to get

σ2
n = λ[λσ2

n−2 + (1− λ)u2
n−2] + (1− λ)u2

n−1,

or
σ2
n = (1− λ)(u2

n−1 + λu2
n−2) + λ2σ2

n−2.

• Substituting in a similar way for σ2
n−2 gives

σ2
n = (1− λ)(u2

n−1 + λu2
n−2 + λ2u2

n−3) + λ3σ2
n−3.

• Continuing in this way we see that

σ2
n = (1− λ)

m∑
i=1

λi−1u2
n−i + λmσ2

n−m.
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The EWMA model

• Recall

σ2
n = (1− λ)

m∑
i=1

λi−1u2
n−i + λmσ2

n−m. (4)

• For large m the term λmσ2
n−m is sufficiently small to be ignored so that

Eq. (4) is the same as Eq. (1) with αi = (1− λ)λi−1.

• The weights for the ui decline at rate λ as we move back through time;
each weight is λ times the previous weight.
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The EWMA model: Example

• Suppose that λ = 0.90, the volatility estimated for a market variable for
day n− 1 is 1% per day and during day n− 1 the market variable increased
by 2%.

• This means σ2
n−1 = 0.012 = 0.0001 and u2

n−1 = 0.022 = 0.0004.

• Eq. (3) gives

σ2
n = 0.9× 0.0001 + 0.1× 0.0004 = 0.00013.

• The estimate of the volatility σn for day n is therefore
√

0.00013 or 1.14%
per day.

• Note that the expected value of u2
n−1 is σ2

n−1 or 0.0001.

• In this example, the realized value of u2
n−1 is greater than the expected

value and as a result our volatility estimate increases.

• If the realized value of u2
n−1 had been less than its expected value, our

estimate of the volatility would have decreased.
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The EWMA model

• The EWMA approach has the attractive feature that relatively little data
needs to be stored.

• At any given time we need to remember only the current estimate of the
variance rate and the most recent observation on the value of the market
variable.

• When we get a new observation on the value of the market variable, we
calculate a new daily percentage change and use Eq. (3) to update our
estimate of the variance rate.

• The old estimate of the variance rate and the old value of the market
variable can then be discarded.

• The EWMA approach is designed to track changes in the volatility.

• The Risk Metrics database, which was originally created by J. P. Morgan
and made publicly available in 1994, uses the EWMA model with λ = 0.94
for updating daily volatility estimates.

• The company found that, across a range of different market variables, this
value of λ gives forecasts of the variance rate that come closest to the
realized variance rate.
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The GARCH(1,1) model

• Proposed by T. Bollerslev in 1986.

• The difference between GARCH(1,1) and EWMA is analogous to the
difference between Eq. (1) and Eq. (2).

• In GARCH(1,1) σ2
n is calculated from the long-run average variance rate VL

as well as from σn−1 and un−1.

• The equation for GARCH(1,1) is

σ2
n = γVL + αu2

n−1 + βσ2
n−1,

where γ is the weight assigned to VL, α is the weight assigned to u2
n−1

and β is the weight assigned to σ2
n−1.

• The weights sum up to one

γ + α+ β = 1.
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The GARCH(1,1) model

• The EWMA model is a particular case of GARCH(1,1) where γ = 0,
α = 1− λ, β = λ.

• The (1,1) in GARCH(1,1) indicates that σ2
n is based on the most recent

observation of u2 and the most recent estimate of the variance rate.

• The more general GARCH(p,q) model calculates σ2
n from the most recent p

observations of u2 and the most recent q estimates of the variance rate;
GARCH(1,1) is by far the most popular of the GARCH models.

• Setting ω = γVL, the GARCH(1,1) model can also be written as

σ2
n = ω + αu2

n−1 + βσ2
n−1. (5)

• The last form is usually used for the purposes of estimating the parameters.

• For a stable GARCH(1,1) process we require α+ β < 1, otherwise the
weight term applied to the long-term variance is negative.
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The GARCH(1,1) model: Example

• Suppose that a GARCH(1,1) model is estimated from daily data as

σ2
n = 0.000002 + 0.13u2

n−1 + 0.86σ2
n−1.

• This corresponds to α = 0.13, β = 0.86 and ω = 0.000002.

• Because γ = 1− α− β it follows that γ = 0.01.

• Because ω = γVL it follows that VL = 0.0002.

• In other words, the long-run average variance per day implied by the model
is 0.0002.

• This corresponds to a volatility of
√

0.0002 = 0.014 or 1.4% per day.

