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In the fall of 1928 a young American turned up at the Mathematical Institute

of G�ottingen, a mecca of mathematicians at the time; he was a young man with

a dream and his name was H. B. Curry. He felt that he had the tools in hand

with which to solve the problem of foundations of mathematics once and for

all: his was an approach that came to be called \formalist", and embodied a

technique that later became known as Combinatory Logic. Closest to his ideas

was the work of Sch�on�nkel on the \building blocks of mathematical logic"

[Sch�on�nkel], and the man who best knew about this was Bernays, the main

collaborator of Hilbert at G�ottingen on the latter's foundational programme.

This is why Curry went there to submit his thesis [Curry].

The present book is, however, not a history of the actual, very rich, develop-

ment of Curry's ideas; it is a report on a mathematical programme pursued at

the ETH Zurich which was, in part, inspired by some of these ideas, but greatly

in
uenced by later developments, particularly by universal algebra, logic pro-

gramming, computer algebra, and numerical analysis, and therefore embedded

in contemporary concerns. The relation of combinatory logic to these areas

determine the structure of this book, in particular its technical chapters.
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1 From protologics to combinatory algebras

Richard Dedekind was probably the �rst mathematician to try to base the de-

velopment of mathematics on a theory of pure thought. In his delightful and

in
uential booklet \Was sind und was sollen die Zahlen?" (1888) he motivates

his approach quite generally by pronouncing { somewhat sententiously { that

in science nothing should be accepted without proof. In particular, how should

one prove that there are in�nite totalities such as the set of natural numbers?

Philosophical logic { at the time a somewhat dried-up subject { and mathemati-

cal logic { then in its infancy { would have been the \theory of pure thought" on

which the basis had to be laid. Dedekind did not avail himself of them but found

nevertheless a somewhat plausible argument for the existence of classes which

can be mapped one-to-one on a proper subclass, i.e. in�nite classes. His argu-

ment [Dedekind] (theorem 66) proposes as this class \the totality of all things

which may be object of my thought". This class S is mapped into itself by

associating to each object of thought x an object d(x), namely the thought that

x is an object of thought; obviously the thought about the thought is di�erent

from the thought itself, so d is indeed monomorphic. The self of the thinking

subject is clearly an object of thought and not itself of the form d(x). Thus S

is mapped one-to-one onto a proper subclass.

Dedekind's argument was not accepted at the time as a technical proof (as is

documented in the re-edition of his booklet in the collected works), nor would it

stand as one today. But the idea of creating a theory about thoughts, objects of

thoughts and how they apply to each other is a tempting one. In fact, if logic is

to be the science of correctly dealing with thought-objects, such a theory would

in some sense have to be a part, if not a preliminary, to logic: a protologic.

How could one, today, obtain such a protological theory? In the spirit of

contemporary mathematics we need to talk about a structure, i.e. a set of

elements and some operations on them. The \nature" of the elements is not

the primary concern, although it might be helpful to have a concrete example.

Elements exist and have certain properties in the theory exactly in so far as

these follow from some basic assumptions about the structure, the axioms.

Returning to objects of thought and how to apply them to each other, con-

sider the thought dwisdome and the thought-object dSokrates e. Applying one

to the other, we obtain the thought dthe wisdom of Sokrates e. Formally,

dwisdome
�

dSokratese = dthe wisdom of Sokratese:

Among the everyday objects of thought we �nd not only individuals and their

properties but also relationships between objects, e.g., the thought that there is

an analogy between computers and the brain. First-order logic would express

this by

analog(computer,brain),
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i.e. with a binary predicate. The thought in question is really a composite

thought, at least if we consider the notion of application of one thought(-object)

to another as fundamental. It is the thought dto be analogous to a computere

applied to dbraine where the �rst thought-object is itself the result of applying

the concept danalogye to dcomputere. Thus, altogether, our example is

(danalogye �d computere) �d braine.

