> Lecturer today: W. Farkas

Chapter 2: Discrete Time Models in One Period

2.1: The one-period model

Model setup Arbitrage opportunities Attainable Payoffs Contingent claims Arbitrage-free prices Complete Markete

2.2: Exercises

Lecture Quantitative Finance Spring Term 2015

Prof. Dr. Erich Walter Farkas

Lecture 2: February 26, 2015

イロト イポト イヨト イヨト

-

1/53

> Lecturer today: W. Farkas

Chapter 2: Discrete Time Models in On Period

2.1: The one-period model

Model setup Arbitrage opportunities Attainable Payoffs Contingent claims Arbitrage-free prices Complete

2.2: Exercises

1 Chapter 2: Discrete Time Models in One Period

イロト イポト イヨト イヨト

2/53

2.1: The one-period model

Model setup Arbitrage opportunities Attainable Payoffs Contingent claims Arbitrage-free prices Complete Markets

3 2.2: Exercises

Lecturer today: W. Farkas

Chapter 2: Discrete Time Models in One Period

2.1: The one-period model

Model setup Arbitrage opportunities Attainable Payoffs Contingent claims Arbitrage-fre prices Complete

2.2: Exercises

1 Chapter 2: Discrete Time Models in One Period

2.1: The one-period model

Model setup Arbitrage opportunities Attainable Payoffs Contingent claims Arbitrage-free prices Complete Markets

2.2: Exercises

> Lecturer today: W. Farkas

Chapter 2: Discrete Time Models in One Period

2.1: The one-period model

Model setup Arbitrage opportunities Attainable Payoffs Contingent claims Arbitrage-free prices Complete Markets

2.2: Exercises

2.1: The one-period model

Model setup

Lecturer today: W. Farkas

Quantitative Finance 2015:

Chapter 2: Discrete Time Models in One Period

2.1: The one-period model

Model setup Arbitrage opportunities Attainable Payoffs Contingent claims Arbitrage-free prices Complete Markets

2.2: Exercises

- Two trading periods: today and tomorrow denoted by $t_0 = 0$ and $t_1 = 1$.
- Market consisting of d + 1 assets:
 - * asset 0 is consider as a riskless bond,
 - * assets 1, ... d are risky assets.
- Present prices are given by $\bar{\pi} = (\pi^0, \dots, \pi^d)$ where $\pi^i \ge 0$ for every $i = 0, \dots, d$.
- Future prices are modeled by a vector of non-negative random variables $\bar{S} = (S^0, S) = (S^0, S^1, \dots, S^d)$, defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.
 - ⇒ We interpret $S^{i}(\omega)$ as the price of asset *i* at time 1 if the market scenario $\omega \in \Omega$ occurs.
- For the riskless bond, we assume that $\pi^0 = 1$ and $S^0(\omega) = 1 + r$ for every $\omega \in \Omega$, where r > -1 denotes the risk-free interest rate.

> Lecturer today: W. Farkas

Chapter 2: Discrete Time Models in One Period

2.1: The one-period model

Model setup Arbitrage opportunities Attainable Payoffs Contingent claims Arbitrage-free prices

Markets

Portfolio: Definition

- A portfolio is a vector $\bar{\xi} \in \mathbb{R}^{d+1}$ with $\bar{\xi} = (\xi^0, \dots, \xi^d)$.
 - \Rightarrow The value ξ^i represents the number of shares of asset *i* held in the portolio.
- The **portfolio price** at time $t_0 = 0$ and $t_1 = 1$, respectively, is given by:

$$ar{\pi}\cdotar{\xi} = \sum_{i=0}^d \pi^i \xi^i \ ar{\xi}\cdotar{S}(\omega) = \sum_{i=0}^d S^i(\omega)\xi^i.$$

• Note that the map $\omega \in \Omega \mapsto ar{\xi} \cdot ar{S}(\omega)$ defines a random variable.

Example

Quantitative Finance 2015: Lecture 2

> Lecturer today: W. Farkas

Chapter 2: Discrete Time Models in One Period

2.1: The one-perioc model

Model setup

Arbitrage opportunities Attainable Payoffs Contingent claims Arbitrage-free prices Complete Markets

2.2: Exercises

Example

- $\Omega = \{\omega_1, \omega_2\}$, where ω_1 represents the event of a price's increase, while ω_2 denotes a price's decrease.
- $p \in (0,1)$ is the probability of a price's increase
- *ξ* = (-2, 1, 2, 0, ..., 0) ∈ ℝ^{d+1} is a portfolio consisting of a short position in the bank account, and long positions in the first and second asset.

> Lecturer today: W. Farkas

Chapter 2: Discrete Time Models in One Period

2.1: The one-period model

Model setup

Arbitrage opportunities

Attainable Payoffs Contingent claims Arbitrage-free prices Complete Markets

2.2: Exercises

Arbitrage opportunities

- An **arbitrage opportunity** is the possibility of making money out of nothing, without being exposed to any kind of loss risk.
- Supposing that Ω = {ω₁,..., ω_n} for some finite n ∈ N, a portfolio ξ̄ ∈ ℝ^{d+1} is an arbitrage opportunity if, and only if, it solves the following system, with at least one strict inequality:

$$\begin{cases} \xi^{0}1 + \xi^{1}\pi^{1} + \dots + \xi^{d}\pi^{d} &\leq 0; \\ \xi^{0}(1+r) + \xi^{1}S^{1}(\omega_{1}) + \dots + \xi^{d}S^{d}(\omega_{1}) &\geq 0; \\ \vdots \\ \xi^{0}(1+r) + \xi^{1}S^{1}(\omega_{n}) + \dots + \xi^{d}S^{d}(\omega_{n}) &\geq 0; \end{cases}$$

where r > -1 is the risk-free interest rate.

• Aim: characterize market model which do not allow for the existence of arbitrage opportunities.

> Lecturer today: W. Farkas

Chapter 2: Discrete Time Models in One Period

2.1: The one-period model

Model setup

Arbitrage opportunities

Attainable Payoffs Contingent claims Arbitrage-free prices Complete

2.2: Exercises

Risk-neutral measure

 A probability measure P^{*} is called a risk-neutral measure or martingale measure if for any asset *i* = 0,..., *d* we have:

$$\pi^i = \mathbb{E}_{\mathbb{P}^*}\left[\frac{S^i}{1+r}\right].$$

 \Rightarrow The expected value of the discounted price of asset *i* coincides with its initial price.