• Suppose that the estimate of the volatility on day n − 1 is 1.6% per day, so
that σ2

n−1 = 0.0162 = 0.000256 and that on day n − 1 the market variable

decreased by 1% so that u2
n−1 = 0.012 = 0.0001.

• Then

σ2
n = 0.000002 + 0.13× 0.0001 + 0.86× 0.000256 = 0.00023516.

• The new estimate of the volatility is therefore
√

0.00023516 = 0.0153
or 1.53%.
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The GARCH(1,1) model: The weights

• Substituting for σ2
n−1 and, afterwards, for σ2

n−2 in Eq. (5), we get

σ2
n = ω + βω + β2ω + αu2

n−1 + αβu2
n−2 + αβ2u2

n−3 + β3σ2
n−3.

• Continuing in this was we see that the weight applied to u2
n−i is αβi−1.

• The weights decline exponentially at rate β.

• The parameter β can be interpreted as decay rate; it is similar to the λ in
the EWMA model.

• The GARCH(1,1) model is similar to the EWMA model except that, in
addition to assign weights that decline exponentially to past u2 it also
assigns some weight to the long-run average volatility.
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The GARCH(1,1) model: Mean reversion (optional part)

• The GARCH(1,1) model recognizes that over time the variance tends to
get pulled back to a long-run average level of VL.

• The amount of weight assigned to VL is γ = 1− α− β.

• The GARCH(1,1) is a equivalent to a model where the variance V follows
the stochastic process

dV = a(VL − V )dt + ξVdz

where time is measured in days, a = 1− α− β and ξ = α
√

2; this is the
mean reverting model.

• The variance has a drift that pulls it back to VL at rate a.

• When V > VL, the variance has a negative drift; when V < VL it has a
positive drift.
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Choosing between the models

• In practice variance rates tend to be mean reverting.

• The GARCH(1,1) model incorporates mean reversion, whereas the EWMA
model does not.

• GARCH(1,1) is therefore more appealing than the EWMA model.

• A question that needs to be discussed is how best-fit parameters ω, α, β in
GARCH(1,1) can be estimated.

• When the parameter ω is zero, the GARCH(1,1) reduces to EWMA.

• In circumstances where the best-fit value of ω turns out to be negative, the
GARCH(1,1) model is not stable and it makes sense to switch to the
EWMA model.
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Maximum Likelihood (ML) methods

• How are the parameters estimated from historical data in the models we
have been considering?

• A commonly applied approach is known as the maximum likelihood (ML)
method.

• It involves choosing values for the parameter that maximize the chance (or
likelihood) of the data occurring.
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In General

• Suppose we have a sample x1, x2, . . . , xN of N i.i.d. random variables,
coming from a parametric model.

• The joint density function of the observations is

f (x1, x2, . . . , xN |θ) = f1(x1|θ) · f2(x2|θ) · . . . · fn(xN |θ),

where θ summarises the model parameters.

• The idea of the maximum likelihood (ML) method is to chose θ such that
the joint density function is maximised, given the observed sample of data.

• A natural tool to this end is the likelihood function, which we define as

L(θ|x1, x2, . . . , xN) := f (x1, x2, . . . , xN |θ) =
N∏
i=1

fi (xi |θ).
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In General

• To convert the product to summation (which is easier to handle on a
computer), we take the logarithm. The result is called the log-likelihood:

logL(θ|x1, x2, . . . , xn) =
n∑

i=1

log(fi (xi |θ)).

• The ML method estimates θ by finding a value for θ that maximises
logL(θ|x1, x2, . . . , xn), i.e.,

θ̂mle := arg max
θ

logL(θ|x1, x2, . . . , xn).

33 / 58



Quantitative
Finance 2015:

Lecture 12

Lecturer
today:

F.
Fringuellotti

Estimating
volatility and
correlations

Introduction

Estimating
volatility:
EWMA and
GARCH(1,1)

Maximum
Likelihood
methods

Using GARCH
(1, 1) model to
forecast volatility

Correlations

Extensions of
GARCH

References

Estimating a constant variance

• Problem: estimate the variance of a variable X from m observations on X
when the underlying distribution is normal with zero mean.

• Let u1, u2, ... denote the sample of m observations.

• Denote the unknown variance parameter by v .

• The likelihood of ui being observed is the probability density function for X
when X = ui

1
√

2πv
exp

(
−u2

i

2v

)
.

