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Introduction

• key words: modeling dependencies and copulas

• the study of copulas and their applications (in risk management,
in option pricing) is a rather modern phenomenon!

• several international conferences in the last 15 years!

• why are copulas of interest to students?
Fisher, Encyclopedia of Statistical Sciences (1997):

• firstly: as a way of studying scale-free measures of
dependence

• secondly: as a starting point for constructing families of
bivariate distributions, sometimes with a view to simulation
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Introduction

• the word copula is a Latin noun that means ”a link, tie, bond”
(Casell’s Latin Dictionary)

• is used in grammar and logic to describe ”that part of a
proposition which connects the subject and predicate” (Oxford
English Dictionary)

• aim of Quantitative Risk Management: find good joint models
F (x1, ..., xn), e.g. Nn(µ,Σ); tnk (µ,Σ)

• the whole idea of copulas is to go from individual models to the
joint model

• if we don’t have a basic joint model then we can try to use
copulas!
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Generalities on bivariate copulas: Outline

• Grounded functions

• Margins

• 2-increasing functions

• Definition of copulas

• Frechet bounds for copulas
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Grounded functions

• let S1 and S2 be nonempty subsets of [−∞,∞]

• Definition:

• suppose S1 has a least element a1 and S2 has a least
element a2

• a function H : S1 × S2 → R is grounded if

H(x , a2) = 0 = H(a1, y) for all (x , y) ∈ S1 × S2.

• Example:

H : [−1, 1]× [0,∞]→ R

H(x , y) =
(x + 1)(ey − 1)

x + 2ey − 1

is grounded!
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Margins

• let S1 and S2 be nonempty subsets of [−∞,∞]

• Definition:

• suppose S1 has a greatest element b1 and b2 has a
greatest element b2

• a function H : S1 × S2 → R has margins and the margins
of H are given by:

F (x) = H(x , b2) for all x ∈ S1

G (y) = H(b1, y) for all y ∈ S2.
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Margins: Example

• Example:

• the function H : [−1, 1]× [0,∞]→ R

H(x , y) =
(x + 1)(ey − 1)

x + 2ey − 1

has margins:
•

F (x) = H(x ,∞) =
x + 1

2
•

G (y) = H(1, y) = 1− e−y
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2-increasing functions

• let S1 and S2 be nonempty subsets of [−∞,∞]

• Definition:

• let B = [x1, x2]× [y1, y2] ⊂ S1 × S2

• the H-volume of the rectangle B is

VH(B) = ∆x2
x1

∆y2
y1
H(x , y)

• or

VH(B) = H(x2, y2)− H(x2, y1)− H(x1, y2) + H(x1, y1)

• a function H : S1 × S2 → R is 2-increasing if VH(B) ≥ 0 for all
rectangles B ⊂ S1 × S2
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2-increasing functions: Examples

• Example 1:

• H : [0, 1]× [0, 1]→ R

H(x , y) = (2x − 1)(2y − 1) is 2-increasing!

• however it is decreasing in x for any y ∈ (0, 1/2) and
decreasing in y for any x ∈ (0, 1/2)!
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Grounded and 2-increasing functions

• Example 2:

• H : [0, 1]× [0, 1]→ R

H(x , y) = max (x , y)

is a nondecreasing function of x and a nondecreasing
function of y

• however
VH([0, 1]× [0, 1]) = −1

thus H is NOT 2-increasing

• grounded and 2-increasing implies non-decreasing in each
argument!
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(Bivariate) Copulas: Definition

• a function C : [0, 1]× [0, 1]→ [0, 1] is a copula if

1 C is grounded,
2 for every u, v ∈ [0, 1]

C (u, 1) = u and C (1, v) = v

3 C is 2-increasing.
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Bivariate copulas: Examples

• fundamental examples

Π(x , y) = xy

W (x , y) = max (x + y − 1, 0)

M(x , y) = min (x , y)

• let α, β ∈ [0, 1] with α + β ≤ 1; then

Cα,β(x , y) = αM(x , y) + (1− α− β)Π(x , y) + βW (x , y)

is a copula (Frechet-Mardia)!
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Bivariate copulas: Frechet bounds

• lower Frechet-Hoeffding bound (copula only for n = 2):

W (u, v) = max (u + v − 1, 0)

• upper Frechet-Hoeffding bound (a copula also for n ≥ 2):

M(u, v) = min (u, v)