Recall that for a random variable X : Ω → ℝ, the expected value of X under the probability measure P* is given by

$$\begin{split} \mathbb{E}_{\mathbb{P}^*}\left[X\right] &= \sum_{\omega \in \Omega} X\left(\omega\right) \cdot \mathbb{P}^*\left[\{\omega\}\right], \text{ for } \Omega \text{ countable}; \\ \mathbb{E}_{\mathbb{P}^*}\left[X\right] &= \int_{\Omega} X d\mathbb{P}^*, \text{ for general } \Omega. \end{split}$$

Lecturer today: W. Farkas

Chapter 2: Discrete Time Models in One Period

2.1: The one-period model

Model setup

Arbitrage opportunities

Attainable Payoffs Contingent claims Arbitrage-fre prices Complete

2.2: Exercises

Example

- Consider a market with one riskless asset and one risky asset (i.e. d = 1).
- Suppose $\Omega = \{\omega_1, \omega_2, \omega_3\}$.
- Then, the risk-neutral prices of these assets are given by the following equations:

$$1 = \frac{1+r}{1+r} \cdot \mathbb{P}^* \left[\{\omega_1\} \right] + \frac{1+r}{1+r} \cdot \mathbb{P}^* \left[\{\omega_2\} \right] + \frac{1+r}{1+r} \cdot \mathbb{P}^* \left[\{\omega_3\} \right];$$

$$\pi^1 = \frac{S^1(\omega_1)}{1+r} \cdot \mathbb{P}^* \left[\{\omega_1\} \right] + \frac{S^1(\omega_2)}{1+r} \cdot \mathbb{P}^* \left[\{\omega_2\} \right] + \frac{S^1(\omega_3)}{1+r} \cdot \mathbb{P}^* \left[\{\omega_3\} \right].$$

Equivalent measures

W. Farkas Chapter 2: Discrete Time

Quantitative Finance 2015:

Lecturer today:

Period

2.1: The one-period model

Model setup

Arbitrage opportunities

Attainable Payoffs Contingent claims Arbitrage-fre prices Complete

2.2: Exercises

 Two probability measures P and P* on (Ω, F) are said to be equivalent if for any set A ⊆ F we have:

$$\mathbb{P}\left[\mathcal{A}
ight] =0$$
 if, and only if, $\mathbb{P}^{st}\left[\mathcal{A}
ight] =0.$

In this case, we write $\mathbb{P} \approx \mathbb{P}^*$.

• Denote by $\mathcal P$ the set of all martingale measures, which are equivalent to $\mathbb P$:

 $\mathcal{P} = \{\mathbb{P}^* : \mathbb{P}^* \text{ is a risk-neutral measure and } \mathbb{P}^* \approx \mathbb{P}\}$

> Lecturer today: W. Farkas

Chapter 2: Discrete Time Models in One Period

2.1: The one-period model

Model setup

Arbitrage opportunities

Attainable Payoffs Contingent claims Arbitrage-free prices Complete Markets

2.2: Exercises

Fundamental Theorem of Asset Pricing

Theorem (The Fundamental Theorem of Asset Pricing) A market model is arbitrage-free if, and only if, there exists a risk-neutral measure \mathbb{P}^* on (Ω, \mathcal{F}) , which is equivalent to \mathbb{P} .

Note: The Fundamental Theorem of Asset Pricing is equivalent to $\mathcal{P} \neq \emptyset$.

Free lunch

Quantitative Finance 2015: Lecture 2

> Lecturer today: W. Farkas

Chapter 2: Discrete Time Models in One Period

2.1: The one-period model

Model setup

Arbitrage opportunities

Attainable Payoffs Contingent claims Arbitrage-free prices Complete Markets

2.2: Exercises

- A portfolio $\bar{\xi} \in \mathbb{R}^{d+1}$ is called a **free lunch** if $\bar{\xi} \cdot \bar{\pi} < 0$ and $\bar{\xi} \cdot \bar{S} \ge 0$ \mathbb{P} -a.s.
- If no such strategy exists, we say that the market model satisfies the No-Free-Lunch condition (NFL)

Theorem

Consider a market model with $n \in \mathbb{N}$ possible future states described by $\Omega = \{\omega_1, \ldots, \omega_n\}$ with $\mathbb{P}[\{\omega_i\}] > 0, \forall i = 1, \ldots, n$. Then, the following are equivalent:

- 1. The market model satisfies the (NFL) condition.
- 2. There exists a risk-neutral measure \mathbb{P}^* .

Note: instead of the FTAP, here nothing is said about the equivalence of the risk-neutral measure \mathbb{P}^* with the underlying measure \mathbb{P} .

> Lecturer today: W. Farkas

Chapter 2: Discrete Time Models in One Period

2.1: The one-period model

Model setup

Arbitrage opportunities

Attainable Payoffs Contingent claims Arbitrage-free prices Complete

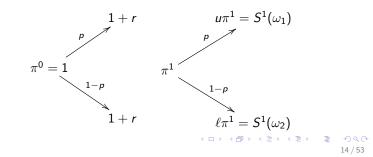
2.2: Exercises

Example (Binomial Model)

• Consider a one-period model with a risk-free asset with interest rate r > 0 and a risky asset with initial price $S_0 > 0$.