• The likelihood of m observations occuring in order in which they are
observed is

m∏
i=1

[
1

√
2πv

exp

(
−u2

i

2v

)]
.

• Using the maximum likelihood method, the best estimate of v is the value
that maximizes this expression.
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Estimating a constant variance

• Maximizing an expression is equivalent to maximizing the logarithm of the
expression.

• Taking logarithms and ignoring constant multiplicative factors, it can be
seen that we wish to maximize

m∑
i=1

[
− log v −

u2
i

v

]
.

• Differentiating this expression with respect to v and setting the result
equation to zero, we see that the maximum likelihood estimator of v is

1

m

m∑
i=1

u2
i .
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Estimating GARCH(1,1) parameters

• How can the likelihood method be used to estimate the parameters when
the GARCH(1,1) method or some other volatility update scheme is used?

• Define vi = σ2
i as the variance estimated for day i .

• We assume that the probability distribution of ui conditional on the
variance is normal.

• A similar analysis to the one just given shows that the best parameters are
the ones that maximize

m∏
i=1

[
1

√
2πvi

exp

(
−u2

i

2vi

)]
.

• This is equivalent (taking logarithms) to maximizing

m∑
i=1

[
− log vi −

u2
i

vi

]
. (6)

• This is the same expression as above, except that v is replaced by vi .

• We search iteratively to find the parameters of the model that maximize
the expression in (6).
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Estimation of GARCH(1,1) parameters: Example

• The data below concern the Japanese yen exchange rate between January
6, 1988 and August 15, 1997.

Date Day i Si ui vi = σ2
i − log(vi )− u2

i /vi

06-Jan-88 1 0.007728
07-Jan-88 2 0.007779 0.006599
08-Jan-88 3 0.007746 -0.004242 0.00004355 9.6283
11-Jan-88 4 0.007816 0.009037 0.00004198 8.1329
12-Jan-88 5 0.007837 0.002687 0.00004455 9.8568
13-Jan-88 6 0.007924 0.011101 0.00004220 7.1529

... ... ... ... ... ...
13-Aug-97 2421 0.008643 0.003374 0.00007626 9.3321
14-Aug-97 2422 0.008493 -0.017309 0.00007092 5.3294
15-Aug-97 2423 0.008495 0.000144 0.00008417 9.3824∑

= 22063.5763
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Estimation of GARCH(1,1) parameters: Example

• The fifth column shows the estimate of the variance rate vi = σ2
i for day i

made at the end of day i − 1.

• On day 3 we start things off by setting the variance equal to u2
2 .

• On subsequent days, we use equation

σ2
n = ω + αu2

n−1 + βσ2
n−1.

• The sixth column tabulates the likelihood measure − log(vi )− u2
i /vi .

• The values in the fifth and sixth columns are based on the current trial
estimates of ω, α and β: we are interested in maximizing the sum of the
members in the sixth column.

• This involves an iterative search procedure.

• In our example the optimal values of the parameters turn out to be

ω = 0.00000176, α = 0.0626, β = 0.8976.

• The numbers shown in the above table were calculated on the final
iteration of the search for the optimal ω, α, and β.

• The long-term variance rate VL in our example is

ω

1− α− β
=

0.00000176

0.0398
= 0.00004422.
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Estimation of GARCH(1,1) parameters: Example

• When the EWMA model is used, the estimation procedure is relatively
simple: we set ω = 0, α = 1− λ, and β = λ.

• In the table above, the value of λ that maximizes the objective function
is 0.9686 and the value of the objective function is 21995.8377.

• Both GARCH(1,1) and the EWMA method can be implemented by using
the solver routine in Excel to search for the values of the parameters that
maximize the likelihood function.
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Using GARCH (1, 1) to forecast future volatility

• The variance rate estimated at the end of day n − 1 for day n, when
GARCH (1,1) is used, is

σ2
n = (1− α− β)VL + αu2

n−1 + βσ2
n−1

so that
σ2
n − VL = α(u2

n−1 − VL) + β(σ2
n−1 − VL).

• On day n + t in the future, we have

σ2
n+t − VL = α(u2

n+t−1 − VL) + β(σ2
n+t−1 − VL).

• The expected value of u2
n+t−1 is σ2

n+t−1, hence

E[σ2
n+t − VL] = (α+ β)E[σ2

n+t−1 − VL].