This thought may itself be applied to the idea of the simulation on the computer

of visual inputs to the brain, similarly expressed by

(((dsimule �
dcomputere) � dinpute) � dbraine)

yielding altogether the thought \to consider the computer-simulation of visual

input into the brain as an application of the analogy between the computer and

the brain", in shorthand

((a � c) � b) � (((s � c) � i) � b):

This particular form of combination of the �ve thought-objects a; b; c; i; s is

one that may be found in very many contexts, one example being \the idea of

reducing (r) chemistry (c) to physics (p), as applied to using quantum theory

(q) in chemistry to explain a mechanism of bonding (b) by physics":

((r � c) � p) � (((q � c) � b) � p):

The thought of combining �ve thought-objects in just this form is itself without

question a legitimate object of thought, let us denote it by \V ". Its de�ning

property is

(((((V � x1) � x2) � x3) � x4) � x5) = ((x1 � x2) � x3) � (((x4 � x2) � x5) � x3);

which we write, conveniently suppressing parentheses to the left,

V � x1 � x2 � x3 � x4 � x5 = (x1 � x2 � x3) � (x4 � x2 � x5 � x3):

Thus we have made the thought formulated as an applicative expression on the

right hand side, into a though-object which, whatever other thought-objects we

may wish to consider later, would have to be present among the elements of the

protological universe. The principle by which we introduced V is the

Principle of combinatory abstraction

For every applicative expression t(x1; : : : ; xn) there exist T for which we have

the equation

T � x1 � x2 � � �xn = t(x1; : : : ; xn)

It expresses the fact that every pattern t of combining applications of thoughts

to each other is itself an object T of thought.
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Abstracting for a moment from the context through which we were led to

the above principle, and returning to a contemporary algebraic point of view:

what we have here is simply an axiom-scheme which speci�es the basic property

of a type of algebraic structure; just as the axioms of group theory specify the

class of groups. Algebraic structures with one binary operation { application

{ satisfying the principle of combinatory abstraction are called combinatory

algebras.

Are there in fact combinatory algebras? Experience with unfettered princi-

ples of abstraction { see Frege's comprehension principle and Russell's paradox

{ teaches us that it might be di�cult to establish the existence of (non-trivial)

combinatory algebras. If, following Hilbert, existence is equated with consis-

tency, a positive answer is given by following the spirit of his program: De�ne

combinatory logic by the axioms of equality together with the axiom scheme of

combinatory abstraction and prove this logical system formally consistent. The

proof [Church and Rosser] employs no stronger tools than primitive recursive

arithmetic.

In contrast with this logical proof theoretic approach, the algebraic approach

is set-theoretic in its basic concepts: to obtain a combinatory algebra, one

needs to specify a set (in some set-theoretic universe) and explicitly de�ne the

operation of application for any two of its elements. Our favorite construction

is that of the graph model [Engeler81], (see below).

The approach taken in this book is a programmatic mixture of the axiomatic

and the set-theoretic. For experience and con�dence with the proposed con-

structs we often rely on set-theoretic examples, and then try to abstract away

this sca�olding in order to retain a purely axiomatic edi�ce.

Every combinatory algebra, by whichever road we come to consider it, has

those elements whose existence is postulated by the principle of combinatory

abstraction. Following Curry, these elements are called combinators and con-

ventionally denoted by boldface capitals. Here are some examples:

K � x � y = x;

D � x � y = x � (y � y);

Y � x = (D � x) � (D � x);

S � x � y � z = (x � z) � (y � z);

I � x = x;

B � x � y � z = x � (y � z):

The combinator Y has been called \paradoxical" because, like Russell's para-

dox, it can be used to dash utopian hopes of letting protologic be a foundation of

logic and mathematics. If indeed protologic { as embodied in combinatory alge-

bra { admitted the usual logical connectives as elements, as thought-objects as it
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were, there would be an element N which stands for the thought dthe negativee.

Thus N , applied to the concept dtruee (if there were one) would yield dfalsee;

for dgoode it would yield N �
d goode =d evile, etc. Now, consider Y �N and

evaluate

Y �N =D �N � (D �N) = N � ((D �N) � (D �N)) = N � (Y �N):

Therefore the thought-object Y �N would be equal to its own negation!

The positive aspect of Y is captured by its usual name \�xpoint combina-

tor": Exactly as above for N , the application of Y to any element f provides

for a �xpoint of 'f when 'f is considered to be a mapping obtained by left

multiplication with f :

'f (x) = f � x;

'f (Y � f) = Y � f

It is a very powerful concept, one that in a sense has inspired many mathematical

developments, such as recursion theory, indeed also some literary productions,

such as Hofstadter's popular book.

Another illustration of the limitations of protologics, and therefore of any

attempt to build upon \pure" logic is provided by the following generalization

of Rice's recursion theoretic theorem [Rice]. It deals with attempts to single out

a set of elements in a combinatory algebra by means of an either/or operator.