• note that for any copula C

W (u, v) ≤ C (u, v) ≤ M(u, v)
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Distribution functions

• Definition:

a distribution function is a function F : [−∞,∞]→ [0, 1] such
that

• F is nondecreasing
• F (−∞) = 0 and F (+∞) = 1

• Example: (unit step at a)

εa(x) =

 0 , x ∈ [−∞, a)

1 , x ∈ [a,∞]
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Distribution functions: Example

• the uniform distribution on [a, b]:

Uab(x) =


0 , x ∈ [−∞, a)

x−a
b−a , x ∈ [a, b]

1 , x ∈ (b,∞]
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Joint distribution functions

• a function H : [−∞,∞]× [−∞,∞]→ [0, 1] is a joint
distribution function if

• H is 2-increasing
• H(x ,−∞) = 0 = H(−∞, y) and H(∞,∞) = 1

• Remark: note that H is grounded and has margins

F (x) = H(x ,∞) and G (y) = H(∞, y)

which are distribution functions
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Joint distribution functions: Examples

• H(x , y) =



(x+1)(ey−1)
x+2ey−1 , (x , y) ∈ [−1, 1]× [0,∞)

1− e−y , (x , y) ∈ (1,∞)× [0,∞]

0, , elsewhere.

• margins:

F (x) = U−1,1(x) =


0 , x ∈ [−∞,−1)

x+1
2 , x ∈ [−1, 1]

1 , x ∈ (1,∞]

G (y) =

 0 , y ∈ [−∞, 0)

1− e−y , y ∈ [0,∞]
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Sklar’s theorem

1 let H be a joint distribution function with margins F and G

• then there exists a copula C such that for all
x , y ∈ [−∞,∞]

H(x , y) = C (F (x),G (y))

• if F and G are continuous, then C is unique; otherwise, C
is uniquely determined on RanF × RanG

2 conversely, if C is a copula and F and G are distribution
functions, then the function H defined as a above is a joint
distribution function with margins F and G
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Sklar’s theorem: Example

• consider

H(x , y) =



(x+1)(ey−1)
x+2ey−1 , (x , y) ∈ [−1, 1]× [0,∞)

1− e−y , (x , y) ∈ (1,∞)× [0,∞]

0, , elsewhere.

• then the associated copula is

C (u, v) =
uv

u + v − uv

• check it in the class!

20 / 54



Quantitative
Finance 2015:

Lecture 7

Lecturer
today:

E. W. Farkas

6.1
Fundamentals
on copulas

Introduction

Generalities on
bivariate copulas

Distribution -
and joint
distribution
functions

Sklar’s theorem

Copulas and
random variables

Archimedean
copulas

Multivariate
copulas

Quasi-inverse of a distribution function

• let F be a distribution function

• a quasi-inverse of F is any function F (−1) : [0, 1]→ R such that

1 if t ∈ RanF then F (−1)(t) is any number in [−∞,∞] such
that F (x) = t, i.e. for all t ∈ RanF

F (F (−1)(t)) = t;

2 if t /∈ RanF , then

F (−1)(t) = inf {x : F (x) ≥ t} = sup {x : F (x) ≤ t} .

• if F is strictly increasing, then it has a single quasi-inverse,
which is of course the ordinary inverse, for which we use the
customary notation F−1
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Quasi-inverse of a distribution function: Example

• the quasi-inverses of εa, the unit step at a are the functions
given by:

ε
(−1)
a (t) =


a0 , t = 0

a , t ∈ (0, 1)

a1, , t = 1

where a0 and a1 are any numbers in [∞,∞] such that
a0 < a ≤ a1
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Sklar’s theorem using quasi-inverse of distribution

functions

• let H be a joint distribution function with margins F and G

• let the copula C given by Sklar’s theorem, i.e. such that
for all x , y ∈ [−∞,∞]

H(x , y) = C (F (x),G (y))

• let F (−1) and G (−1) be quasi-inverses of F and G
respectively

• then for any u, v ∈ [0, 1]

C (u, v) = H(F (−1)(u),G (−1)(v))
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Gumbel’s bivariate exponential distribution

• let θ ∈ [0, 1] and let Hθ be the joint distribution function given
by

Hθ(x , y) =

 1− e−x − e−y + e−(x+y+θxy) , x ≥ 0, y ≥ 0

0 , otherwise

• the marginal distribution functions are exponentials, with
quasi-inverses given for u, v ∈ [0, 1] by