• Using this equation repeatedly yields

E[σ2
n+t − VL] = (α+ β)t(σ2

n − VL)

or
E[σ2

n+t ] = VL + (α+ β)t(σ2
n − VL). (7)

• This equation forecasts the volatility on day n + t using the information
available at the end of the day n − 1.
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Using GARCH(1,1) to forecast future volatility

• In the EWMA model α+ β = 1 and the last equation shows that the
expected future variance rate equals the current variance rate.

• When α+ β < 1 the final term in the equation becomes progressively
smaller as t increases.

• As mentioned earlier, the variance rate exhibits mean reversion with a
reversion level of VL and a reversion rate of 1− α− β.

• Our forecast of the future variance rate tends towards VL as we look further
and further ahead.

• This analysis emphasizes the point that we must have α+ β < 1 for a
stable GARCH(1,1) process.

• When α+ β > 1 the weight given to the long-term average variance is
negative and the process is mean fleeing rather than mean reverting.
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Using GARCH(1,1) to forecast future volatility

• In the yen-dollar exchange rare example considered earlier α+ β = 0.9602
and VL = 0.00004422.

• Suppose that our estimate of the current variance rate per day is 0.00006
(this corresponds to a volatility of 0.77% per day).

• In 10 days the expected variance rate is

0.00004422 + 0.960210(0.00006− 0.00004422) = 0.00005473.

• The expected volatility per day is 0.0074, still well above the long-term
volatility of 0.00665 per day.

• However the expected variance rate in 100 days is

0.00004422 + 0.9602100(0.00006− 0.00004422) = 0.00004449

and the expected volatility per day is 0.00667 very close to the long-term
volatility.
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Correlations

• The discussion so far has centered on the estimation and forecasting of
volatility.

• Correlations play a key role in the computation of VaR.

• The goal of this section is to show how correlation estimates can be
updated in a similar way to volatility estimates.

• Recall that the covariance between two random variables X and Y is
defined as

E[(X − µX )(Y − µY )]

where µX and µY are respectively the means of X and Y .

• The correlation between two random variables X and Y is

cov(X ,Y )

σXσY

where σX and σY are the two standard deviations of X and Y and
cov(X ,Y ) is the covariance between X and Y .
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Correlations

• Define xi and yi as the percentage changes in X and Y between the end of
the day i − 1 and the end of day i :

xi =
Xi − Xi−1

Xi−1
and yi =

Yi − Yi−1

Yi−1

where Xi and Yi are the values of X and Y at the end of the day i .

• We also define

σx,n : daily volatility of variable X estimated for day n;

σy,n : daily volatility of variable Y estimated for day n;

covn : estimate of covariance between daily changes in X and Y ,

calculated on day n.

• Our estimate of the correlation between X and Y on day n is

covn

σx,nσy,n
.

46 / 58



Quantitative
Finance 2015:

Lecture 12

Lecturer
today:

F.
Fringuellotti

Estimating
volatility and
correlations

Introduction

Estimating
volatility:
EWMA and
GARCH(1,1)

Maximum
Likelihood
methods

Using GARCH
(1, 1) model to
forecast volatility

Correlations

Extensions of
GARCH

References

Correlations

• Using an equal-weighting scheme and assuming that the means of xi and yi
are zero, as before we can estimate the variance rates of X and Y from the
most recent m observations as

σ2
x,n =

1

m

m∑
i=1

x2
n−i and σ2

y,n =
1

m

m∑
i=1

y2
n−i .

• A similar estimate for the covariance between X and Y is

covn =
1

m

m∑
i=1

xn−iyn−i .
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Correlations

• One alternative for updating covariances is an EWMA model as previously
discussed.

• The formula for updating the covariance estimate is then

covn = λcovn−1 + (1− λ)xn−1yn−1.

• A similar analysis to that presented for the EWMA volatility model shows
that the weights given to observations on the xi and yi decline as we move
back through time.

• The lower the value of λ, the greater the weight that is given to recent
observations.
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Correlations: Example

• Assume λ = 0.95 and that the estimate of the correlation between two
variables X and Y on day n − 1 is 0.6.

• Assume that the estimate of the volatilities for the X and Y on day n − 1
are 1% and 2% respectively.

• From the relationship between correlation and covariance, the estimate for
the covariance between X and Y on day n − 1 is

0.6× 0.01× 0.02 = 0.00012.

• Suppose that the percentage changes in X and Y on day n − 1 are 0.5%
and 2.5% respectively.

