Prof. Dr. Erich Walter Farkas

Chapter 9: Implied volatility

A preparation: solving a nonlinear equation Computing the implied volatilit

Reference

Lecture Quantitative Finance Spring Term 2015

Prof. Dr. Erich Walter Farkas

Lecture 11: May 7, 2015

(日) (同) (三) (三)

-

1/29

Prof. Dr. Erich Walter Farkas

Chapter 9: Implied volatility

A preparation: solving a nonlinear equation Computing the implied volatilit

Reference

1 Chapter 9: Implied volatility

A preparation: solving a nonlinear equation Computing the implied volatility

イロン イヨン イヨン イヨン

э

2/29

Motivation and setup

Finance 2015: Lecture 11 Prof. Dr.

Quantitative

Erich Walter Farkas

Chapter 9: Implied volatility

A preparation: solving a nonlinear equation

Computing the implied volatility

Reference

- the goal of this chapter is to treat the implied volatility which requires an algorithm for solving a nonlinear equation
- the general problem is
 - given a function $F: \mathbb{R} \to \mathbb{R}$, find an $x^* \in \mathbb{R}$ such that $F(x^*) = 0$
- in general, of course, we cannot find an x* analytically, and must therefore content ourselves with an approximation via a computational method
- it is worth keeping in mind that, depending on the nature of F, there may be no suitable x*, exactly one x* or many x* values
- we introduce two algorithms for solving a nonlinear equation
 - the bisection method
 - Newton's method (also called Newton-Raphson method)

The bisection method

4 / 29

- is based on the observation that if a continuous function changes sign, then it must pass through zero, that is
 - for continuous functions F, if x_a < x_b with F(x_a)F(x_b) < 0 then there exists some x* with x_a < x* < x_b with F(x*) = 0
- having found x_a and x_b with F(x_a)F(x_b) < 0 we could evaluate F at the mid-point x_{mid} := (x_a + x_b)/2
- the sign of F(x_{mid}) must match either the sign of F(x_a) or F(x_b); this means that one of the intervals [x_a, x_{mid}] or [x_{mid}, x_b] must contain an x*
- by repeating this process we can construct an arbitrarily small interval in which an x* must lie, hence we can find an x* to any level of accuracy

Chapter 9: Implied volatility

Quantitative Finance 2015: Lecture 11

Prof. Dr. Erich Walter Farkas

A preparation: solving a nonlinear equation

Computing the implied volatility

Reference

Prof. Dr. Erich Walter Farkas

Chapter 9: Implied volatility

A preparation: solving a nonlinear equation

Computing the implied volatility

Reference

The bisection method: algorithm

- Step 1: find x_a and x_b with x_a < x_b such that F(x_a)F(x_b) ≤ 0
- Step 2: set $x_{mid} := (x_a + x_b)/2$ and evaluate $F(x_{mid})$
- Step 3: if F(x_a)F(x_{mid}) < 0 then reset x_b = x_{mid}. Otherwise reset x_a = x_{mid}
- Step 4: if x_b − x_a < ε then stop. Use (x_a + x_b)/2 as the approximation to x*. Otherwise return to Step 2.
- note that we must choose a value ε > 0 for our stopping criterion x_b x_a < ε
- it is easy to see that the value (x_a + x_b)/2 on termination is no more than a distance ε/2 from a solution x* (hence ε controls the accuracy of the process)
- because the bisection method halves the length of the interval $[x_a, x_b]$ on each iteration, we may bound the error at the *k*th iteration by $L/2^{k+1}$ where *L* is the length of the original interval, $x_b x_a$
- this is referred to as a linear convergence bound because the error decreases by a linear factor (in this case 1/2) on each iteration

