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Remember

• Previous chapters: introduction to the theory of options

• put-call parity

• fundamentals of option valuation

• pricing by replication
• risk-neutral pricing
• last lecture: Black-Scholes PDE and formulas

In order to value an option:
a need to develop a mathematical description of how the underlying asset
behaves!
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Asset price movement: Assumptions

In order to value an option:
we need to develop a mathematical description of how the underlying
asset behaves!

Assumptions:

• (weak form of the) Efficient market hypothesis

• reasonable assumption: the market responds
instantaneously to external influences

• the current asset price reflects all past information
• if one wants to predict the asset price at some future time,

knowing the complete history of the asset price gives no
advantage over just knowing its current price

• from a modeling point of view, if we take on board the
efficient market hypothesis, an equation to describe the
evolution of the asset from time t to t + ∆t needs to
involve the asset price only at time t and not at any earlier
times
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Assumptions

• the asset price may take any non-negative value

• buying and selling an asset may take place at any
time 0 ≤ t ≤ T

• it is possible to buy and sell any amount of the asset

• there are no transaction costs

• there are no dividend payments

• short selling is allowed: it is possible to hold a negative amount
of the asset

• there is a single, constant, risk-free interest rate that applies to
any amount of money borrowed from or deposited in a bank
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Questions

There are many practical issues to address before a serious statistical
analysis of stock market data can be performed:

• there may be missing data, if no trading took place between
times ti and ti+1

• the data may require adjustments to account for dividends and
stock splits

• when determining the time interval ti+1 − ti between price data,
a decision must be made about whether to keep the clock
running when the stock market has closed. Does Friday night to
Monday morning count as 2.5 days, or zero days?

• for an asset that is not heavily traded, the time of the last trade
may vary considerably from day to day. Consequently, daily
closing prices, which pertain to the final trade for each day, may
not relate to equally spaced samples in time
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Motivation

• we have defined what we mean by a European call or put option
on an underlying asset

• we have developed a model for the asset price movement

• key question: what is an option worth? Can we systematically
determine a fair value of the option at t = 0?

• our basic aim is to value an option at time t = 0 with asset
price S(0) = S0 but we will look for a function V (S , t) that
gives the option value for any asset price S ≥ 0 at any
time 0 ≤ t ≤ T

• in this setting we look for V (S0, 0)

• our analysis will lead us to the celebrated Black-Scholes partial
differential equation (PDE) for the function V

• the approach is quite general and the PDE is valid in particular
for the cases where V (S , t) corresponds to the value of a
European call and put
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Black-Scholes PDE

• we arrive at the famous Black-Scholes partial differential
equation:

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0

• it is a relationship between V , S , t and certain partial
derivatives of V

• note that

• the drift parameter µ in the asset model does not appear
in the PDE

• the PDE is satisfied for any option on S whose value can
be expressed as some smooth function V (S , t)
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Black-Scholes formula for a call option

• let C (S , t) denote the European call option value

• we know for certain that at expiry, t = T , the payoff is
max(S(T )− K , 0), therefore

C (S ,T ) = max(S(T )− K , 0) (1)

• now from the continuous time model formula we get that if the
asset price is ever zero, then S(t) remains zero for all the time
and hence the payoff will be zero at expiry, therefore:

C (0, t) = 0 for all 0 ≤ t ≤ T (2)

• the last two conditions are so-called boundary conditions

• one has also final conditions

C (S , t) ≈ S , for large S (3)
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Black-Scholes formula for a call option

• imposing the conditions (1), (2) and (3) from above (the
boundary conditions and the final condition) it is possible to
show that there exists a unique solution for the call option value

• this solution is

C (S , t) = S · N(d1)− K · e−r(T−t) · N(d2)

where

• N(·) is the N(0, 1) distribution function:

N(d) :=
1√
2π

∫ d

−∞
e−

s2

2 ds

• the number d1 is given by

d1 =
log(S/K ) + (r + 1

2σ
2)(T − t)

σ
√
T − t

• the number d2 is given by d2 = d1 − σ
√
T − t
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Black-Scholes formula for a put option

• can be derived directly imposing appropriate boundary
conditions and a final condition

• simpler: derived using the put-call parity relation

C (S , t)− P(S , t) = S − K · e−r(T−t)

• the solution is

P(S , t) = K · e−r(T−t) · N(−d2)− S · N(−d1)
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Black-Scholes formula: comments