Binomial Model: Example 1

- $\Omega = \{\omega_1, \omega_2\}$, where ω_1 and ω_2 represent the event of an up and down price move, respectively.
- Take ℓ, u > 0 with ℓ < u and let p ∈ (0, 1) be the probability of an up-move, i.e. 0



> Lecturer today: W. Farkas

Chapter 2: Discrete Time Models in One Period

2.1: The one-period model

Model setup

Arbitrage opportunities

Attainable Payoffs Contingent claims Arbitrage-fre prices Complete

2.2: Exercises

Example (continue)

Claim 1 No free lunch if, and only if, $\ell \leq 1 + r \leq u$. Proof

• Absence of free lunches is equivalent to the existence of a risk-neutral measure \mathbb{P}^\ast satisfying:

$$\left(\begin{array}{cc}\frac{S^{0}(\omega_{1})}{1+r} & \frac{S^{0}(\omega_{2})}{1+r}\\ \frac{S^{1}(\omega_{1})}{1+r} & \frac{S^{1}(\omega_{2})}{1+r}\end{array}\right) \cdot \left(\begin{array}{c}\mathbb{P}^{*}[\{\omega_{1}\}]\\ \mathbb{P}^{*}[\{\omega_{2}\}]\end{array}\right) = \left(\begin{array}{c}1\\ \pi^{1}\end{array}\right).$$

• This is equivalent to:

$$\mathbb{P}^{*}[\{\omega_{1}\}] + \mathbb{P}^{*}[\{\omega_{2}\}] = 1;$$

$$\frac{u\pi^{1}}{1+r} \cdot \mathbb{P}^{*}[\{\omega_{1}\}] + \frac{\ell\pi^{1}}{1+r} \cdot \mathbb{P}^{*}[\{\omega_{2}\}] = \pi^{1}$$

Binomial Model: Example 1

> Lecturer today: W. Farkas

Chapter 2: Discrete Time Models in One Period

2.1: The one-period model

Model setup

Arbitrage opportunities

Attainable Payoffs Contingent claims Arbitrage-fre prices Complete

2.2: Exercises

Binomial Model: Example 1

イロト イポト イヨト イヨト

3

16 / 53

Example (continue)

• Solution:

$$\mathbb{P}^*[\{\omega_1\}] = rac{(1+r)-\ell}{u-\ell}, \ \mathbb{P}^*[\{\omega_2\}] = rac{u-(1+r)}{u-\ell}.$$

• Since these probabilities have to be ≥ 0 , we get:

$$\ell \leq 1+r \leq u.$$

> Lecturer today: W. Farkas

Chapter 2: Discrete Time Models in One Period

2.1: The one-period model

Model setup

Arbitrage opportunities

Attainable Payoffs Contingent claims Arbitrage-free prices Complete Markets

2.2: Exercises

Binomial Model: Example 1

Example (continue)

```
Claim 2 No Arbitrage if, and only if, \ell < 1 + r < u.
Proof
```

• Again, we have to solve the sistem of equations

$$\begin{pmatrix} \frac{S^{0}(\omega_{1})}{1+r} & \frac{S^{0}(\omega_{2})}{1+r} \\ \frac{S^{1}(\omega_{1})}{1+r} & \frac{S^{1}(\omega_{2})}{1+r} \end{pmatrix} \cdot \begin{pmatrix} \mathbb{P}^{*}[\{\omega_{1}\}] \\ \mathbb{P}^{*}[\{\omega_{2}\}] \end{pmatrix} = \begin{pmatrix} 1 \\ \pi^{1} \end{pmatrix}$$

• The model is arbitrage-free if, and only if, \mathbb{P}^* is equivalent to \mathbb{P} . Since $\mathbb{P}[\{\omega_1\}], \mathbb{P}[\{\omega_2\}] > 0$ we get:

$$\mathbb{P}^* \left[\{ \omega_1 \} \right] = \frac{(1+r) - \ell}{u - \ell} > 0, \ \mathbb{P}^* \left[\{ \omega_2 \} \right] = \frac{u - (1+r)}{u - \ell} > 0.$$

• This implies $\ell < 1 + r < u$.

Attainable Payoffs

Lecturer today: W. Farkas

Quantitative Finance 2015:

Chapter 2: Discrete Time Models in One Period

2.1: The one-perioc model

Model setup Arbitrage opportunities

Attainable Payoffs

Contingent claims Arbitrage-free prices Complete Markets

2.2: Exercises

- To compare the prices π and of S, we have to convert them to a common standard ⇒ Use the riskless asset as a **numeraire** and consider the present value S/(1 + r) of the future price S.
- $\mathcal{V} = \{ \bar{\xi} \cdot \bar{S} \mid \text{ for } \bar{\xi} \in \mathbb{R}^{d+1} \}$ is the set of all attainable payoffs.
- For $V \in \mathcal{V}$, the price of V at time t_0 is given by

$$\pi(V) = \bar{\xi} \cdot \bar{\pi}.$$

Lemma

Suppose we are in an arbitrage-free model. Let $V \in \mathcal{V}$ be an attainable payoff generated by two different strategies $\bar{\xi}, \bar{\eta} \in \mathbb{R}^{d+1}$. Then, we have: $\bar{\xi} \cdot \bar{\pi} = \bar{\eta} \cdot \bar{\pi}$.

> Lecturer today: W. Farkas

Chapter 2: Discrete Time Models in One Period

2.1: The one-period model

Model setup Arbitrage opportunities Attainable Payoffs

Contingent claims

Arbitrage-fre prices Complete Markets

2.2: Exercises

Derivatives: Call and Put options

An European call option on the *i*th asset with strike price K > 0 gives its owner the right to buy asset *i* at time t₁ for the fixed price K. The payoff of the call option is given by:

$$C^{call,i} = (S^i - K)^+ = \begin{cases} S^i - K, & \text{if } S^i - K \ge 0; \\ 0, & \text{if } S^i - K < 0. \end{cases}$$

An European put option on the *i*th asset with strike price K > 0 gives its owner the right to sell asset *i* at time t₁ for the fixed price K. The payoff of the put option is given by:

$$C^{put,i} = \left(K - S^{i}\right)^{+} = \begin{cases} 0, & \text{if } S^{i} - K \ge 0; \\ K - S^{i}, & \text{if } S^{i} - K < 0. \end{cases}$$

• The payoffs of call and put options are related by the following equation, known as the **Put-Call-Parity**:

$$C^{call,i} - C^{put,i} = S^i - K$$

Lecturer today: W. Farkas

Chapter 2: Discrete Time Models in One Period

2.1: The one-period model

Model setup Arbitrage opportunities Attainable Payoffs

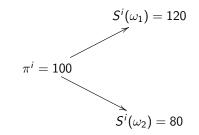
Contingent claims

Arbitrage-fre prices Complete Markets

2.2: Exercises

Example

• Suppose the prices of asset *i* are as follows:



Call and Put options: Example

• In addition, assume that K = 110.