• The variance and covariance for day n would be updated as follows:

σ2
x,n = 0.95× 0.012 + 0.05× 0.0052 = 0.00009625;

σ2
y,n = 0.95× 0.022 + 0.05× 0.0252 = 0.00041125;

covn = 0.95× 0.00012 + 0.05× 0.005× 0.025 = 0.00012025.
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Correlations: Example

• The new volatility of X is
√

0.00009625 = 0.981%.

• The new volatility of Y is
√

0.00041125 = 2.028%.

• The new coefficient of correlation between X and Y is

0.00012025

0.00981× 0.02028
= 0.6044.
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Correlations

• GARCH models can also be used for updating covariance estimates and
forecasting the future level of covariances.

• For example the GARCH(1,1) model for updating a covariance is

covn = ω + αxn−1yn−1 + βcovn−1

and the long-term average covariance is ω/(1− α− β).

• Similar formulas to those discussed above can be developed for forecasting
future covariances and calculating the average covariance during the life
time of an option.
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Consistency condition for covariances

• Once all the variances and covariances have been calculated, a
variance-covariance matrix can be constructed.

• When i 6= j , the (i , j) element of this matrix shows the covariance between
variable i and j ; when j = i it shows the variance of variable i .

• Not all variance-covariance matrices are internally consistent; the condition
for an N × N variance-covariance matrix Ω to be internally consistent is

wT · Ω · w ≥ 0

for all N × 1 vectors w , where wT is the transpose of w ; such a matrix is
positive-semidefinite.

• To understand why the last condition must hold, suppose that wT

is (w1, ...,wn); the expression wT ·Ω ·w is the variance of w1x1 + ...+ wnxn
where xi is the value of the variable i ; as such it cannot be negative.
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Consistency condition for covariances

• To ensure that a positive-semidefinite matrix is produced, variances and
covariances should be calculated consistently.

• For example, if variances are calculated by giving equal weight to the last m
data items, the same should be done for covariances.

• If variances are updated using an EWMA model with λ = 0.94 the same
should be done for covariances.

• An example of a variance-covariance matrix that it is not internally
consistent is  1 0 0.9

0 1 0.9
0.9 0.9 1


• The variance of each variable is 1.0 and so the covariances are also

coefficients of correlation.

• The first variable is highly correlated with the third variable and the second
variable is highly correlated with the third variable.

• However there is no correlation at all between the first and the second
variables; this seems strange; when we set w equal to (1, 1,−1) we find
that the positive semi-definiteness condition above is not satisfied proving
that the matrix is not positive-semidefinite.

53 / 58



Quantitative
Finance 2015:

Lecture 12

Lecturer
today:

F.
Fringuellotti

Estimating
volatility and
correlations

Introduction

Estimating
volatility:
EWMA and
GARCH(1,1)

Maximum
Likelihood
methods

Using GARCH
(1, 1) model to
forecast volatility

Correlations

Extensions of
GARCH

References

Outline of the Presentation

1 Estimating volatility and correlations
Introduction
Estimating volatility: EWMA and GARCH(1,1)
Maximum Likelihood methods
Using GARCH (1, 1) model to forecast volatility
Correlations
Extensions of GARCH

54 / 58



Quantitative
Finance 2015:

Lecture 12

Lecturer
today:

F.
Fringuellotti

Estimating
volatility and
correlations

Introduction

Estimating
volatility:
EWMA and
GARCH(1,1)

Maximum
Likelihood
methods

Using GARCH
(1, 1) model to
forecast volatility

Correlations

Extensions of
GARCH

References

Extensions of GARCH

• Exponential GARCH (EGARCH)

• Threshold GARCH (TGARCH)
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Exponential GARCH (EGARCH)

• The EGARCH model is a GARCH variant that models the logarithm of the
conditional variance.

• It includes a leverage term to capture the asymmetric effects between
positive and negative asset returns.

• The EGARCH(1,1) model takes the following form:

log σ2
n = ω + αg (εn−1) + β log σ2

n−1,

where εn = un/σn and g(εn) = θεn + γ(|εn| − E [|εn|]).

• Since negative returns have a more pronounced effect on volatility than
positive returns of the same magnitude, the parameter θ usually takes
negative values.
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Threshold GARCH (TGARCH)

• The TGARCH model is a specification of conditional variance.

• Like the EGARCH model, it allows positive returns to have a larger/smaller
impact on volatility than negative returns.

• The TGARCH(1,1) model has the following form:

σ2
n = ω + (α+ γNn−1)u2

n−1 + βσ2
n−1

where Nn−1 is an indicator for negative un−1, that is

Nn−1 =

{
1 if un−1 < 0

0 if un−1 ≥ 0
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