• the two classic references are the paper (Black and Scholes
1973) by Fischer Black and Myron Scholes which derives the
key equations and the paper (Merton, 1973) by Robert Merton
which adds a rigorous mathematical analysis

• Merton and Scholes were awarded the 1997 Nobel Prize in
Economic Sciences for this work (Fischer Black died in 1995)

• a heuristics discrete-time treatment of hedging can be found in
the expository article of Almgren (2002)

• modern texts that give rigorous derivations of the Black-Scholes
formula include Björk (1998), Duffie (2001), Karatzas & Shreve
(1998), Oksendal (1998)

• it is possible to weaken the boundary conditions in the
Black-Scholes PDE without sacrificing the uniqueness of the
solution
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Remember

• Black-Scholes partial differential equation:

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0

• Black-Scholes formula to value a call option:

C(S , t) = S · N(d1)− K · e−r(T−t) · N(d2),

where

• N(·) is the N(0, 1) distribution function:
• the number d1 is given by

d1 =
log(S/K) + (r + 1

2
σ2)(T − t)

σ
√
T − t

=
log(S/(K · e−r(T−t)))

σ
√
T − t

+
σ
√
T − t

2

• the number d2 is given by d2 = d1 − σ
√
T − t
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Example: Computing the Black-Scholes value

Example. Consider an at-the money call

• on a stock worth S = 100

• with a strike price K = 100

• and maturity of six months;

• the risk free rate is r = 5%

• the stock has annual volatility σ = 20% and pays no dividend

Solution.

• the present value factor e−r(T−t) = exp(−5%× 6/12) = 0.9753

• the value of d1:

d1 =
log(S/(K · e−r(T−t)))

σ
√
T − t

+
σ
√
T − t

2
= 0.2475

• d2 = d1 − σ
√
T − t = 0.1061
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Example: Computing the Black-Scholes value (2)

• using standard normal tables we find N(d1) = 0.5977 and N(d2) = 0.5422

• note that both values are greater than 0.5 since d1 and d2 are positive

• the value of the call is c = S · N(d1)− K · e−r(T−t) · N(d2) = 6.89

• the value of the call can also be viewed as an equivalent position
of N(d1) = 59.77% in the stock and some borrowing:
c = 59.77− 52.88 = 6.89; thus this is a leveraged position in the stock

• the value of the put is 4.42

• buying the call and selling the put costs 6.89− 4.42 = 2.47; this indeed
equals S − K · e−r(T−t) = 100− 97.53 = 2.47 which confirms the put-call
parity

14 / 47



Quantitative
Finance 2015:

Lecture 6

Lecturer
today:

E. W. Farkas

Chapter 4:
Black-Scholes
PDE and
formulas

4.1
Black-Scholes
PDE

4.2 Option
greeks

Chapter 5:
Valuing
options by
numerical
methods

50 60 70 80 90 100 110 120 130 140 150
0

10

20

30

40

50

60

Spot

P
ric

e

Figure: European call price with time to maturity 1 year (solid black)
and 6 months (dashed gray).
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Exercise: Computing the Black-Scholes value

Exercise 1. Using the Black-Scholes model, calculate the value of a European call
option given the following information:

• spot rate 100

• strike price K = 110

• time to expiry 0.5 years;

• N(d1) = 0.457185

• N(d2) = 0.374163

The correct answer is

1 10.90

2 9.51

3 6.57

4 4.92
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Evaluating options

• Notation
• St = current spot price of the asset
• Ft = current forward price of the asset
• K = exercise price of the option contract
• ft = current value of the derivative instrument
• rt = domestic risk-free rate
• r∗ = income payment on the asset (the annual rate of

dividend or coupon payments on a stock index or bond)
• σt = annual volatility of the rate of change in S
• τ = T − t = time to maturity

• for most options we can write the value of the derivative
as a function

ft = f (St , rt , r
∗
t , σt ,K ,T − t)
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Evaluating options

• the contract specifications are represented by K and the time to
maturity τ = T − t

• the other factors are affected by market movements, creating volatility in
the values of the derivative

• usually we are interested in the movements in f ; the exposure profile of the
derivative can be described locally by taking a Taylor expansion:

df =
∂f

∂S
dS +

1

2

∂2f

∂S2
dS2 +

∂f

∂r
dr +

∂f

∂r∗
dr∗ +

∂f

∂σ
dσ +

∂f

∂τ
dτ + ...