> Lecturer today: W. Farkas

Chapter 2: Discrete Time Models in One Period

2.1: The one-period model

Model setup Arbitrage opportunities Attainable Payoffs

Contingent claims

Arbitrage-fr prices Complete Markets

2.2: Exercises

Call and Put options: Example

Example (continue)

• Then, the payoff of a call option is:

$$C^{call,i}(\omega) = \begin{cases} S^{i}(\omega_{1}) - K = 10, & \text{if } \omega = \omega_{1}; \\ 0, & \text{if } \omega = \omega_{2}. \end{cases}$$

• Instead, for the put option we get:

$$C^{put,i}(\omega) = \begin{cases} 0, & \text{if } \omega = \omega_1; \\ K - S^i(\omega_2) = 30, & \text{if } \omega = \omega_2. \end{cases}$$

• In particular, note that the Put-Call-Parity is satisfied.

Lecturer today: W. Farkas

Chapter 2: Discrete Time Models in One Period

2.1: The one-period model

Model setup Arbitrage opportunities Attainable Payoffs

Contingent claims

Arbitrage-fre prices Complete Markets

2.2: Exercises

Basket option and Straddle

• An option on the value $V = \overline{\xi} \cdot \overline{S}$ of a portfolio $\overline{\xi} \in \mathbb{R}^{d+1}$ is called a **basket** or **index option**.

 \Rightarrow For example, the payoff of a basket put option would be of the form $({\cal K}-{\cal V})^+$.

 A collection of an "at-the-money" call and put option with strike K on a portfolio V = ξ̄ · S̄ is called a straddle and its payoff is of the form:

$$C^{straddle} = (V - K)^+ + (K - V)^+.$$

> Lecturer today: W. Farkas

Chapter 2: Discrete Time Models in One Period

2.1: The one-period model

Model setup Arbitrage opportunities Attainable Payoffs

Contingent claims

Arbitrage-free prices

Complete Markets

2.2: Exercises

Arbitrage-free prices: Definition

- In general, it is not clear how to price a contingent claim C.
- To this end, suppose that we trade C at time t₀ for a price π^C. This is equivalent to say that we introduce a new asset in the market model with prices:

$$\pi^{d+1} := \pi^C$$
 and $S^{d+1} := C$.

- We refer to this new market with *d* + 2 assets (i.e. the original ones plus the contingent claim) as the **extended market model**.
- A real number π^c ≥ 0 is called an arbitrage-free price for the contingent claim C, if the extended market model is arbitrage-free.

Arbitrage-free prices

イロト イポト イヨト イヨト

24 / 53

Denote by Π(C) the set of all arbitrage-free prices for a contingent claim C.

Theorem

Suppose the initial market model is arbitrage-free and let C be a contingent claim. Then, the set of arbitrage-free prices for C is non-empty and of the form:

$$\mathsf{\Pi}(\mathcal{C}) = \left\{ \mathbb{E}_{\mathbb{P}^*} \left[\frac{\mathcal{C}}{1+r} \right] : \mathbb{P}^* \in \mathcal{P}, \mathbb{E}_{\mathbb{P}^*} \left[\mathcal{C} \right] < \infty \right\}.$$

Chapter 2: Discrete Time Models in On

Quantitative Finance 2015:

> Lecturer today: W. Farkas

2.1: The one-period model

Model setup Arbitrage opportunities Attainable Payoffs Contingent claims

Arbitrage-free prices

Complete Markets

2.2: Exercises

Arbitrage-free prices

イロト イポト イヨト イヨト

-

25 / 53

- By the previous theorem, we know that Π(C) is not empty, but how many elements are in there?
- Define the lower and upper bound for this set, respectively, as:

$$\pi^{\downarrow}(C) = \inf \Pi(C) = \inf_{\mathbb{P}^* \in \mathcal{P}} \mathbb{E}_{\mathbb{P}^*}\left[\frac{C}{1+r}\right].$$

$$\pi^{\uparrow}(C) = \sup \Pi(C) = \sup_{\mathbb{P}^{*} \in \mathcal{P}} \mathbb{E}_{\mathbb{P}^{*}} \left[\frac{C}{1+r} \right].$$

)iscrete Tim Iodels in Or Period

Quantitative Finance 2015:

> Lecturer today: W. Farkas

2.1: The one-period model

Model setup Arbitrage opportunities Attainable Payoffs Contingent

Arbitrage-free prices

Complete Markets

2.2: Exercises

> Lecturer today: W. Farkas

Chapter 2: Discrete Time Models in One Period

2.1: The one-period model

Model setup Arbitrage opportunities Attainable Payoffs Contingent claims

Arbitrage-free prices

Complete Markets

2.2: Exercises

Attainable Claims: Definition and Characterisation

- A contingent claim C is called **attainable** if there exists a portfolio $\bar{\xi} \in \mathbb{R}^{d+1}$ such that $C = \bar{\xi} \cdot \bar{S}$ P-a.s.
- The vector $\bar{\xi}$ is then called a **replicating portfolio** for *C*.

Theorem

Consider an arbitrage-free market model and let C be an arbitrary contingent claim. Then:

- 1. The claim C is attainable if and only if $\Pi(C)$ consists of exactly one element, i.e. $\Pi(C) = \{\overline{\xi} \cdot \overline{\pi}\}$ where $\overline{\xi}$ is a replicating portfolio.
- 2. If C is not attainable, then $\pi^{\downarrow}(C) < \pi^{\uparrow}(C)$ and $\Pi(C) = (\pi^{\downarrow}(C), \pi^{\uparrow}(C)).$

Binomial model: Example 2

Finance 2015: Lecture 2 Lecturer

Quantitative

today: W. Farkas

Chapter 2: Discrete Time Models in One Period

2.1: The one-period model

Model setup Arbitrage opportunities Attainable Payoffs Contingent

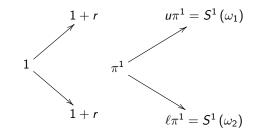
Arbitrage-free prices

Complete Markets

2.2: Exercises

Example

• Consider again the one-period binomial model with the following dynamics:



• Recall that the market is arbitrage-free if, and only if, $\ell < 1 + r < u$.

