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1. COMBINATORY LOGIC and ALGEBRA 

Since Turing, in particular since universal Turing Machines, and 
also since von Neumann-Machines, inputs and programs are of the 
same nature; we may simply call them “data”. They are perhaps 
marks on the Turing tape or bits in the computer memory. The 
basic operation on data is application: Programs may be applied to 
input data and of course result in data, which may again be 
programs. Programs may also be applied to programs, again 
resulting in data, etc. Indeed, we may admit that all combinations 



	
	
	

of applications on data result again in data, including error 
messages.  

 
 

 

 
Combinatory Logic, was invented by H.B. Curry in his 1929 
Go ̈ttingen thesis, directed by Paul Bernays, also Doktorvater of 
the present author as well as of Saunders MacLane and Gerhard 



	
	
	

Gentzen. It is the formal theory of equations between combinators 
as its objects. For Combinatory Logic and its twin, Lambda 
Calculus, the question of consistency arises. But while Hilbert’s 
program failed for Peano arithmetic, Curry’s formal system is 
consistent, as proved by Church and Rosser using the same finitist 
proof-theoretic tools that failed in the first case.  

 

 

 

But for forty years the only model was the model consisting of 
equivalence classes of combinatory expressions which exist non-
trivially on basic principles, namely the fact of consistency of the 
axioms. �It was known that no computable model existed. Then in 
the 1970’s Plotkin and Scott invented the set-theoretic and 
topological models Pω and then D∞, constructed to be isomorphic 
to its function space. Shortly thereafter we ourselves introduced the 
Graph Model whose transparent and explicit structure lends itself 
to applications in modelling. Such models are called Combinatory 



	
	
	

Algebras.  

Neural algebras as presented below, are constructed as a much 
enriched type of graph models. 

 

2 AN ALGEBRAIC MODEL OF INTERACTING BRAIN FUNCTIONS  

The conceptually simplest model of a brain represents its 
connectivity, the connectome A, as a directed graph whose nodes, 
called neurons, fire at discrete time instances t ∈ Z. The global 
activity of the brain, the firing history of these neurons, is 
represented by the brain function f(a,t) which takes the value 1 if 
the neuron a fires at time t and 0 otherwise. Modeling a brain is 
accomplished by imposing restrictions on the functions f by a 
specific firing law inherited from abstracting neurological findings. 
A firing law specifies the condition under which the firing of 
neurons a1,...,ak at times t1,...,tk causes the firing of a neuron ak+1 at 
some later time tk+1 , assuming the former are connected to it by 
directed edges.  



	
	
	

 

Idea: Define a neural algebra NA as an algebra of interacting brain 
functions. � 

brain functions : temporal patterns of the firings of populations of 
neurons in a brain A, e.g. visual inputs, recognizing a shape, motor 
output, etc. 

�operation: A · B is the brain function which is caused by the 
activation of B in an active environment A.  



	
	
	

 

 

3. MODELING CONTROL IN NEURAL NETS 

A Structure-Function Discipline  

(1) Neurology: Given a connectional structure (”connectome”), 
analyse it into firing tracks (key neurons! ) to reflect a hypothesis 
of identifiable brain functions.  

(2) Neural Algebra: Given a diagram of interacting brain functions 
(and the corresponding equations), solve the equations in NA and 
work out underlying sets of track expressions constituting the 
solutions.  

(3) Fundamental Structures: Identify some fundamental neural 
circuitry by investigating the neural equivalents to basic brain 
functions on first principles and compare to observa- tional results 
in neuroscience.  

The	functional	diagrams	below	are	based	on	the	combinatory	



	
	
	

logic	idea	that	rules	and	their	arguments	are	one	and	the	same	
type	of	objects,	and	that	any	two	may	be	applied	to	each	other:	
A	.	B	results	again	in	such	an	object	C.	In	Neural	Algebra	A,	B,	
etc	are	sets	of	formal	representations	of	cascades	(each	
represented	as	a	sort	of	butterfly	with	the	key	neuron	in	the	
middle),	and	their	relation	is	sketched	in	this	figure.	The	set	of	
key	neurons	activated	in	the	execution	of	the	brain	function	A	
is	characteristic	for	A;	it	is	sometimes	is	identified	locally	by	
fMRI	with	the	brain	function	itself. 

