Quantitative Finance 2015: Lecture 1

Preliminaries

Welcome

Administrative information
Target audience
Goals
Literature
Teaching team
What is next?

1. Bond
fundamentals
Bonds:
Definition and
Examples
Zero-Coupon
Bonds
Coupon Bonds
Price-yield
relationship
Yield Sensitivity and Duration
Answers to the Exercises

Lecture Quantitative Finance Spring Term 2015

Prof. Dr. Erich Walter Farkas

Lecture 1: February 19, 2015

Quantitative Finance 2015: Lecture 1
(1) Preliminaries
(2) Welcome

Administrative information
Target audience
Goals
Literature
Teaching team
What is next?
(3) 1. Bond fundamentals

Bonds: Definition and Examples Zero-Coupon Bonds
Coupon Bonds
Price-yield relationship
Yield Sensitivity and Duration
Answers to the Exercises

Administrative information

- Room: HAH E 11 at UZH
- Thursday, 12.15-13.45: no break!
- First lecture: Thursday, February 19, 2015
- No lecture: Thursday, April 09, 2015: Easter Holidays
- No lecture: Thursday, May 14, 2015: Ascension Day
- Last lecture: Thursday, May 28, 2015
- Exam date: Thursday, June 4, 2015, 12.00-14.00
- Exam location: Room: TBD at UZH
- Exam details: closed books
- Material: see OLAT

Quantitative Finance 2015: Lecture 1

Preliminaries

Welcome

Administrative information
Target audience Goals
Literature
Teaching team
What is next?

1. Bond
fundamentals
Bonds:
Definition and Examples
Zero-Coupon
Bonds
Coupon Bonds Price-yield relationship Yield Sensitivity and Duration Answers to the Exercises

Target audience of this course

- UZH - MA: Pflichtmodule BF
- UZH ETH - Master of Science in Quantitative Finance (elective area: MF)
- anybody interested in an introduction to quantitative finance

Goals of this course

At the end of this course you

- will be able to understand and apply the fundamental concepts of quantitative finance;
- will have learned the (fundamental) aspects of valuing financial instruments (bonds, forwards, options, etc.) and the role of asset price sensitivities;
- will have the ability to comprehend and manage (market) risk and to use quantitative techniques to model these risks.

Selected literature

- J. Hull, Options, Futures and Other Derivatives, Prentice Hall Series in Finance, 2008
- P. Wilmott, Paul Wilmott on Quantitative Finance, John Wiley \& Sons, 2006
- P. Jorion,

Financial Risk Manager Handbook, Wiley Finance, 2007

- J. Cvitanic and F. Zapatero, Introduction to the Econ. and Math. of Financial Markets, The MIT Press, 2004
- H. Föllmer and A. Schied, Stochastic finance: An introduction in discrete time, De Gruyter Berlin, 2002

Selected literature

- T. Bjork, Arbitrage Theory in Continuous Time, Oxford Univ Press, 2004
- M. Musiela, M. Rutkowski, Martingale Methods In Financial Modelling, Springer Verlag, 2005
- D. Lamberton, B. Lapeyre, Introduction to Stochastic Calculus Applied to Finance, Chapman \& Hall, 2007
- P. Wilmott, Derivatives: The Theory and Practice of Financial Engineering, John Wiley \& Son, 1998
- T. Mikosch, Elementary Stochastic Calculus with Finance in View, World Scientific, 2000
- I. Karatzas and S. Shreve, Brownian motion and stochastic calculus, Springer-Verlag, New York, 1991

Prof. Dr. Erich Walter Farkas

- Dipl. Math., MSc. Math: University of Bucharest
- Dr. rer. nat.: Friedrich-Schiller-University of Jena
- Habilitation: Ludwig-Maximilians-University of Munich
- Since 1. Oct. 2003 at UZH \& ETH:

PD (reader) and wissenschaftlicher Abteilungsleiter (Director) in charge for the UZH ETH - Quantitative Finance Master first joint degree of UZH and ETH

- Since 1. Feb. 2009:

Associate Professor for Quantitative Finance at UZH
Program Director MSc Quantitative Finance (joint degree UZH ETH)

- Associate Faculty, Department of Mathematics, ETH Zürich
- Faculty member of the Swiss Finance Institute

PhD students

- Giada Bordogna
- Fulvia Fringuellotti
- Kevin Meyer

Quantitative Finance 2015: Lecture 1

Guest lecturers

- Dr. Pedro Fonseca, Former Head Risk Analytics \& Reporting, SIX Management AG
- Marek Krynski, Executive Director at UBS
- Robert Huitema, Associate Director at UBS