Binomial model: Example 2

イロト イポト イヨト イヨト

28 / 53

Example (continue)

The unique risk-neutral probability measure ℙ*, equivalent to ℙ, was given by:

$$\mathbb{P}^*[\{\omega_1\}] = rac{(1+r)-\ell}{u-\ell}, \ \mathbb{P}^*[\{\omega_2\}] = rac{u-(1+r)}{u-\ell}.$$

- Let $C^{call} = (S^1 K)^+$ be the payoff of a call option on the risky asset with strike price K > 0.
- We want to find the exact value of π^{C} .

Chapter 2: Discrete Time Models in One Period

Quantitative Finance 2015:

> Lecturer today: W. Farkas

2.1: The one-period model

Model setup Arbitrage opportunities Attainable Payoffs Contingent

Arbitrage-free prices

Complete Markets

2.2: Exercises

> Lecturer today: W. Farkas

Chapter 2: Discrete Time Models in One Period

2.1: The one-period model

Model setup Arbitrage opportunities Attainable Payoffs Contingent

Arbitrage-free prices

Complete Markets

2.2: Exercises

Binomial model: Example 2

Example (continue)

• By the previous theorem, we get:

$$\pi^{C} = \mathbb{E}_{\mathbb{P}^{*}} \left[\frac{C^{call}}{1+r} \right]$$

= $\frac{C^{call} \left\{ \{\omega_{1}\} \right\}}{1+r} \mathbb{P}^{*} \left[\{\omega_{1}\} \right] + \frac{C^{call} \left\{ \{\omega_{2}\} \right\}}{1+r} \mathbb{P}^{*} \left[\{\omega_{2}\} \right]$
= $\frac{\left(u\pi^{1}-K\right)^{+}}{1+r} \frac{1+r-\ell}{u-\ell} + \frac{\left(\ell\pi^{1}-K\right)^{+}}{1+r} \frac{u-(1+r)}{u-\ell}$.

 \Rightarrow A call option is an attainable payoff. Later, we will derive its replicating strategy.

Complete Markets

Quantitative Finance 2015: Lecture 2

> Lecturer today: W. Farkas

Chapter 2: Discrete Time Models in One Period

2.1: The one-period model

Model setup Arbitrage opportunities Attainable Payoffs Contingent claims

Arbitrage-free prices

Complete Markets

2.2: Exercises

• Consider an arbitrage-free model. We say that the market is **complete**, if every contingent claim is attainable.

Theorem

The binomial model is complete if, and only if, $\ell < 1 + r < u$. In this case, every claim is attainable.

Binomial model: Example 3

Quantitative Finance 2015: Lecture 2

Lecturer today: W. Farkas

Chapter 2: Discrete Time Models in One Period

2.1: The one-period model

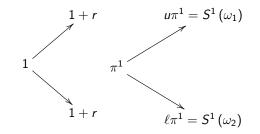
Model setup Arbitrage opportunities Attainable Payoffs Contingent claims Arbitrage-free prices

Complete Markets

2.2: Exercises

Example

• Consider again the one-period binomial model with the following dynamics:



 Recall that the market is arbitrage-free and complete if, and only if, ℓ < 1 + r < u.

Lecturer today: W. Farkas

Chapter 2: Discrete Time Models in One Period

2.1: The one-period model

Model setup Arbitrage opportunities Attainable Payoffs Contingent claims

Arbitrage-fre prices

Complete Markets

2.2: Exercises

Example (continue)

- Let C^{call} be a call option on the underlying risky asset with strike price K > 0.
- To replicate $C^{call},$ we need to determine a replicating strategy $\bar{\xi}=(\xi^0,\xi^1)$ satisfying:

$$\left(S^{1}(\omega)-K\right)^{+}=\xi^{0}\cdot\left(1+r\right)+\xi^{1}\cdot S^{1}(\omega)$$

Binomial model: Example 3

for every $\omega \in \Omega$.

• This translates into the following system of two equations:

$$\begin{cases} (S^{1} - K)^{+} (\omega_{1}) = \xi^{0} \cdot (1 + r) + \xi^{1} \cdot S^{1} (\omega_{1}); \\ (S^{1} - K)^{+} (\omega_{2}) = \xi^{0} \cdot (1 + r) + \xi^{1} \cdot S^{1} (\omega_{2}). \end{cases}$$

Binomial model: Example 3

Example (continue)

• Hence, the replicating strategy of a call option is of the form:

$$\xi^{0} = \frac{u \left(\ell \pi^{1} - K\right)^{+} - \ell \left(u \pi^{1} - K\right)^{+}}{(1 + r) \left(u - \ell\right)},$$

$$\xi^{1} = \frac{\left(u \pi^{1} - K\right)^{+} - \left(\ell \pi^{1} - K\right)^{+}}{\pi^{1} \left(u - \ell\right)}.$$

Note: ξ⁰ ≤ 0.
 ⇒ To replicate a call option, we have to borrow money at the risk-free rate.

Chapter 2: Discrete Tim Models in Or Period

Quantitative Finance 2015:

> Lecturer today: W. Farkas

2.1: The one-period model

Model setup Arbitrage opportunities Attainable Payoffs Contingent claims Arbitrage-free

Complete Markets

2.2: Exercises

> Lecturer today: W. Farkas

Chapter 2: Discrete Time Models in One Period

2.1: The one-period model

Model setup Arbitrage opportunities Attainable Payoffs Contingent claims Arbitrage-free prices **Complete**

Markets

2.2: Exercises

Binomial model: Example 3

イロト イポト イヨト イヨト

34 / 53

Example (continue)

• The unique arbitrage-free price of C^{call} is then given by:

$$\pi (C^{call}) = \bar{\xi} \cdot \bar{\pi} \\ = \frac{(u\pi^1 - K)^+ \cdot (1 + r - \ell)}{(1 + r)(u - \ell)} + \frac{(\ell\pi^1 - K)^+ \cdot (u - 1 - r)}{(1 + r)(u - \ell)}$$

• Note: This formula coincides with the one of Example 2.