Newton's method

Finance 2015: Lecture 11 Prof. Dr. Erich Walter

Quantitative

Erich Walter Farkas

Chapter 9: Implied volatility

A preparation: solving a nonlinear equation

Computing the implied volatility

Reference

- is faster than the bisection method
- can be derived in a number of ways: here we will use a Taylor series approach
- suppose we wish to compute a sequence x₀, x₁, x₂, ... that converges to a solution x*
- we may expand $F(x + \delta)$ for small δ by

$$F(x_n + \delta) = F(x_n) + \delta F'(x_n) + O(\delta^2)$$

- ignoring $O(\delta^2)$ and setting $F(x_n) + \delta F'(x_n) = 0$ gives $\delta = -F(x_n)/F'(x_n)$
- it follows that if x_n is close to a solution x^{*} then

$$x_{n+1} = x_n - \frac{F(x_n)}{F'(x_n)}$$

should be even closer

• given a starting value, x_0 , the last iteration defines Newton's method

Newton's method

イロト 不得下 イヨト イヨト 二日

7 / 29

Finance 2015: Lecture 11 Prof. Dr.

Quantitative

Erich Walter Farkas

Chapter 9: Implied volatility

A preparation: solving a nonlinear equation

Computing the implied volatility

Reference

- since we discarded an O(δ²) term in Taylor's approximation we may expect that the error x_n − x* squares as n increases to n + 1: that is if x_n − x* = O(δ) then x_{n+1} − x* = O(δ²)
- to see this more clearly, note that using $F(x^*) = 0$ and assuming $F'(x_n) \neq 0$ a Taylor series gives

$$\begin{aligned} x_{n+1} - x^* &= x_n - x^* - \left(\frac{F(x_n) - F(x^*)}{F'(x_n)}\right) \\ &= x_n - x^* \\ &- \frac{(x_n - x^*)F'(x_n) + O((x_n - x^*)^2)}{F'(x_n)} \\ &= O((x_n - x^*)^2) \end{aligned}$$

• this type of analysis can be formalised in a theorem

Prof. Dr. Erich Walter Farkas

Chapter 9: Implied volatility

A preparation: solving a nonlinear equation

Computing the implied volatility

Reference

Newton's method: Theorem

Suppose

• F has a continuous second derivative

•
$$x^* \in \mathbb{R}$$
 satisfies $F(x^*) = 0$ and $F'(x^*) \neq 0$

Then

- there exists a $\delta > 0$ such that for $\mid x_0 - x^* \mid < \delta$ the sequence given by

$$x_{n+1} = x_n - \frac{F(x_n)}{F'(x_n)}$$

is well-defined for all n > 0,

with

$$\lim_{n\to\infty}\mid x_n-x^*\mid=0,$$

• and there exists a constant C > 0 such that

$$|x_{n+1} - x^*| \le C |x_n - x^*|^2$$
.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Newton's method: comments

イロト 不同下 イヨト イヨト

3

9/29

Quantitative Finance 2015: Lecture 11

Prof. Dr. Erich Walter Farkas

Chapter 9: Implied volatility

A preparation: solving a nonlinear equation

Computing the implied volatility

Reference

- the last inequality shows that Newton's method has a quadratic (or second order) convergence
- this result requires the starting value x₀ to be chosen sufficiently close to x^{*}; in practice Newton's method works very well when a suitable x₀ is found, but may fail to converge otherwise

Prof. Dr. Erich Walter Farkas

Chapter 9: Implied volatility

A preparation: solving a nonlinear equation

Computing the implied volatility

Reference

Newton's method: computational example

- suppose we wish to find the value of x^* such that $\mathbb{P}(X \le x^*) = \frac{2}{3}$ where $X \sim N(0, 1)$
- essentially we want to solve F(x) = 0, where $F(x) := N(x) \frac{2}{3}$ with

$$N(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{s^2}{2}} ds$$

- it follows from the definition of N that F is an increasing function and $F(0) = \frac{1}{2} \frac{2}{3} < 0$ and $\lim_{x \to \infty} F(x) = 1 \frac{2}{3} > 0$
- hence we may immediately conclude that the equation F(x) = 0 has a unique solution $0 < x^* < \infty$

Prof. Dr. Erich Walter Farkas

Chapter 9: Implied volatility

A preparation: solving a nonlinear equation

Computing the implied volatility

Reference

Newton's method: computational example (cont'd)