• because the value depends on S in a nonlinear fashion, we added a
quadratic term for S
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Evaluating options

• option pricing is about finding f

• option hedging uses the partial derivatives

• risk management is about combining those with the
movements in the risk factors

• the Taylor approximation may fail for a number of reasons:

• large movements in the underlying risk factor
• highly nonlinear exposure (such as options near expiry or

exotic options)
• cross-partial effects (such as σ changing in relation with S)
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Motivation for studying the option greeks

• the Black-Scholes option valuation formulas depend upon S , t, and the
parameters K , r and σ

• we derive expressions for partial derivatives of the option values with
respect to these quantities

• useful

• traders like to know the sensitivity of the option value to
changes in these quantities; the sensitivities can be
measured by these partial derivatives

• computing the partial derivatives allows us to confirm that
the Black-Scholes PDE has been solved

• examining the signs of the derivatives gives insights into
the underlying formulas

• the derivative ∂V /∂S is needed in the delta hedging
process

• the derivatives ∂V /∂σ plays a role later when we discuss
the implied volatility

• we focus on the case of a call option
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The greeks

• certain partial derivatives of the option value are so widely used that they
have been assigned Greek names and symbols:

∆ :=
∂C

∂S
delta

Γ :=
∂2C

∂S2
gamma

% :=
∂C

∂r
rho

Θ :=
∂C

∂t
theta

vega :=
∂C

∂σ
vega
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The greeks

• Exercise 2. Show that

S N′(d1)− e−r(T−t) K N′(d2) = 0,

• where

N′(x) =
1
√

2π
e−

x2

2 .

• Recall
C(S , t) = S · N(d1)− K · e−r(T−t) · N(d2)

• taking the partial derivative with respect to S we have

∆ = N(d1) + S N′(d1)
∂d1

∂S
− K e−r(T−t) N′(d2)

∂d2

∂S

= N(d1) +
N′(d1)

σ
√
T − t

− K e−r(T−t) N′(d2)

Sσ
√
T − t

• using the above exercise we obtain

∆ = N(d1)
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Figure: Delta of a European call option with time to maturity 1 year
(solid black) and 6 months (dashed gray).
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Γ =
∂2C

∂S2
=
∂∆

∂S
= N ′(d1)

∂d1

∂S
=

N ′(d1)

Sσ
√
T − t
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Figure: Gamma of a European call option with time to maturity 1
year (solid black) and 6 months (dashed gray).
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The greeks: computation

• now differentiating C with respect to r we find that

% :=
∂C

∂r

= S N′(d1)
∂d1

∂r
+ (T − t)K e−r(T−t)N(d2)

−K e−r(T−t) N′(d2)
∂d2

∂r

= S N′(d1)
T − t

σ
√
T − t

+ (T − t)K e−r(T−t)N(d2)

−K e−r(T−t)N′(d2)
T − t

σ
√
T − t

• using an exercise from the previous lecture we get

% = (T − t)K e−r(T−t) N(d2)
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Figure: Interest rate sensitivity (Rho) of a European call option with
time to maturity 1 year (solid black) and 6 months (dashed gray).
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The greeks: computation

• similar analysis shows that

Θ =
−S σ

2
√
T − t

N′(d1)− rK e−r(T−t) N(d2)
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Figure: Time-decay Θ of a European call option with time to
maturity 1 year (solid black) and 6 months (dashed gray).
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Vega =
∂C

∂σ

= S · N ′(d1) · ∂d1

∂σ
− K · e−r(T−t) · N ′(d2) · ∂d2

∂σ

= S · φ(d1)

(
∂d2

∂σ
+
√
T − t

)
−

K · e−r(T−t) · φ(d2) · ∂d2

∂σ

= S · φ(d1)
√
T − t +

∂d2

∂σ
·
(
S · φ(d1)− K · e−r(T−t) · φ(d2)

)
= S · φ(d1)

√
T − t.
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Figure: Vega of a European call option with time to maturity 1 year
(solid black) and 6 months (dashed gray).
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Interpreting the greeks: delta and gamma

• the delta of an at-the-money call option is close to 0.5. Delta moves to 1
as the call goes deep in the money. It moves to zero as the call goes deep
out of the money.