Lecturer today: W. Farkas

Chapter 2: Discrete Time Models in One Period

2.1: The one-period model

Model setup Arbitrage opportunities Attainable Payoffs Contingent claims Arbitrage-free

Complete Markets

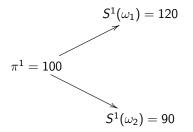
2.2: Exercises

Example (continue)

• Next: how can we use options to modify the risk of a position?

Binomial model: Example 3

Assume that the risky asset can be bought at time t₀ for the price πⁱ = 100 and at time t₁ for the prices:



Lecturer today: W. Farkas

Chapter 2: Discrete Time Models in One Period

2.1: The one-period model

Model setup Arbitrage opportunities Attainable Payoffs Contingent claims Arbitrage-free

Complete Markets

2.2: Exercises

Example (continue)

• If we invest in the risky asset, the corresponding returns $R(S^1) = \frac{S^1 - \pi^1}{\pi^1}$ are given by:

$$\begin{cases} R(S^1)(\omega_1) = \frac{S^1(\omega_1) - \pi^1}{\pi^1} = 20\%; \\ R(S^1)(\omega_2) = \frac{S^1(\omega_2) - \pi^1}{\pi^1} = -10\%. \end{cases}$$

- On the other hand, let $C^{call} = (S^1 100)^+$ be a call option on the risky asset with strike price K = 100, and suppose in addition that r = 0.
- According to the above formula, its price is then given by:

$$\pi^{C} = \pi(C^{call}) = \frac{20}{3} = 6.67$$

Binomial model: Example 3

Example (continue)

• Therefore, the return $R(C) = \frac{(s^1 - \kappa)^+ - \pi^c}{\pi^c}$ of an initial investment of π^c is equal to:

$$R(C)(\omega_1) = \frac{(120 - 100)^+ - \frac{20}{3}}{\frac{20}{3}} = 200\%,$$

$$R(C)(\omega_2) = \frac{0 - \frac{20}{3}}{\frac{20}{3}} = -100\%.$$

 \Rightarrow There is a dramatic increase of profit opportunities and losses. This is called the **leverage effect** of options.

Chapter 2: Discrete Time Models in One Period

Quantitative Finance 2015:

> Lecturer today: W. Farkas

2.1: The one-period model

Model setup Arbitrage opportunities Attainable Payoffs Contingent claims Arbitrage-free

Complete Markets

Binomial model: Example 3

(日) (同) (三) (三)

38 / 53

Example (continue)

- To reduce the risk of holding the asset, we can hold the portfolio $\tilde{C} = (K S^1)^+ + S^1$, which consists of a put option and the asset itself.
- Clearly, this "portfolio insurance" will involve an additional cost.
- Indeed, from the Put-Call Parity, we can derive the price of the put option:

$$\pi(C^{put}) = \pi(C^{call}) - \pi^1 + rac{K}{1+r} = rac{20}{3};$$

thus in order to hold S^1 and a put on S^1 we need to pay the amount 100 + 20/3 at time $t_0 = 0$.

Chapter 2: Discrete Time Models in One Period

Quantitative Finance 2015:

> Lecturer today: W. Farkas

2.1: The one-period model

Model setup Arbitrage opportunities Attainable Payoffs Contingent claims Arbitrage-free

Complete Markets

> Lecturer today: W. Farkas

Chapter 2: Discrete Time Models in One Period

2.1: The one-perioc model

Model setup Arbitrage opportunities Attainable Payoffs Contingent claims Arbitrage-free

Complete Markets

2.2: Exercises

Binomial model: Example 3

Example (continue)

• The return at $t_1 = 1$ is then given by:

$$R(\tilde{C})(\omega_1) = 12.5\%$$
 $R(\tilde{C})(\omega_2) = -6.25\%.$

• Hence, by holding this portfolio insurance we have reduce the risk of a loss, althought the possibility of a big gain has decreased as well.

> Lecturer today: W. Farkas

Chapter 2: Discrete Time Models in One Period

2.1: The one-period model

Model setup Arbitrage opportunities Attainable Payoffs Contingent claims Arbitrage-free prices Complete Markott

2.2: Exercises

Exercise 1: Question

41 / 53

Question

Consider a one-period market model with d + 1 assets.

- Show that if there exists a free lunch (i.e. a strategy ξ ∈ ℝ^{d+1} such that ξ · π̄ < 0 and ξ · S̄ ≥ 0 ℙ-a.s.), then there exists an arbitrage opportunity.</p>
- **2** Give an example to show that the reverse is not true.

Models in Or Period

Quantitative Finance 2015:

> Lecturer today: W. Farkas

2.1: The one-period model Model setup

Arbitrage opportunities Attainable Payoffs Contingent claims Arbitrage-fre prices Complete

Exercise 1: Solution

Quantitative Finance 2015: Lecture 2

> Lecturer today: W. Farkas

Chapter 2: Discrete Time Models in One Period

2.1: The one-period model

Model setup Arbitrage opportunities Attainable Payoffs Contingent claims Arbitrage-free prices Complete Markets

2.2: Exercises

Solution

1 This part is optional.

Suppose there exists a free-lunch, i.e. there exists $\overline{\xi} \in \mathbb{R}^{d+1}$ such that $\overline{\xi} \cdot \overline{\pi} < 0$ and $\overline{\xi} \cdot \overline{S} \ge 0$ P-a.s..

We want to show that this implies the existence of an arbitrage opportunity, i.e. there exists $\overline{\eta} \in \mathbb{R}^{d+1}$ such that:

- $\overline{\eta} \cdot \overline{\pi} \leq 0$,
- $\overline{\eta} \cdot \overline{S} \ge 0$ \mathbb{P} -a.s.,
- $\mathbb{P}\left[\overline{\eta}\cdot\overline{S}>0\right]>0.$

By definition, a free-lunch implies a negative initial portfolio, i.e.

$$0 > \overline{\xi} \cdot \overline{\pi} = \xi^0 \cdot 1 + \xi \cdot \pi = :-\delta;$$

so that $\delta > 0$.