Quantitative Finance 2015: Lecture 1

Contact details

- kevin.meyer@bf.uzh.ch
- Office: Plattenstrasse 22, 8032 Zurich
- Appointment via E-mail is kindly requested

Quantitative Finance 2015: Lecture 1

Further lectures in Mathematical / Quantitative Finance

- Direct continuation of this lecture
- Fall 2015:

Mathematical Foundations of Finance ETH: W. Farkas, M. Schweizer

- Spring 2016:

Continuous Time Quantitative Finance UZH: M. Chesney

- Related lectures
- Fall 2015: Financial Engineering
- Spring 2015 and Spring 2016: Asset Management; Quantitative Risk Management
Quantitative Finance 2015: Lecture 1
Preliminaries

Welcome

Administrative information
Target audience
Goals
Literature
Teaching team
What is next?

1. Bond fundamentals
Bonds:
Definition and Examples
Zero-Coupon Bonds
Coupon Bonds
Price-yield relationship
Yield Sensitivity and Duration Answers to the Exercises

Chapter 1: Bond fundamentals

Bonds: Definition and Examples

- Bonds are financial claims which entitle the holder to receive a stream of periodic payments, known as coupons, as well as a final payment, known as the principal (or face value).
- In practice, depending on the nature of the issues, one distinguishes between different types of bonds; important examples include:
- Government or Treasury Bonds: issued by governments, primarily to finance the shortfall between public revenues and expenditures and to pay off earlier debts;
- Municipal Bonds: issued by municipalities, e.g., cities and towns, to raise the capital needed for various infrastructure works such as roads, bridges, sewer systems, etc.;
- Mortgage Bonds: issued by special agencies who use the proceeds to purchase real estate loans extended by commercial banks;
- Corporate Bonds: issued by large corporations to finance the purchase of property, plant and equipment.
- Among all assets, the simplest (most basic) to study are fixed-coupon bonds as their cash-flows are predetermined.
- The valuation of bonds requires a good understanding of concepts such as compound interest, discounting, present value and yield.
- For hedging and risk management of bond portfolios (risk) sensitivities such as duration and convexity are important.

Zero-Coupon Bonds

- A zero-coupon bond promises no coupon payments, only the repayment of the principal at maturity.
- Consider an investor who wants a zero-coupon bond, which
- pays 100 CHF
- in 10 years, and
- has no default risk.
- Since the payment occurs at a future data - in our case after 10 years - the value of this investment is surely less than an up-front payment of 100 CHF .
- To value this payment one needs two ingredients:
- the prevailing interest rate, or yield, per period
- and the tenor, denoted T, which gives the number of periods until maturity expressed in years.
- The present value (PV) of a zero-coupon bond can be computed as:

$$
P V=\frac{C_{T}}{(1+y)^{T}}
$$

where C_{T} is the principal (or face value) and y is the discount rate.

- For instance, a payment of $C_{T}=100 \mathrm{CHF}$ in 10 years discounted at 6% is (only) worth 55.84 CHF.

Note:

- The (market) value of zero-coupon bonds decreases with longer maturities;
- keeping T fixed, the value of the zero-coupon bond decreases as the yield increases.
- Analogously to the notion of present value, we can define the notion of future value (FV) for an initial investment of amount PV:

$$
F V=P V \times(1+y)^{T}
$$

- For example, an investment now worth $P V=100 \mathrm{CHF}$ growing at 6% per year will have a future value of 179.08 CHF in 10 years.
- The internal rate of return of a bond, or annual growth rate, is called the yield, or yield-to-maturity (YTM).
- Yields are usually easier to deal with than CHF values.
- Rates of return are directly comparable across assets (when expressed in percentage terms and on an annual basis).
- The yield y of a bond is the solution to the (non-linear) equation:

$$
P=P(y)
$$

where " P " is the (market) price of the bond and $P(\cdot)$ is the price of the bond as a function of the yield y; in case of a zero-coupon bond

$$
P(y):=\frac{C_{T}}{(1+y)^{T}} .
$$

- The yield of bonds with the same characteristics but with different maturities can differ strongly; i.e., the yield (usually) depends upon the maturity of the bond.
- The yield curve is the set of yields as a function of maturity.
- Under "normal" circumstances, the yield curve is upward sloping; i.e., the longer you lock in your money, the higher your return.