In	a	functional	diagram	the	application	operation	is	
represented	as	an	arrow	going	through	the	circle	named	A,	
starting	at	the	periphery	of	B	and	ending	at	the	periphery	of	C.	
Thus	“rules	may	be	applied	to	rules”	etc.		

  
	



	
	
	

 

The	above	picture	contains	the	functional	diagram	of	a	simple	
feedback	circuit.	Its	equation	is	simply	A	.	B		=	B,	a	fixpoint	
equation,	and	the	solution	algorithm	is	given	both	
mathematically	and	by	its	realization	as	a	neural	net.		

The	subsequent	examples	are	much	of	the	same	nature.	

Of	course,	functional	diagram	have	a	much	wider	range	of	use:	
Below	is	an	old	example	of	mine,	depicting	the	functional	
diagram	of	the	social	functions	operating	in	the	context	of	
environmental	problems.	Note	that	the	diagram	depicts	a	
dictatorial	regime;	you	may	want	to	change	that.	The	
underlying	social	net	is	not	depicted;	that	would	be	the	subject	
of	a	“Social	Algebra”,	which	I,	and	others,	have	clearly	not	
mastered.	 

Also,	I	have	not	written	out	the	equations...		



	
	
	

 

	

Neural	nets	are	the	subject	of	Neural	Algebras,	and	the	
functional	diagrams	concern	brain	functions.	The	examples	
further	below	are	simpler,	their	corresponding	equations	are	
obvious,	and	the	solutions	(for	the	controlled	objects,	usually	
denoted	B	or	X,	Y,	C	as	the	case	may	be,	are	quite	simple	cases	
of	the	fixpoint	theorem	of	Neural	Algebras	(and	Combinatory	
Algebras).	We	have	also	developed	algorithms	solving	for	other	
components	in	the	equations,	which	is	sometimes	a	bit	harder.	 

The	basic	idea	of	the	approach	is	of	course	to	clarify	
algorithmically	the	relation	been	structure	and	function	in	
neural	nets.	 



	
	
	

  

 



	
	
	

  
 
 
4.  EXAMPLE: EYE MOVEMENT 
 
To illustrate the neural algebra of control in the context of 
neuroscience we choose an example that has the advantage of 
being both easy to explain and having interesting ramifications. 
We proceed by starting with a simple feedback and progressively 
include analyses of higher forms of control, input, output and 
additional operands.  

Consider the movement of the eye as it scans a text for a particular 
passage.  



	
	
	

 

The following diagram analyses to some extent the successive 
stages and components of control:  

�Observe the second-order control character of the operation ”Rec” 
of recognising a text passage.  



	
	
	

 

 
 

 

 

 
Here is what our neurologists determined by investigating the 
network of ”integrate and fire” neurons of the relevant area in the 
cat brain: Microcircuits of the frontal eyefield (Martin, Hepp and 
Heinzle, J.Neuroscience 29 (2007) 9341 ff).  

The diagram is based on a quantitative study of the connection 
matrix. The research included the construction of a model to 
simulate the electrophysiological and behaviour findings that 
captured the functionality. It shows some of the connections. Note 



	
	
	

that the REC module is not detailed. The symbols used in this 
drawing are the standard symbols for indicating the firing law: In 
the figure the distinction between incoming and outgoing signals 
and between excitatory and inhibitory synapses are coded 
graphically; these codes in fact represent the firing law of this 
brain model.  

Observe the sequence of operands; they correspond to a layered 
arrangement of individual cascades, named by the given layer-
numbers in the diagram.  

 



	
	
	

The interest in this neural circuit is that its structure is omnipresent 
in the neocortex; it is called the canonical circuit of dominant 
interactions. Observe that the feedback connections go across 
layers. It has been conjectured (Chklovskii et al. 2002) that cortical 
lamination is providing a general scaffold and the canonical 
circuits may allow neurons to connect with each other with a 
minimum of wires.  