- we may apply the bisection method with $x_a = 0$ and with x_b sufficiently large such that $F(x_b) > 0$
- for the choice $x_b = 10$ and a tolerance of $\varepsilon = 10^{-5}$ in the stopping criterion the bisection method needs 20 iterations
- setting $x_0 = 1$ and stopping with Newton's method when $|x_{n+1} - x_n| < 10^{-5}$ only four iterations are needed to produce an error of around 10^{-12} and the error roughly squares from one step to the next
- repeating Newton's method with $x_0 = 2$ however, results in a sequence that blows-up

Motivation

- the Black-Scholes call and put values depend on S, K, r, T t and σ^2
- of these five quantities, only the asset volatility cannot be observed directly; how do we find a suitable value for σ?
- approach: extract the volatility from the observed market data given a quoted option value, and knowing S, t, K, r and T find the σ that leads to this value
- having found σ , we may use Black-Scholes formula to value other options on the same asset
- a σ computed this way is known as an *implied volatility*; the name indicated that σ is implied by option value data in the market
- this is a totally different way to get σ compared with the historical volatility

Finance 2015: Lecture 11 Prof. Dr. Erich Walter Farkas

Quantitative

Chapter 9: Implied volatility

A preparation: solving a nonlinear equation

Computing the implied volatility

Reference

Prof. Dr. Erich Walter Farkas

Chapter 9: Implied volatility

A preparation: solving a nonlinear equation

Computing the implied volatility

Reference

Option value as a function of volatility

- we focus here on the case of extracting σ from a European call option quote
- an analogous treatment can be given for a put, or alternatively, the put quote could be converted into a call quote via put-call parity
- we assume that the parameters *K*, *r* and *T* and the asset price *S* and time *t* are known
- in practice we will typically be interested in the time-zero case, t = 0 and $S = S_0$
- we thus treat the option value as function of σ only, and, from now on, denote it by $C(\sigma)$
- given a quoted value C^* , our task is to find the implied volatility σ^* that solves $C(\sigma^*) = C^*$
- it is possible to exploit the special form of the nonlinear equation arising in this context

Prof. Dr. Erich Walter Farkas

Chapter 9: Implied volatility

A preparation: solving a nonlinear equation

Computing the implied volatility

Reference

Option value as a function of volatility:

 $\sigma \to \infty$

- since volatility is non-negative, only values $\sigma \in [0,\infty)$ are of interest
- let us look at C(σ) in the case of large or small volatility
- first assume $\sigma \to \infty$ • recall

$$d_1 = \frac{\log(S/K) + (r + \frac{1}{2}\sigma^2)(T - t)}{\sigma\sqrt{T - t}}$$

so that $d_1
ightarrow \infty$ and hence ${\it N}(d_1)
ightarrow 1$

- similarly $d_2 = d_1 \sigma \sqrt{T t}$ so that $d_2 \to -\infty$ and hence $N(d_2) \to 0$
- using Black-Scholes formula

$$\mathcal{C}(\sigma) = S \cdot \mathcal{N}(d_1) - \mathcal{K} \cdot e^{-r(T-t)} \cdot \mathcal{N}(d_2)$$

it follows that

$$\lim_{\sigma\to\infty}C(\sigma)=S$$

Prof. Dr. Erich Walter Farkas

Chapter 9: Implied volatility

A preparation solving a nonlinear equation

Computing the implied volatility

Reference

Option value as a function of volatility:

 $\sigma
ightarrow 0^+$

- next we look at $\sigma
 ightarrow 0^+$ and distinguish three cases
 - S Ke^{-r(T-t)} > 0; in this case log(S/K) + r(T t) > 0 so that if σ → 0⁺ we have d₁ → ∞, N(d₁) → 1, d₂ → ∞ and N(d₂) → 1. Hence, C → S - Ke^{-r(T-t)}.
 S - Ke^{-r(T-t)} < 0; in this case log(S/K) + r(T - t) < 0 so that if σ → 0⁺ we have d₁ → -∞, N(d₁) → 0, d₂ → -∞ and N(d₂) → 0. Hence, C → 0.
 - 3 $S Ke^{-r(T-t)} = 0$; in this case $\log(S/K) + r(T-t) = 0$ so that if $\sigma \to 0^+$ we have $d_1 \to 0$, $N(d_1) \to 1/2$, $d_2 \to 0$ and $N(d_2) \to 1/2$. Hence, $C \to \frac{1}{2}(S - Ke^{-r(T-t)}) = 0$.