F (−1)(u) = − log(1− u) and G (−1)(v) = − log(1− v)

• hence the corresponding copula is given by

Cθ(u, v) = u + v − 1 + (1− u)(1− v) e−θ log(1−u) log(1−v)
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Copulas as joint distribution with uniform margins

• let C be a copula and define HC : [−∞,∞]× [−∞,∞]→ [0, 1]

HC (x , y) =



0 , x < 0 and y < 0,

C (x , y) , x , y ∈ [0, 1]

x , y > 1, x ∈ [0, 1]

y , x > 1, y ∈ [0, 1]

1 , x > 1 and y > 1

• then HC is a distribution function both of whose margins are
readily seen to be U01

• Interpretation: copulas are restrictions to [0, 1]× [0, 1] of joint
distributions whose margins are U01
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Copulas and random variables

• consider X and Y two random variables with distribution
functions F and G respectively, i.e.

F (x) = P[X ≤ x ] G (y) = P[Y ≤ y ],

and joint distribution function H, i.e.

H(x , y) = P[X ≤ x ,Y ≤ y ]

• then the copula C given by Sklar’s Theorem is called the copula
of X and Y and is denoted CXY

• Theorem:

• let X and Y two random variables with continuous
distribution functions

• then X and Y are independent if, and only if, CXY = Π
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Copulas and dependence structure

• Sklars theorem shows how a unique copula C describes in a
sense the dependence structure of the multivariate distribution
function of a random vector X = (X1,X2)

• This motivates a further

Definition:

The copula of (X1,X2) is the distribution function C of
(F1(X1),F2(X2))
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Copulas and dependence structure

Theorem:

• let X and Y two random variables with continuous distribution
functions

• then CXY is invariant under strictly increasing transformations
of X and Y ,
i.e. if α and β are strictly increasing on RanF and RanG then
Cα(X )β(Y ) = CXY .
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Construction of bivariate distributions

• if we have a collection of copulas, then, as a consequence of
Sklar’s theorem we automatically have a bivariate or multivariate
distributions with whatever marginal distributions we desire

• by the invariance of the copula under strictly increasing
transformations of the random variables if follows that the
nonparametric nature of the dependence between two random
variables is expressed by a copula

• −→ we need to have a variety of copulas at our disposal!
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Archimedean copulas: pseudo-inverses

• Definition:

• let ϕ : [0, 1]→ [0,∞] be a continuous strictly decreasing
function such that ϕ(1) = 0

• the pseudo-inverse of ϕ is the function

ϕ[−1] : [0,∞]→ [0, 1]

given by: ϕ[−1](t) =

 ϕ−1(t) , 0 ≤ t ≤ ϕ(0),

0 , ϕ(0) ≤ t ≤ ∞.

• note that ϕ[−1] is continuous and non-increasing on [0,∞] and
strictly decreasing on [0, ϕ(0)].

• note that if ϕ(0) =∞ then ϕ[−1] = ϕ−1
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Archimedean copulas: definition

• Theorem:

• let ϕ : [0, 1]→ [0,∞] be a continuous strictly decreasing
function such that ϕ(1) = 0

• ϕ[−1] be the pseudo-inverse of ϕ
• let C : [0, 1]× [0, 1]→ [0, 1] given by:

C (u, v) = ϕ[−1](ϕ(u) + ϕ(v))

• then C is a copula if, and only if, ϕ is convex

• those copulas are called Archimedean and the function ϕ is
called the generator of the copula

• if ϕ(0) =∞ we say ϕ is a strict generator and C is a strict
Archimedean copula
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Archimedean copulas: Example 1

• let ϕ : [0, 1]→ [0,∞], ϕ(t) = − log t

• then ϕ(0) =∞ and ϕ is strict

• thus ϕ[−1](t) = ϕ−1(t) = exp(−t) and the generated copula is

C (u, v) = exp(log u + log v) = uv = Π(u, v)

• consequently Π is a strict Archimedean copula
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Archimedean copulas: Example 2

• let ϕ : [0, 1]→ [0,∞], ϕ(t) = 1− t

• then ϕ[−1](t) = 1− t and 0 for t > 1; i.e.
ϕ[−1](t) = max(1− t, 0)

• consequently the generated copula is

C (u, v) = max(u + v − 1, 0) = W (u, v).