> Lecturer today: W. Farkas

Chapter 2: Discrete Time Models in One Period

2.1: The one-period model

Model setup Arbitrage opportunities Attainable Payoffs Contingent claims Arbitrage-free prices Complete Markets

2.2: Exercises

Exercise 1: Solution

Now, we define $\eta^0 := \xi^0 + \delta$ and $\eta^i := \xi^i$ for $i = 1 \dots d$. Then, for the new strategy η we get:

$$\overline{\eta} \cdot \overline{\pi} = (\xi^0 + \delta) \cdot 1 + \eta \cdot \pi$$
$$= 0.$$

Moreover:

$$\overline{\eta} \cdot \overline{S} = (\xi^0 + \delta) \cdot (1+r) + \eta \cdot S = \eta^0 (1+r) + \delta (1+r) + \xi \cdot S = \overline{\xi} \cdot \overline{S} + \delta \cdot (1+r).$$

By definition of free-lunch, we know that $\mathbb{P}\left[\overline{\xi} \cdot \overline{S} \ge 0\right] = 1$. But since $\delta \cdot (1+r) > 0$, it follows that

$$\mathbb{P}\left[\overline{\eta}\cdot\overline{S}>0
ight]=\mathbb{P}\left[\overline{\xi}\cdot\overline{S}+\delta\cdot(1+r)>0
ight]=1$$

This proves that $\overline{\eta}$ is an arbitrage opportunity.

Exercise 1: Solution

Lecturer today: W. Farkas

Quantitative Finance 2015:

Chapter 2: Discrete Time Models in One Period

2.1: The one-period model

Model setup Arbitrage opportunities Attainable Payoffs Contingent claims Arbitrage-free prices Complete

2.2: Exercises

2 This part is not optional. Consider a binomial model with 2 assets (d = 1) and Ω = {ω₁, ω₂} such that P[{ω₁}] = P[{ω₂}] = ¹/₂.

Assume $\pi^1 = 2$, $S^1(\omega_1) = 3$, $S^1(\omega_2) = 2$ and r = 0.

- The necessary and sufficient condition to have no free-lunch is: ℓ ≤ 1 + r ≤ u.
 ⇒ Here, we have ²/₂ ≤ 1 ≤ ³/₂, therefore there is no free-lunch.
- On the other hand, the necessary and sufficient condition to have no arbitrage opportunities is ℓ < 1 + r < u.
 ⇒ Since this is not satisfied, there exists an arbitrage opportunity in our market model.

Exercise 2: Question

イロト 不同下 イヨト イヨト

-

45 / 53

Question

Consider a one-period model with 2 assets (i.e. d = 1) and $\Omega = \{\omega_1, \omega_2\}$ such that $\mathbb{P}[\{\omega_1\}] = \mathbb{P}[\{\omega_2\}] = \frac{1}{2}$. Assume in addition that $\pi^1 = 2$, $S^1(\omega_1) = 3$ and $S^1(\omega_2) = 2$.

- 1 Show that if r = 0, then there are no free-lunches in the model.
- 2 Determine a risk-neutral measure P^{*} for this market. Observe that in general P ≠ P^{*}.

Finance 2015: Lecture 2 Lecturer

Quantitative

today: W. Farkas

Chapter 2: Discrete Time Models in One Period

2.1: The one-period model

Model setup Arbitrage opportunities Attainable Payoffs Contingent claims Arbitrage-free prices Complete

Lecturer today: W. Farkas

Chapter 2: Discrete Time Models in One Period

2.1: The one-perioc model

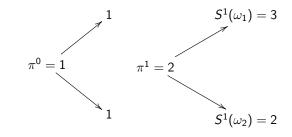
Model setup Arbitrage opportunities Attainable Payoffs Contingent claims Arbitrage-free prices Complete Markets

2.2: Exercises

Solution

1 Suppose r = 0. Then we have $\pi^0 = S^0 = 1$, so that the price process follows the dynamics:

Exercise 2: Solution



By definition, a free-lunch is a strategy $\overline{\xi} \in \mathbb{R}^2$ such that $\overline{\xi} \cdot \overline{\pi} < 0$ and $\overline{\xi} \cdot \overline{S} \ge 0$, \mathbb{P} -a.s.

Exercise 2: Solution

Lecture 2 Lecturer today: W. Farkas

Quantitative Finance 2015:

Chapter 2: Discrete Time Models in One Period

2.1: The one-period model

Model setup Arbitrage opportunities Attainable Payoffs Contingent claims Arbitrage-free prices Complete

2.2: Exercises

To show its existence, the following system of linear inequalities has to be solvable:

$$\left(\begin{array}{c} 1 \cdot \xi^{0} + 2 \cdot \xi^{1} < 0; \\ 1 \cdot \xi^{0} + 2 \cdot \xi^{1} \ge 0; \\ 1 \cdot \xi^{0} + 3 \cdot \xi^{1} \ge 0. \end{array} \right)$$

But this system has no solution, therefore this model satisfies the (NFL) condition.

Exercise 2: Solution

Quantitative Finance 2015: Lecture 2

> Lecturer today: W. Farkas

Chapter 2: Discrete Time Models in One Period

2.1: The one-period model

Model setup Arbitrage opportunities Attainable Payoffs Contingent claims Arbitrage-free prices Complete

Markets

2.2: Exercises

2 To determine a risk-neutral measure P* we have to solve the following system of equations:

$$\left(\begin{array}{cc} \frac{S^{0}(\omega_{1})}{1+r} & \frac{S^{0}(\omega_{2})}{1+r} \\ \frac{S^{1}(\omega_{1})}{1+r} & \frac{S^{1}(\omega_{2})}{1+r} \end{array}\right) \cdot \left(\begin{array}{c} \mathbb{P}^{*}[\{\omega_{1}\}] \\ \mathbb{P}^{*}[\{\omega_{2}\}] \end{array}\right) = \left(\begin{array}{c} \pi^{0} \\ \pi^{1} \end{array}\right).$$

Substituting the numbers given in the problem, this is equivalent to:

$$\begin{bmatrix} \mathbb{P}^*[\{\omega_1\}] + \mathbb{P}^*[\{\omega_2\}] = 1; \\ 2\mathbb{P}^*[\{\omega_2\}] + 3\mathbb{P}^*[\{\omega_1\}] = 2. \end{bmatrix}$$

We conclude that:

$$\left\{ \begin{array}{l} \mathbb{P}^*[\{\omega_2\}] = 1, \\ \mathbb{P}^*[\{\omega_1\}] = 0 \end{array} \right.$$

.