Important: state the method used for compounding:

- annual compounding (usually the norm):

$$
P V=\frac{C_{T}}{(1+y)^{T}}
$$

- semi-annual compounding (e.g. used in the U.S. Treasury bond market): interest rate y_{s} is derived from:

$$
P V=\frac{C_{T}}{\left(1+y_{s} / 2\right)^{2 T}}
$$

where $2 T$ is the number of periods.

- continuous compounding (used ubiquitously in the quantitative finance literature) interest rate y_{c} is derived from:

$$
P V=\frac{C_{T}}{\exp \left(y_{c} T\right)}
$$

Example: Consider our example of the zero-coupon bond, which pays 100 CHF in 10 years, once again. Recall that the PV of the bond is equal to 55.8395 CHF . Now, we can compute the 3 yields as follows:

- annual compounding:

$$
P V=\frac{C_{T}}{(1+y)^{10}} \Rightarrow y=6 \%
$$

- semi-annual compounding:

$$
P V=\frac{C_{T}}{\left(1+y_{s} / 2\right)^{20}} \Rightarrow\left(1+y_{s} / 2\right)^{2}=1+y \Rightarrow y_{s}=5.91 \%
$$

- continuously compounding:

$$
P V=\frac{C_{T}}{\exp \left(y_{c} T\right)} \Rightarrow \exp \left(y_{c}\right)=1+y \Rightarrow y_{c}=5.83 \%
$$

Note: increasing the (compounding) frequency results in a lower equivalent yield.

Quantitative Finance 2015: Lecture 1

Exercise L01.1: Assume a semi-annual compounded rate of 8\% (per annum). What is the equivalent annual compounded rate?
(1) 9.20%
(2) 8.16%
(3) 7.45%
(4) 8.00%.

Exercise L01.2: Assume a continuously compounded rate of 10% (per annum). What is the equivalent semi-annual compounded rate?
(1) 10.25%
(2) 9.88%
(3) 9.76%
(4) 10.52%.

Quantitative Finance 2015: Lecture 1

- While zero coupon bonds are a very useful (theoretical) concept, the bonds usually issued and traded are coupon bearing bonds.

Note:

- A zero coupon bond is a special case of a coupon bond (with zero coupon);
- and a coupon bond can be seen as a portfolio of zero coupon bonds.

Price-yield relationship

Consider now the price (or present value) of a coupon bond with a general pattern of fixed cash-flows. We define the price-yield relationship as follows:

$$
P=\sum_{t=1}^{T} \frac{C_{t}}{(1+y)^{t}} .
$$

Here we have adopted the following notations:

- C_{t} : the cash-flow (coupon or principal) in period t;
- t : the number of periods (e.g. half-years) to each payment;
- T : the number of periods to final maturity;
- y : the discounting yield.
- As indicated earlier, the typical cash-flow pattern for bonds traded in reality consists of regular coupon payments plus repayment of the principal (or face value) at the expiration.
- Specifically, if we denote c the coupon rate and F the face value, then the bond will generate the following stream of cash flows:

$$
\begin{aligned}
C_{t} & =c F & & \text { prior to expiration } \\
C_{T} & =c F+F & & \text { at expiration. }
\end{aligned}
$$

- Using this particular cash-flow pattern, we can arrive (with the use of the geometric series formula) arrive at a more compact formula for the price of a coupon bond:

$$
\begin{aligned}
P & =\frac{c F}{1+y}+\frac{c F}{(1+y)^{2}}+\cdots+\frac{c F}{(1+y)^{T-1}}+\frac{c F+F}{(1+y)^{T}} \\
& =c F \cdot \frac{\frac{1}{1+y}-\frac{1}{(1+y)^{T+1}}}{1-\frac{1}{1+y}}+\frac{F}{(1+y)^{T}} \\
& =\frac{c F}{y} \cdot\left(1-\frac{1}{(1+y)^{T}}\right)+\frac{F}{(1+y)^{T}} .
\end{aligned}
$$

Remark. If the coupon rate matches the yield ($c=y$) (using the same compounding frequency) then the price of the bond equals its face value; such a bond is said to be priced at par.

Example: Consider a bond that pays 100 CHF in 10 years and has a 6% annual coupon.
a.) What is the market value of the bond if the yield is 6% ?
b.) What is the market value of the bond if the yield falls to 5% ?