• the delta of an at-the-money put option is close to −0.5. Delta moves
to −1 as the put goes deep in the money. It moves to zero as the call goes
deep out of the money.

• the parameter Γ measures the instability of ∆ with respect to S; note
that Γ is identical for a call and put with identical characteristics

• at-the-money options have the highest gamma, which indicates that ∆
changes very fast as S changes

• both in-the money and out-of-the-money options have low gammas because
their delta is constant, close to one or zero, respectively

• as maturity nears the option gamma increases
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Interpreting the greeks: Example 1

A bank has sold 300’000 call options on 100’000 equities. The equities trade
at 50, the option price is 49, the maturity is in three months, volatility is 20% and
the interest rate is 5%. How does the bank hedge (round to the nearest thousand
share)

• buy 65’000 shares?

• buy 100’000 shares?

• buy 21’000 shares?

• sell 100’000 shares?

Solution. This is an at-the-money option with a delta of about 0.5. Since the

bank sold calls, it needs to delta-hedge by buying the shares. With a delta of 0.54

it would need to buy approximatively 50’000 shares. Therefore the first answer is

the closest. Note also that most other information is superfluous.
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Interpreting the greeks: Example 2

Which of the following IBM options has the highest gamma with the current
market price of IBM common stock at 68:

• call option expiring in 10 days with strike 70?

• call option expiring in 10 days with strike 50?

• put option expiring in 10 days with strike 50?

• put option expiring in 2 months with strike 70?

Solution. Gamma is highest for short-term at-the-money options. The first

answer has strike price close to 68 and short maturity.
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Interpreting the greeks: rho and vega

• the sensitivity of an option to the interest rate is called the option rho

• an increase in the rate of interest increases the value of the call as the
underlying asset grows at a higher rate, which increases the probability of
exercising the call, with a fixed strike price K

• in the limit, for an infinite interest rate, the probability of exercise is one
and the call option is equivalent to the stock itself (the reasoning is
opposite for a put option)

• the sensitivity of an option to volatility is called the option vega and
(similarly to gamma) vega is identical for similar call and puts

• vega must be positive for long option positions

• at-the-money options are the most sensitive to volatility

• vega is highest for long term at the money options
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Interpreting the greeks: theta

• the variation in option value due to the passage of time; this is also the
time decay

• unlike other factors, however, the movement in remaining maturity is
perfectly predictable; time is not a risk factor

• theta is generally negative for long positions in both calls and puts (this
means that the option loses value as time goes by)

• for American options, however, theta is always negative: because they give
their holder the choice to exercise early, shorter-term American options are
unambiguously less valuable than longer-term options

• like gamma, theta is greatest for short-term-at-the money options, when
measured in absolute value
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Interpreting the greeks: Black-Scholes PDE solution

• having worked out the partial derivatives, we are in a position to confirm
that C(S, t) satisfies the Black-Scholes PDE

• using our expressions for ∆, Γ, %, and Θ we have

∂C

∂t
+

1

2
σ2S2 ∂

2C

∂S2
+ rS

∂C

∂S
− rC

=
−S σ

2
√
T − t

N′(d1)− rK e−r(T−t) N(d2)

+
1

2
σ2S2 N′(d1)

Sσ
√
T − t

+ rSN(d1)

−r
(
S N(d1)− K e−r(T−t) N(d2)

)
= 0
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Answers to the Exercises

Exercise 1 The third answer is correct. Assuming that there is
no income payment on the asset, applying the formula of
Black-Scholes we get c = 6.568.

Exercise 2 This can be shown with direct computation.
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Numerical methods: generalities

• some options have analytical solutions (such as Black-Scholes models for
European vanilla options); for more general options, however, we need to
use numerical methods

• most popular: binomial trees

• the method consists of chopping up the time horizon into n
intervals ∆t = T/n and setting up the tree so that the characteristics of
price movements fit the log-normal distribution

• asset prices will be considered at times ti = i∆t, for 0 ≤ i ≤ n

• key assumption: between successive time levels the asset price moves either
up by a factor u or down by a factor d

• an upward movement occurs with probability p and a downward movement
occurs with probability 1− p

• the standard choice is

u = eσ
√

∆t , d = 1/u, p =
eµ∆t − d

u − d

37 / 47



Quantitative
Finance 2015:

Lecture 6

Lecturer
today:

E. W. Farkas

Chapter 4:
Black-Scholes
PDE and
formulas

4.1
Black-Scholes
PDE

4.2 Option
greeks

Chapter 5:
Valuing
options by
numerical
methods

Numerical methods: generalities

• since this is a risk-neutral process, the total expected return must be equal
to the risk-free rate r

• allowing for an income payment of r∗ this gives µ = r − r∗

• the tree is built starting from the current time to maturity, from the left to
the right

• the derivative is valued by starting at the end of the tree and working
backward to the initial time, from the right to the left
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Numerical methods: European call option

• consider first a European call option

• at time T (maturity) and node j , the call option is worth max(STj
− K , 0)

• at time T − 1 and node j , the call option is the discounted value of the
option at time T and nodes j and j + 1:

cT−1,j = e−r∆t [p cT ,j+1 + (1− p) cT ,j ]

• we then work backward through the tree until the current time
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Numerical methods: American call option

• the procedure is slightly different

• at each point in time, the holder compares the value of the option alive and
dead (=exercised)

• the American call option value at node T − 1, j is

CT−1,j = max[(ST−1,j − K , cT−1,j )]
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Example: computing an American option value

• an at-the-money call on a foreign currency with a spot price 100

• strike price is K = 100

• maturity is six months

• the annualized volatility is σ = 20%

• the domestic interest rate is r = 5%; the foreign rate is r∗ = 8%

• note that we require an income payment for the American feature to be
valuable

• if r∗ = 0 we know that the American option is worth the same as a
European option, which can be priced with the Black-Scholes model (there
would be no point in using a numerical method)
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Example: computing an American option value

• first we divide the period into four intervals, for instance so that
∆t = 0.5/4 = 0.125

• the discounting factor over one interval is e−r∆t = 0.9938

• we then compute

• u = eσ
√

∆t = e0.20
√

0.125 = 1.0733
• d = 1/u = 0.9317
• a = e(r−r∗)∆t = e(−0.03)0.125 = 0.9963
•

p =
a− d

u − d
=

0.9963− 0.9317

1.0733− 0.9317
= 0.4559

• first we lay out the tree for the spot price, starting with S0 = 100 at
time t = 0 then uS0 = 107.33 and dS0 = 93.17 at time t = 1, and so on
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0 1 2 3 4

−2

−1

0

1

2

100.00

107.33

93.17

115.19

100.00

86.81

123.63

107.33

93.17

80.89

132.69

115.19

100.00

86.81

75.36

Figure: Binomial tree for spot price, with parameters S0 = 100,
σ = 0.2, r = 0.05, r∗ = 0.08, T = 0.5 and n = 4.
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Example: computing an American option value

• this allows us to value the European call; we start from the end, at
time t = 4 and set the call price to c = S − K = 132.69− 100 = 32.69 for
the highest spot price,

• 15.19 for the next price and so on, down to c = 0 if the spot price is
below K = 100,

• at the previous step and highest node, the value of the call is

c = 0.9938 [0.4559× 32.69 + (1− 0.4559)× 15.19] = 23.02

• continuing through the tree to time 0, yields a European call value of 4.43

• the Black-Scholes formula gives an exact value of 4.76; note how close the
binomial approximation is, with just four steps
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4.43

8.10

1.41

14.15

3.12

0.00

23.02

6.88

0.00

0.00

32.69

15.19

0.00

0.00

0.00

Figure: Binomial tree European call price, with parameters S0 = 100,
K = 100, σ = 0.2, r = 0.05, r∗ = 0.08, T = 0.5 and n = 4.
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Example: computing an American option value

• next we examine the American call

• at time t = 4 the values are the same as above since the call expires

• at time t = 3 and node j = 4, the option holder can either keep the call (in
which case the value is still 23.02) or exercise

• when exercised, the option payoff is S − K = 123.63− 100 = 23.63

• since this is greater than the value of the option alive, the holder should
optimally exercise the option

• we replace the European option value by 23.63 at that node

• continuing through the tree in the same fashion, we find a starting value
of 4.74

• the value of the American call is slightly greater than the European call
price, as expected
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1.50
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3.32

0.00

23.63

7.33

0.00

0.00

32.69

15.19

0.00

0.00

0.00

Figure: Binomial tree for American call price, with parameters
S0 = 100, K = 100, σ = 0.2, r = 0.05, r∗ = 0.08, T = 0.5 and
n = 4.
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