• this means W is also an Archimedean copula

• note that the copula M(u, v) = min(u, v) is not Archimedean
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Archimedean copulas: Example 3

• let θ ∈ (0, 1] and ϕθ : [0, 1]→ [0,∞], ϕθ(t) = log(1− θ log t)

• then ϕθ(0) =∞, ϕθ is strict, and

ϕ
[−1]
θ (t) = ϕ−1

θ (t) = exp[(1− et)/θ]

• consequently the generated copula is

Cθ(u, v) = uv exp(−θ log u log v)
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Archimedean copulas: further examples

• two-parameter family of Archimedean copulas

• α > 0, β ≥ 1

Cα,β(x , y) =
{

[(x−α − 1)β + (y−α − 1)β]1/β + 1
}−1/α
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Looking forward

The next slides are optional material!!!
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Generalities on multivariate copulas: Outline

• Definition

• Sklar’s theorem in n-dimensions

• Multivariate Archimedean copulas, Gumbel copula, Clayton
copula

• Implicit copulas
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Multivariate copulas: definition

A function C : [0, 1]× · · · × [0, 1]→ [0, 1] is a copula if

1 C is grounded,

2 for every i = 1, ..., n and any ui ∈ [0, 1]

C (1, ..., 1, ui , 1, ..., 1) = ui

3 C is n-increasing (i.e. for all (x1, ...xn), (y1, ..., yn) ∈ [0, 1]n with
xj ≤ yi we have

2∑
i1=1

· · ·
2∑

id=1

(−1)i1+...+inC (u1i1 , ..., unin) ≥ 0

where uj1 = xj and uj2 = yj for all j = 1, ..., n.)
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Multivariate copulas: further properties

• n-dimensional copulas are Lipschitz

| C (v1, ..., vn)− C (u1, ..., un) |≤
n∑

k=1

| vk − uk | .

• Definition: n-dimensional distribution functions are functions

H : [−∞,∞]× · · · × [−∞,∞]→ R such that

• H is n-increasing
• H(x1, ..., xn) = 0 for all such that xk = −∞ for at least

one k and H(∞, ...,∞) = 1

• thus H is grounded and the one-dimensional margins are
distribution functions: F1, ...,Fn
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Sklar’s theorem in n-dimensions

• let H be an n-dimensional distribution function with margins
F1, ...,Fn

• then there exists an n-copula C such that for all
x1, ..., xn ∈ [−∞,∞]

H(x1, ..., xn) = C (F1(x1), ...,Fn(xn)).

• if F1, ...,Fn are continuous, then C is unique;
otherwise, C is uniquely determined on RanF1× ...×RanFn

• conversely,

• if C is an n-copula and F1, ...,Fn are distribution functions
• then the function H defined as a above is an n-dimensional

distribution function with margins F1, ...,Fn
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Copulas and dependence structures

• Sklars theorem shows how a unique copula C describes in a
sense the dependence structure of the multivariate distribution
function of a random vector X = (X1, ...,Xn)

• this motivates the further
Definition:

the copula of (X1, ...,Xn) is the distribution function C
of (F1(X1), ...,Fn(Xn))!
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Multivariate Archimedean copulas

• Theorem:

• let ϕ : [0, 1]→ [0,∞] be a continuous strictly decreasing
function such that ϕ(1) = 0 and ϕ(0) =∞

• let ϕ−1 be the inverse of ϕ
• let C : [0, 1]× ...× [0, 1]→ [0, 1] given by:

C (u1, ..., un) = ϕ−1(ϕ(u1) + ...+ ϕ(un)).

• then C is a copula if, and only if, ϕ−1 is completely
monotone on [0,∞), i.e. has derivatives of all orders that
alternate in sign.

• those copulas are called Archimedean and the function ϕ is
called the generator of the copula.

42 / 54



Quantitative
Finance 2015:

Lecture 7

Lecturer
today:

E. W. Farkas

6.1
Fundamentals
on copulas

Introduction

Generalities on
bivariate copulas

Distribution -
and joint
distribution
functions

Sklar’s theorem

Copulas and
random variables

Archimedean
copulas

Multivariate
copulas

Multivariate Archimedean copulas: Examples

• Gumbel copula: θ ≥ 1, ϕθ(t) = (− log t)θ

CGu
θ (u1, ..., un) = exp

(
−
[
(− log u1)θ + ...(− log un)θ

]1/θ)
θ = 1 gives independence, θ →∞ gives comonotonicity

• Clayton copula: θ > 0, ϕθ(t) = t−θ − 1.