Solution: The cash flows are $C_{1}=6, C_{2}=6, \ldots, C_{10}=106$. Discounting at 6% gives PV s of $5.66,5.34, \ldots, 59.19$, which sum up to 100 CHF ; so the bond is selling at par. Alternatively, discounting at 5% leads to a price of 107.72 CHF .

Quantitative Finance 2015: Lecture 1

Preliminaries

Welcome

Administrative

 informationTarget audience
Goals
Literature
Teaching team
What is next?

1. Bond
fundamentals
Bonds:
Bonds:
Definition and Examples
Zero-Coupon
Bonds
Coupon Bonds
Price-yield relationship Yield Sensitivity and Duration
Answers to the Exercises

Exercise L01.3: Consider a 1-year fixed-rate bond currently priced at 102.9 CHF and paying a 8% coupon (semi-annually). What is the yield of the bond?
(1) 8%
(2) 7%
(3) 6%
(4) 5%.

Quantitative Finance 2015: Lecture 1

- Another special case of a general coupon bond is the so-called perpetual bond, or consol.
- These are bonds with regular coupon payments of $C_{t}=c F$ and with infinite maturity.
- The price of a consol is given by:

$$
P=\frac{c}{y} F .
$$

Quantitative Finance 2015: Lecture 1

Derivation:

Preliminaries

Welcome

Administrative information
Target audience
Goals
Literature
Teaching team
What is next?

1. Bond
fundamentals
Bonds:
Definition and
Examples
Zero-Coupon
Bonds
Coupon Bonds
Price-yield
relationship
Yield Sensitivity and Duration
Answers to the Exercises

$$
\begin{aligned}
P & =\frac{c F}{1+y}+\frac{c F}{(1+y)^{2}}+\frac{c F}{(1+y)^{3}}+\cdots \\
& =c F\left[\frac{1}{1+y}+\frac{1}{(1+y)^{2}}+\frac{1}{(1+y)^{3}}+\cdots\right] \\
& =c F \frac{1}{1+y}\left[1+\frac{1}{(1+y)}+\frac{1}{(1+y)^{2}}+\cdots\right] \\
& =c F \frac{1}{1+y}\left[\frac{1}{1-(1 /(1+y))}\right] \\
& =c F \frac{1}{1+y} \frac{1+y}{y} \\
& =\frac{c}{y} F .
\end{aligned}
$$

- We will now address the question: what happens to the price of the bond when the yield changes from its initial value say, y_{0}, to a new value $y_{1}=y_{0}+\Delta y$, where Δy is assumed to be 'small'.
- Assessing the effect of changes in risk factors (in our case, the yield) on the price of assets is of key importance for hedging and risk management.
- We start from the price-yield relationship $P=P(y)$. We now have an initial value of the bond $P_{0}=P\left(y_{0}\right)$, and a new value of the bond $P_{1}=P\left(y_{1}\right)$.
- For a 'small' yield change Δy, we can approximate P_{1} from a Taylor expansion,

$$
P_{1}=P_{0}+P^{\prime}\left(y_{0}\right) \Delta y+\frac{1}{2} P^{\prime \prime}\left(y_{0}\right)(\Delta y)^{2}+\ldots
$$

- This is an infinite expansion with increasing powers of Δy; only the first two terms (linear and quadratic) are usually used by finance practitioners.
- The first- and second-order derivative of the bond price w.r.t. yield are very important, so they have been given special names.
- The negative of the first-order derivative is the dollar duration (DD):

$$
D D=-P^{\prime}(y)=-\frac{d P}{d y}=D^{*} \times P
$$

where D^{*} is the modified duration.

- Another duration measure is the so-called Macaulay duration (D), which is defined as:

$$
D=\frac{1}{P}\left(\sum_{t=1}^{T} \frac{t \times c F}{(1+y)^{t}}+\frac{T \times F}{(1+y)^{T}}\right)
$$

- Often risk is measured as the dollar value of a basis point (DVBP) (also known as DV01):

$$
D V 01=\left(D^{*} \times P\right) \times B P
$$

where BP stands for basis point $(=0.01 \%)$.

- The second-order derivative is the dollar convexity (DC):

$$
D C=P^{\prime \prime}(y)=\frac{d^{2} P}{d y^{2}}=\kappa \times P
$$

where κ is called the convexity.

- For fixed-coupon bonds, the cash-flow pattern is known and we have an explicit price-yield function; therefore one can compute analytically the first- and second-order derivatives.