イロト イポト イヨト イヨト

In particular, observe that $\mathbb{P} \neq \mathbb{P}^*$.

48 / 53

Exercise 3: Question

イロト 不同下 イヨト イヨト

49/53

Quantitative Finance 2015: Lecture 2

Lecturer today: W. Farkas

Chapter 2: Discrete Time Models in One Period

2.1: The one-period model

Model setup Arbitrage opportunities Attainable Payoffs Contingent claims Arbitrage-free prices Complete Markets

2.2: Exercises

Question

Consider a one-period model with 2 assets. Let $\Omega = \{\omega_1, \omega_2\}$ and consider a probability measure \mathbb{P} with $\mathbb{P}[\{\omega_1\}], \mathbb{P}[\{\omega_2\}] > 0$.

Assume r = 0, $\pi^0 = 1$, $\pi^1 = 100$, $S^1(\omega_1) = 120$, $S^1(\omega_2) = 80$ and let 80 < K < 120.

Consider a call and put option on the risky asset, with payoffs $C^{call} = (S^1 - K)^+$ and $C^{put} = (K - S^1)^+$, respectively.

For which values of K do we have $\pi(C^{call}) \leq \pi(C^{put})$?

> Lecturer today: W. Farkas

Chapter 2: Discrete Time Models in One Period

2.1: The one-period model

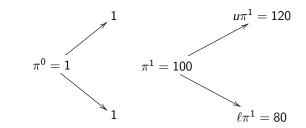
Model setup Arbitrage opportunities Attainable Payoffs Contingent claims Arbitrage-free prices Complete Markets

2.2: Exercises

Exercise 3: Solution

Solution

Consider a one-period model with 2 assets (d = 1). We assume r = 0, $\pi^0 = 1$, $\pi^1 = 100$, $S^1(\omega_1) = 120$, $S^1(\omega_2) = 80$ and 80 < K < 120.



Let $C^{call} = (S^1 - K)^+$ and $C^{put} = (K - S^1)^+$ be the payoffs of a call and put option on S^1 , respectively.

Exercise 3: Solution

Quantitative Finance 2015: Lecture 2

Lecturer today: W. Farkas

Chapter 2: Discrete Time Models in One Period

2.1: The one-period model

Model setup Arbitrage opportunities Attainable Payoffs Contingent claims Arbitrage-free prices Complete Markets

2.2: Exercises

 $\label{eq:step1} \begin{array}{l} \textbf{Step 1} \\ \textbf{Derive an equivalent risk-neutral measure and see if it is unique.} \end{array}$

 \Rightarrow We have to solve the following equations:

$$\begin{pmatrix} \frac{S^{0}(\omega_{1})}{1+r} & \frac{S^{0}(\omega_{2})}{1+r} \\ \frac{S^{1}(\omega_{1})}{1+r} & \frac{S^{1}(\omega_{2})}{1+r} \end{pmatrix} \cdot \begin{pmatrix} \mathbb{P}^{*}[\{\omega_{1}\}] \\ \mathbb{P}^{*}[\{\omega_{2}\}] \end{pmatrix} = \begin{pmatrix} \pi^{0} \\ \pi^{1} \end{pmatrix}$$

Substituting the given numbers, we get:

$$\begin{cases} \mathbb{P}^*[\{\omega_1\}] + \mathbb{P}^*[\{\omega_2\}] = 1\\ 80 \cdot \mathbb{P}^*[\{\omega_1\}] + 120 \cdot \mathbb{P}^*[\{\omega_2\}] = 100 \end{cases}$$

Therefore we get $\mathbb{P}^*[\{\omega_1\}] = \mathbb{P}^*[\{\omega_2\}] = \frac{1}{2}$, which means that \mathbb{P}^* is unique.

> Lecturer today: W. Farkas

Chapter 2: Discrete Time Models in One Period

2.1: The one-period model

Model setup Arbitrage opportunities Attainable Payoffs Contingent claims Arbitrage-free prices Complete Markets

τ

2.2: Exercises

Step 2 Compute π^{C} .

 \Rightarrow Uniqueness of the equivalent risk-neutral measure implies that the price of a contingent claim *C* is given by

$$\pi^{\mathsf{C}} = \mathbb{E}_{\mathbb{P}^*} \left[\frac{\mathsf{C}}{1+\mathsf{r}} \right].$$

Thus, for the call option:

$$f(C^{call}) = \frac{\left(S^{1}(\omega_{1}) - K\right)^{+}}{1 + r} \cdot \mathbb{P}^{*}\left[\{\omega_{1}\}\right] + \frac{\left(S^{1}(\omega_{2}) - K\right)^{+}}{1 + r} \cdot \mathbb{P}^{*}\left[\{\omega_{2}\}\right]$$

= $(120 - K) \cdot \frac{1}{2} + 0 \cdot \frac{1}{2}$
= $60 - \frac{K}{2}$.

Exercise 3: Solution

イロト イポト イヨト イヨト

52 / 53

Exercise 3: Solution

(日) (同) (三) (三)

-

53 / 53

On the other hand, for the put option:

$$\pi(C^{put}) = \frac{(K - S^{1}(\omega_{1}))^{+}}{1 + r} \cdot \mathbb{P}^{*} [\{\omega_{1}\}] + \frac{K - (S^{1}(\omega_{2}))^{+}}{1 + r} \cdot \mathbb{P}^{*} [\{\omega_{2}\}]$$

= $0 \cdot \frac{1}{2} + (K - 80) \cdot \frac{1}{2}$
= $\frac{K}{2} - 40.$

claims Arbitrage-fr prices Complete Markets

Model setup Arbitrage opportunities Attainable

2.2: Exercises

Quantitative Finance 2015:

> Lecturer today: W. Farkas

> > Hence, $\pi(C^{call}) \leq \pi(C^{put})$ is equivalent to $60 - \frac{K}{2} \leq \frac{K}{2} - 40$, i.e. $K \geq 100$. But K < 120 by assumption, so we have:

 $100 \le K < 120.$