• these three cases are summarized neatly by the formula

$$\lim_{\sigma \to 0^+} C(\sigma) = \max(S - Ke^{-r(T-t)}, 0)$$

Prof. Dr. Erich Walter Farkas

Chapter 9: Implied volatility

A preparation: solving a nonlinear equation

Computing the implied volatility

Reference

Bounds for the option value as a function of volatility

 now we recall from previous lectures that the derivative of C with respect to σ, that is the vega, is given by

$$\mathsf{vega} = S\,\sqrt{T-t}\,\mathsf{N}'(d_1)$$

and in particular we know that $\partial C / \partial \sigma > 0$

 since C = C(σ) is continuous with a positive first derivative, we conclude that C is monotonically increasing on [0, ∞)

from

$$\lim_{\sigma \to 0^+} C(\sigma) = \max(S - Ke^{-r(T-t)}, 0)$$

and from

$$\lim_{\sigma\to\infty}C(\sigma)=S$$

the values of $C(\sigma)$ must lie between max $(S - Ke^{-r(T-t)}, 0)$ and S

• consequently the equation $C(\sigma) = C^*$ has a solution if, and only if,

$$\max(S - Ke^{-r(T-t)}, 0) \leq C^* \leq S$$

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 の Q で 16 / 29

Prof. Dr. Erich Walter Farkas

Chapter 9: Implied volatility

A preparation: solving a nonlinear equation

Computing the implied volatility

Reference

The second derivative of $C(\sigma)$

- for later use we will calculate the second derivative
- differentiating

$$\mathsf{vega} := rac{\partial C}{\partial \sigma} S \sqrt{T-t} \, \mathsf{N}'(d_1)$$

we get

$$\frac{\partial^2 C}{\partial \sigma^2} = -\frac{S\sqrt{T-t}}{\sqrt{2\pi}} e^{-\frac{1}{2}d_1^2} d_1 \frac{\partial d_1}{\partial \sigma}$$

using

$$d_1 = \frac{\log(S/K) + (r + \frac{1}{2}\sigma^2)(T - t)}{\sigma\sqrt{T - t}}$$

we have

$$\begin{aligned} \frac{\partial d_1}{\partial \sigma} &= -\frac{\log(S/K) + r(T-t)}{\sigma^2 \sqrt{T-t}} + \frac{1}{2} \sqrt{T-t} \\ &= -\frac{\log(S/K) + (r-\sigma^2/2)(T-t)}{\sigma^2 \sqrt{T-t}} = -\frac{d_2}{\sigma} \end{aligned}$$

Prof. Dr. Erich Walter Farkas

Chapter 9: Implied volatility

A preparation: solving a nonlinear equation

Computing the implied volatility

Reference

The second derivative of $C(\sigma)$ (cont'd)

consequently

$$\frac{\partial^2 C}{\partial \sigma^2} = \frac{S\sqrt{T-t}}{\sqrt{2\pi}} e^{-\frac{1}{2}d_1^2} \cdot \frac{d_1d_2}{\sigma} = \frac{d_1d_2}{\sigma} \frac{\partial C}{\partial \sigma}$$

• from the last equation it follows that $\partial C/\partial \sigma$ has its maximum over $[0,\infty)$ at $\sigma = \hat{\sigma}$ given by

$$\widehat{\sigma} := \sqrt{2 \mid rac{\log(S/\mathcal{K}) + r(\mathcal{T} - t)}{\mathcal{T} - t} \mid}$$

Exercise Prove that $\partial C/\partial \sigma$ has a unique maximum over $[0,\infty)$ at $\sigma = \hat{\sigma}$ defined above.