Example: Recall that a zero-coupon bond has only payment at maturity equal to the face value $C_{T}=F$:

$$
P(y)=\frac{F}{(1+y)^{T}}
$$

Then, we have $D=T$ and

$$
\frac{d P}{d y}=(-T) \times \frac{F}{(1+y)^{T+1}}=-\frac{T}{1+y} \times P
$$

so the modified duration is $D^{*}=T /(1+y)$. Additionally, we have

$$
\frac{d^{2} P}{d y^{2}}=-(T+1) \times(-T) \times \frac{F}{(1+y)^{T+2}}=\frac{(T+1) T}{(1+y)^{2}} \times P
$$

so that the convexity is $\kappa=\frac{(T+1) T}{(1+y)^{2}}$.

Quantitative Finance 2015:

Remarks:

- note the difference between the modified duration $D^{*}=T /(1+y)$ and the Macaulay duration ($D=T$);
- duration is measured in periods, like T;
- considering annual compounding, duration is measured in years, whereas with semi-annual compounding duration is in half-years and has to be divided by two for conversion to years;
- dimension of convexity is expressed in periods squared;
- considering semi-annual compounding, convexity is measured in half-years squared and has to be divided by four for conversion to years squared.

Summary: Using the duration-convexity terminology developed so far, we can rewrite the Taylor expansion for the change in the price of a bond, as follows:

$$
\Delta P=-\left(D^{*} \times P_{0}\right)(\Delta y)+\frac{1}{2}\left(\kappa \times P_{0}\right)(\Delta y)^{2}+\cdots
$$

where

- duration measures the first-order (linear) effect of changes in yield,
- convexity measures the second-order (quadratic) term, and recall that $P_{0}=P\left(y_{0}\right)$.

Example: Consider a zero-coupon bond with $T=10$ years to maturity and a yield of $y_{0}=6 \%$ (semi-annually). The (initial) price of this bond is $P_{0}=55.368$ CHF as obtained from:

$$
P_{0}=\frac{100}{(1+6 \% / 2)^{2 \cdot 10}}=55.368
$$

We now compute the various sensitivities of this bond:

- Macaulay duration $D=T=10$ years;
- Modified duration is given by $\frac{d P_{0}}{d(y / 2)}=-D^{*} \times P_{0}$:

$$
D^{*}=\frac{2 \cdot 10}{1+6 \% / 2}=19.42 \quad \text { half-years }
$$

or $D^{*}=9.71$ years;

- Dollar duration $D D=D^{*} \times P_{0}=9.71 \times 55.37=537.55$;
- Dollar value of a basis point is $D V B P=D D \times 0.0001=0.0538$;
- Convexity is

$$
\frac{21 \times 20}{(1+6 \% / 2)^{2}}=395.89 \quad \text { half-years squared }
$$

or $\kappa=98.97$ years squared.

Finally, we can now turn to the problem of estimating the change in the value of the bond if the yield goes from $y_{0}=6 \%$ to, say, $y_{1}=7 \%$, i.e., $\Delta y=1 \%$:

$$
\begin{aligned}
\Delta P & \sim-\left(D^{*} \times P_{0}\right)(\Delta y)+\frac{1}{2}\left(\kappa \times P_{0}\right)(\Delta y)^{2} \\
& =-(9.71 \times 55.37) \cdot 1 \%+\frac{1}{2}(98.97 \times 55.37) \cdot(1 \%)^{2} \\
& =-5.101
\end{aligned}
$$

Note that the exact value for the yield $y_{1}=7 \%$ is 50.257 CHF. Thus:

- using only the first term in the expansion, the predicted price is $55.368-5.375=49.992$ CHF, and
- the linear approximation has a pricing error of -0.53% (not bad given the large change in the yield).
- Using the first two terms in the expansion, the predicted price is $55.368-5.101=50.266$ CHF,
- thus adding the second term reduces the approximation error to 0.02%.

Quantitative Finance 2015: Lecture 1

Preliminaries

Welcome

Administrative information
Target audience
Goals
Literature
Teaching team
What is next?

1. Bond
fundamentals
Bonds:
Definition and Examples
Zero-Coupon Bonds Coupon Bonds Price-yield relationship Yield Sensitivity and Duration Answers to the Exercises

Exercise L01.4: What is the price impact of a $10-\mathrm{BP}$ increase in yield on a 10 -year zero-coupon bond whose price, duration and convexity are $P=100 \mathrm{CHF}$, $D=7$ and $\kappa=50$, respectively.
(1) -0.705
(2) -0.700
(3) -0.698
(4) -0.690 .