 

Jiang, X and al., Science 350 (2015), 1055 ff- 

 



	
	
	

5. REFLEXIVE CONTROL 

A quote from McCarthy (Makig Robots Conscious of their Mental States, 
retrieved from formal.stanford.edu/jmc ca.2005):  

Reflexive control C reflects on the controlling process itself. It is the ability 

of the brain B to observe itself as it is planning, acting and reacting. This 

definition, at first sight, appears circular. Interpreted in NA it is simply self -

referential:  

C · C : the controlling function observes itself 

�C · (B · C): it observes the  influence of the brain on the control activity 

C · (C · B) : it observes the result of the controlling action on the brain  



	
	
	

C ≈ C · C ∪ C · (B · C) ∪ C · (C · B).  

 

 

 

Theorem: A neural algebra admits nontrivial reflexive control if 

and only if it contains at least one sustained causal cycle.  

 

Speculation: Reflexive control in a brain may be identified with 
“Consciousness. 

The cycles of consciousness are all within a general consciousness 
area. This in turn is divided into subareas that would be active as 
”states of consciousness”. One might suspect that these areas all 
intersect in a central area of fundamental cycles, a ”core conscious- 
ness”. And one might conjecture with Crick and Koch that in the 
human brain this is located in the claustrum.  



	
	
	

At this point, many more theoretical perspectives open up, for 
example with respect to logic and language. But that is another 
chapter. � Let me just add, as a sort of suggestion the consciousness 
of animals: of course what we believe to experience as 
consciousness may, from a purely connectional point of view also 
be experienced by animals with a sufficiently structured brain. So 
the question is: how does it feel to be a worm? (I once constructed 
the neural net of a worm that can act as an universal Turing 
machine…) 

There is of course also the possibility that super organisms such as 
the Portuguese Man of War, or more to the point: that ant colonies 
have consciousness. Indeed, one may even invent something to be 
called ”political consciousness”, that is the shared consciousness of 
some human societies, a kind of network of shared awareness. 
(Remember the example of environmental policy above.) 

 

6. INTELLIGENCE 

 

�Let me finally share some speculations about intelligence, a notion 
that has aquired various qualifications such as ”artificial-”, 
”machine-”, and even ”emotional” intelligence. Let me add 
another: Combinatory Intelligence. � 

To start, remember one person who claimed superior intelligence 
of his grey cells and then went on to demonstrate it: Hercule 
Poirot.  

In the final scene of the Agatha Christie’s classic detective story “Five Little 

Pigs,” Poirot presents his parsing of the events that led to the trial and 



	
	
	

conviction of Caroline (C) for the murder of her husband, Amythas (Am), 

who in fact had been killed by his mistress, Elsa (E). But Caroline confessed 

(C1) to the murder because she had observed (C3) her sister Angela (A) in 

some activity at the time, which convinced her (C2) that the sister was the 

murderess. But Caroline had felt bad all her life for having accidentally 

mutilated (C4) Angela as a child, and she therefore decided to take 

advantage of some facts (F1) that pointed to herself, confessed (C1) and was 

convicted, while in fact many clues (F2) pointed Poirot (P2) to the murder of 

Amythas by Elsa. Poirot, detecting (P3) the background of Caroline’s 

confession, correctly reconstructs the circumstances (P1) and accuses Elsa, 

who departs to places unknown.  

 

Formalized as mental activities of the people involved, 
symbolically indicated above, the story parses as:  

(P1 ·(P3 ·(((C1 ·F1)·((C2 ·A)·(C4 ·A)))·(C3 ·(A·Am))))·((P2 
·F2)·(E·Am))  

I submit that Poirot’s intelligence manifests itself as the 
complexity of the bracketing of this combinatory expression.  

To measure the combinatory complexity of the tale of the five little 
pigs, consider its six components P, C, Am, E, A, F .  



	
	
	

In combinatory logic there is an object T which represents the tale. � 

T ·P ·C·Am·E·A·F = 

(P1·(P3·(((C1·F1)·((C2·A)·(C4·A)))·(C3·(A·Am))))·((P2·F2)·(E·Am))  

  

The proof of the existence of T in a neural algebra consists of a 
construction of the corresponding connection diagram. There is an 
algorithm for that. But here we take a simple example, already 
encountered at the beginning of this talk, the diagram for the S- 
combinator.  

 
Indeed, I believe that the ability to think using highly complex 
combinators such as other people’s thoughts, in fact quite generally 
of internal modelling is a defining quality of human intelligence, as 
combinatory intelligence.  

 

 



	
	
	

 

 

 

 

 

	