moreover

$$\frac{\partial^2 C}{\partial \sigma^2} = \frac{T - t}{4\sigma^3} (\hat{\sigma}^4 - \sigma^4) \frac{\partial C}{\partial \sigma}$$

Prof. Dr. Erich Walter Farkas

Chapter 9: Implied volatility

A preparation solving a nonlinear equation

Computing the implied volatility

Reference

Bisection for computing the implied volatility

- we will write our nonlinear equation for σ^* in the form $F(\sigma) = 0$ where $F(\sigma) = C(\sigma) C^*$
- to apply the bisection method, we require an interval [σ_a, σ_b] over which F(σ) changes its sign
- it follows from

$$\lim_{\sigma\to\infty}C(\sigma)=S$$

and from

$$\lim_{\sigma\to 0^+} C(\sigma) = \max(S - Ke^{-r(T-t)}, 0)$$

and the monotonicity of $C(\sigma)$ that this can be done by fixing K (say K = 0.05) and trying [0, K], [K, 2K], [2K, 3K],...

<ロ><一><一><一><一><一><一><一</td>19/29

Prof. Dr. Erich Walter Farkas

Chapter 9: Implied volatility

A preparation solving a nonlinear equation

Computing the implied volatility

Reference

Newton's method for computing the implied volatility

Newton's method takes the form

$$\sigma_{n+1} = \sigma_n - \frac{F(\sigma_n)}{F'(\sigma_n)}$$

where $F'(\sigma) = \frac{\partial C}{\partial \sigma}$ is given above • using $F(\sigma^*) = 0$ and the mean value theorem, we have

$$\sigma_{n+1} - \sigma^* = \sigma_n - \sigma^* - \frac{F(\sigma_n) - F(\sigma^*)}{F'(\sigma_n)}$$
$$= \sigma_n - \sigma^* - \frac{(\sigma_n - \sigma^*)F'(\xi_n)}{F'(\sigma_n)}$$

for some ξ_n between σ_n and σ^*

hence

$$\frac{\sigma_{n+1}-\sigma^*}{\sigma_n-\sigma^*}=1-\frac{F'(\xi_n)}{F'(\sigma_n)}$$

<ロト < 部ト < 目ト < 目ト 目 のQで 20/29

Prof. Dr. Erich Walter Farkas

Chapter 9: Implied volatility

A preparation: solving a nonlinear equation

Computing the implied volatility

Reference

Newton's method for computing the implied volatility

- we know that $F'(\sigma)$ is positive and takes its maximum at the point $\widehat{\sigma}$ from above
- hence, using the starting value $\sigma_0 = \hat{\sigma}$ we must have $0 < F'(\xi_0) < F'(\sigma)$ so that the last equality implies

$$0 < \frac{\sigma_1 - \sigma^*}{\sigma_0 - \sigma^*} < 1$$

- this means that the error in σ_1 is smaller than, but has the same sign as, the error in σ_0
- we will distinguish if $\widehat{\sigma} < \sigma^*$ or if $\widehat{\sigma} > \sigma^*$

Prof. Dr. Erich Walter Farkas

Chapter 9: Implied volatility

A preparation: solving a nonlinear equation

Computing the implied volatility

Reference

Newton's method for computing the implied volatility

- to proceed assume first that $\widehat{\sigma} < \sigma^*$
 - then from the last inequalities we have $\sigma_0 < \sigma_1 < \sigma^*$
 - we know $F''(\sigma) < 0$ for all $\sigma > \widehat{\sigma}$ and ξ_1 lies between σ_1 and σ^*
 - hence $0 < F'(\xi_1) < F'(\sigma_1)$ and

$$0 < \frac{\sigma_2 - \sigma^*}{\sigma_1 - \sigma^*} < 1$$

repeating this argument we get

$$0 < rac{\sigma_{n+1} - \sigma^*}{\sigma_n - \sigma^*} < 1 \quad ext{for all} \quad n \geq 0$$

so the error decreases monotonically as n increases

• in a similar manner one can treat the case $\widehat{\sigma} > \sigma^*$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Prof. Dr. Erich Walter Farkas