Having done the numerical calculations, it is now helpful to have a graphical representation of the duration-convexity approximation. The graph (on the next slide) compares the following three curves:
(1) the actual, exact price-yield relationship:

$$
P=P(y)
$$

(2) the duration based estimate (first-order approximation):

$$
P=P_{0}-D^{*} P_{0} \cdot \Delta y ;
$$

(3) the duration and convexity estimate (second-order approximation):

$$
P=P_{0}-D^{*} \times P_{0} \cdot \Delta y+\frac{1}{2} \kappa \times P_{0} \times(\Delta y)^{2} .
$$

Quantitative Finance 2015: Lecture 1

Preliminaries

Welcome

Administrative information
Target audience Goals
Literature
Teaching team What is next?

1. Bond
fundamentals
Bonds:
Definition and Examples
Zero-Coupon Bonds
Coupon Bonds
Price-yield relationship
Yield Sensitivity and Duration
Answers to the Exercises

Figure : The price-yield relationship and the duration-convexity based approximation. Solid black: The exact price-yield relationship, Dashed gray: Linear and Second order approximations.

Conclusions:

- for small movements in the yield, the duration-based linear approximation provides a reasonable fit to the exact price; including the convexity term, increases the range of yields over which the approximation remains reasonable;
- Dollar duration measures the (negative) slope of the tangent to the price-yield curve at the starting point y_{0};
- when the yield rises, the price drops but less than predicted by the tangent; if the yield falls, the price increases faster than the duration model. In other words, the quadratic term is always beneficial.

Quantitative Finance 2015:

Notes:

- In economic terms, duration is the average time to wait for each payment weighted by their present values.
- For the standard bonds considered so far, we have been able to compute duration and convexity analytically. However, in practice there exist bonds with more complicated features (such as mortgage-backed securities with an embedded prepayment option), for which it is not possible to compute duration and convexity in closed form.
- Instead, we need to resort to numerical method, in particular, approximating the bond price sensitivities with finite differences.
- Choose a change in the yield, Δy, and reprice the bond under an up-move scenario $P_{+}=P\left(y_{0}+\Delta y\right)$ and a down-move scenario $P_{-}=P\left(y_{0}-\Delta y\right)$.
- Then approximate the first-order derivative with a centered finite difference. From

$$
D^{*}=-\frac{1}{P} \frac{d P}{d y}
$$

effective duration is estimated as:

$$
D^{*} \approx-\frac{1}{P_{0}} \times \frac{P_{+}-P_{-}}{2 \Delta y}=\frac{1}{P_{0}} \times \frac{P\left(y_{0}-\Delta y\right)-P\left(y_{0}+\Delta y\right)}{2 \Delta y}
$$

- Similarly, from

$$
\kappa=\frac{1}{P} \frac{d^{2} P}{d y^{2}}
$$

effective convexity is estimated as:

$$
\kappa \approx \frac{1}{P_{0}} \times\left[\frac{P\left(y_{0}-\Delta y\right)-P_{0}}{\Delta y}-\frac{P_{0}-P_{0}\left(y_{0}+\Delta y\right)}{\Delta y}\right] \times \frac{1}{\Delta y} .
$$

Exercise L01.1: b) This is derived from $\left(1+y_{s} / 2\right)^{2}=(1+y)$ or, equivalently, $(1+0.08 / 2)^{2}=(1+y)$, which gives $y=8.16 \%$. compounding.

Exercise L01.2: a) This is derived from $\left(1+y_{s} / 2\right)^{2}=\exp \left(y_{c}\right)$ or, equivalently, $\left(1+y_{s} / 2\right)^{2}=1.1056$, which gives $y_{s}=10.25 \%$.

Exercise L01.3: d) We need to find y such that $4 /\left(1+y_{s} / 2\right)+104 /\left(1+y_{s} / 2\right)^{2}=102.9$. Solving, we find $y_{s}=5 \%$.

Exercise L01.4: c) The initial price is $P_{0}=100$. The yield increase is $10-\mathrm{BP}$, which means $\Delta y=10 \cdot 0.0001=0.001$. The price impact is

$$
\begin{aligned}
\Delta P & =-\left(D^{*} \times P_{0}\right)(\Delta y)+\frac{1}{2}\left(\kappa \times P_{0}\right)(\Delta y)^{2} \\
& =-7 \cdot 100 \cdot(0.001)+\frac{1}{2} \cdot 50 \cdot 100 \cdot(0.001)^{2} \\
& =-0.6975
\end{aligned}
$$