CCl
θ (u1, ..., un) =

(
u−θ1 + ...u−θn − d + 1

)−1/θ

θ → 0 gives independence, θ →∞ gives comonotonicity
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Multivariate Archimedean copulas: some remarks

• Pro: multivariate Archimedean copulas can be generated fairly
simple

• Con: all the k-margins of an n-Archimedean copula are identical

• Con: there are only one or two parameters and this limits the
nature of the dependence structure in these families
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Parametric copulas

there are essentially two possibilities:

1 copulas implicit in well-known parametric distributions

• Sklar’s theorem states that we can always find a copula in
a parametric distribution function

• let H be the distribution function and let F1, ...,Fn its
continuous margins

• then the implied copula is

C (u1, ..., un) = H(F
(−1)
1 (u1), ...,F (−1)

n (un))

• such a copula may not have a simple closed form
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Parametric copulas

• closed form parametric copula families generated by some
explicit construction that is known to yield copulas

• the best example is the Archimedean copula family

• these generally have limited numbers of parameters
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Implicit copulas: Example

• Gaussian Copula:

CGa
P (u1, ..., un) = NP

(
N−1(u1), ...,N−1(un)

)
where N denotes the standard univariate distribution function

N(x) =

∫ x

−∞

1
√

2π
e−

t2

2 dt,

NP denotes the joint distribution function of X ∼ Nn(0,P) and P is a
correlation matrix
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Key facts for simulation: Probability and Quantile

Transform

• Proposition 1: (Probability transform)

• let X be a random variable with continuous distribution
function F

• then F (X ) ∼ U01 (standard uniform)
• u ∈ (0, 1)

P(F (X ) ≤ u) = P(X ≤ F−1(u)) = F (F−1(u)) = u,

• Proposition 2: (Quantile transform)

• let U be uniform and F the distribution function of any rv
X

• then F−1(U) has the same distribution with X so that
P(F−1(U) ≤ x) = F (x)
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Key facts for simulation: Probability and Quantile

Transform

• These facts are the key to all statistical simulation
and essential in dealing with copulas

• Simulating Gaussian copula

• Simulate X ∼ Nn(0,P)
• Set U = (Φ(X1), ...,Φ(Xn)) (probability transformation)
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Meta-distributions and their simulation

• by the converse of Sklars Theorem we know that if C is a
copula and F1,..., Fd are univariate distribution functions,
then F (x) = C (F1(x1), ...,Fn(xn)) is a multivariate distribution
functions with margins F1, ...,Fn

• we refer to F as a meta-distribution with the dependence
structure represented by C

• for example, if C is a Gaussian copula we get a meta-Gaussian
distribution and if C is a t copula we get a meta-t distribution

• if we can sample from the copula C , then it is easy to sample
from F : we generate a vector (U1, ...,Un) with distribution

function C and then return (F
(−1)
1 (U1), ...,F

(−1)
n (Un))
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Some additional comments

• correlation is defined only when the variances of the two random
variables are finite

• −→ not ideal when we work with heavy tailed distributions

• example: actuaries who model losses in different business lines
with infinite variance distributions may not describe the
dependence of their risk using correlation!

• correlation of two risks does not depend only on their copula

• correlation is linked to the marginal distributions of the risks!

51 / 54



Quantitative
Finance 2015:

Lecture 7

Lecturer
today:

E. W. Farkas

6.1
Fundamentals
on copulas

Introduction

Generalities on
bivariate copulas

Distribution -
and joint
distribution
functions

Sklar’s theorem

Copulas and
random variables

Archimedean
copulas

Multivariate
copulas

Some additional comments

• often very difficult (in particular in higher dimensions and in
situations where we are dealing with heterogeneous risk factors)
to find a good multivariate model that describes both marginal
behavior and dependence structure effectively

• the copula approach to multivariate models allows us to
consider marginal modeling and dependence modeling issues
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Some conclusions

• copulas help in the understanding of dependence at a deeper
level

• they show us potential pitfalls of approaches to dependence that
focus only on correlation

• they allow us to define alternative dependence structures

• they express dependence on a quantile scale (−→ QRM!)

• they facilitate a bottom-up approach to multivariate model
building

• they are easily simulated and thus lend themselves to Monte
Carlo risk studies

−→ useful in risk management where we often have a much
better idea about the marginal behavior of individual risk factors
than we do about their dependence structure
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