Chapter 9: Implied volatility

A preparation: solving a nonlinear equation

Computing the implied volatility

Reference

Newton's method for computing the implied volatility

- overall we conclude that with the choice $\sigma_0 = \hat{\sigma}$ the error will always decrease monotonically as *n* increases
- it follows that the error must tend to zero and the previous theory shows that the convergence must be quadratic
- therefore using $\sigma_0=\widehat{\sigma}:$ this is our method for computing the implied volatility

Prof. Dr. Erich Walter Farkas

Chapter 9: Implied volatility

A preparation: solving a nonlinear equation

Computing the implied volatility

Reference

Implied volatility with real data

- we now look at the implied volatility for call options traded at the London International Financial Futures and Options Exchange (LIFFE) as reported in the *Financial Times* on Wednesday, 22 August 2001
- the data is for the FTSE 100 index, which is an average of 100 equity shares quoted on the London Stock Exchange

Exercise price	Option price
5125	475
5225	405
5325	340
5425	280.5
5525	226
5625	179.5
5725	139
5825	105

Prof. Dr. Erich Walter Farkas

Chapter 9: Implied volatility

A preparation solving a nonlinear equation

Computing the implied volatility

Reference

Implied volatility with real data

- the expiry date for these options was December 2001
- the initial price (on 22 August 2001) was 5420.3
- we take values of r = 0.05 for the interest rate and T = 4/12 for the duration of the option
- the implied volatility computed for the eight different exercise prices is decreasing (from approx. 0.19 to 0.174)
- of course, if Black-Scholes formula would be valid, the volatility would be the same for each exercise price
- however in this example the implied volatility varies by around 10%

Prof. Dr. Erich Walter Farkas

Chapter 9: Implied volatility

A preparation: solving a nonlinear equation

Computing the implied volatility

Reference

Implied volatility with real data

- note: implied volatility is higher for in-the-money equity call options than for out-of-the-money equity call options
- this behaviour is typical for data arising after the stock market crash of October 1987
- pre-crash plots of implied volatility against exercise price would often produce a convex *smile* shape; more recent data tends to produce more of a *frown*

Prof. Dr. Erich Walter Farkas

Chapter 9: Implied volatility

A preparation: solving a nonlinear equation

Computing the implied volatility

Reference

Implied volatility: some final comments

- the widely reported phenomenon that the implied volatility is not constant as other parameters are varied does, of course, imply that the Black-Scholes formulas fail to describe the option values that arise in the marketplace
- this should be no surprise, given that the theory is based on a number of simplifying assumptions
- despite the disparities, the Black-Scholes theory, and the insights that it provides, continue to be regarded highly by both academics and market traders
- it is common for option values to be quoted in terms of vol; rather than giving C*, the σ* such that C(σ*) = C* in the Black-Scholes formula is used to describe the value
- many attempts have been made to fix the nonconstant volatility discrepancy in the Black-Scholes theory; a few of these have met with some success but none lead to the simple formulas and clean interpretation of the original work: see Chapter 17 of Hull (2000)

Prof. Dr. Erich Walter Farkas

Chapter 9: Implied volatility

A preparation: solving a nonlinear equation

Computing the implied volatility

Reference

Answer to the Exercise

(日) (同) (三) (三)

3

28 / 29

Exercise Hint: Discuss the monotonicity of $\partial C/\partial \sigma$ analysing the sign of $\frac{\partial^2 C}{\partial \sigma^2}$

Reference

(日) (同) (三) (三)

-

29 / 29

Quantitative Finance 2015: Lecture 11

Prof. Dr. Erich Walter Farkas

Chapter 9: Implied volatility

A preparation: solving a nonlinear equation Computing the implied volatilit

Reference

Higham, Desmond J., "An Introduction to Financial Option Valuation - Mathematics, Stochastics and Computation", Cambridge University Press, 2004, Chapter 14: Implied Volatility.