Such an operator E would have two possible values if applied to an element x,

eitherK orK �I. The reason for takingK andK �I is clear: The value of E �x

can be used to make a choice between any two objects, say u and v, namely, if

E decides that x is of the �rst kind then

(E � x) � u � v =K � u � v = u;

if it is of the second kind, then

(E � x) � u � v =K � I � u � v = I � v = v:

Assume now that there are elements a and b of the �rst and second kind respec-

tively, and de�ne, using combinatory abstraction,

M � x = (E � x) � b � a:

Let c be a �xpoint ofM , for example c =Y �M . Then E can neither decide that c

is of the �rst kind, for then c =M �c = (E �c)�b�a =K �b�a = b, nor can it decide

that it is of the second kind, for then c =M �c = (E �c)�b�a =K �I �b�a = I �a = a;

while a and b were, as we recall, of the second, respectively of the �rst, kind.

Therefore,
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Lemma 1.1 A combinatory decision operator E can only divide the combina-

tory algebra to which it belongs into the empty set and itself.

For creating mathematical structures strictly inside combinatory algebras we

would therefore have to look for a di�erent kind of mechanism.

2 A brief recapitulation of combinatory algebra

The principle of combinatory abstraction provides for a in�nitude of combina-

tors, but in fact two su�ce to compose all others.

[Sch�on�nkel]

Lemma 2.1 For every combinator T there exists an applicative expression

t(S;K) in S and K alone such that T = t(S;K):

The proof, by induction on the structure of the formula which de�nes T

by combinatory abstraction, is straightforward; the need for exactly these two

combinators S and K develops in the proof.

Combinatory algebras have a surprising wealth of elements and operations.

Most of these were originally discovered, mainly by Church [Church] and Kleene

[Kleene] hand in hand with the development of recursion theory. The operation

of pairing and its inverses are de�ned by

P � u � v � x = x � u � v : P � u � v is the pair hu; vi;

P 1u = u �K : P 1 its �rst component,

P 2u = u � (K � I) : P 2 its second component;

and we verify for example

P 2(Puv) = (Puv)(K � I) =K � I � u � v = v:

Pairing can be used, just as in axiomatic set theory, to de�ne each one of the

natural numbers by a combinator, its combinatory numeral. To wit:

0 = I;1 = P � 0 �K; : : : ;5 = P � 4 �K; : : :

The successor of a number is uniformly given by the next-number combinator

N � x = P � x �K:

This is a simple example of an arithmetic function representable by a com-

binator. The general fact is this:

Theorem 2.2 For every partial recursive function f : INn
! IN there exists a

combinator F which numeralwise represents it, i.e. F � k1 � � � kn for numerals

k1; : : : ; kn evaluates to a numeral m i� f(k1; : : : ; kn) is de�ned and equals m.
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Thus, computation theory in the form of recursion theory is individualwise

represented in all combinatory algebras, however, not structurally: By the gen-

eralization of Rice's theorem, there can be no combinator Z which characterizes

the set of numerals, nor one which characterizes recursive functions, etc. As is

well known, the basic impossibility theorems of recursion theory follow this way.

The principle of combinatory abstraction does not express a uniqueness prop-

erty; indeed, there are many combinators which satisfy the same de�ning equa-

tion. For example, S � K � K and S � K � ( K � K) satisfy the same de�nition

as I, I �x = x. In certain combinatory algebras, called combinatory models

there is a combinator which singles one particular combinator out of the class of

combinators satisfying a de�ning equation. This Lambda combinator L enjoys

the following properties:

L � x � u = x � u;

8u(X � u = y � u)) Lx = Ly:

It follows that Lx = Ly i� 8u(x �u = y �u): Thus L may serve as an elimina-

tor of one universal quanti�er from an equation. An immediate generalization

extends L to an n-place quanti�er-eliminator:

L1 = L;Ln+1 = (BL)(BL
n
)

for which Ln � x = Ln � y if 8u1; : : : ; un(x � u1 � � �un = y � u1 � � �un): Similarly,

the pairing functions P , P 0; P 1 can be composed to yield n-tuples and their

components, e.g. triples: T �u � v �w =P (P �u � v) �w. With these tools it is now

possible to prove

Theorem 2.3 Normal form theorem

Let ti(a1; : : : ; an; x1; : : : ; xm; u1; : : : ; uk) = si(a1; : : : ; an; x1; : : : ; xm; u1; : : : ; uk);

i = 1; : : : ; p; be a set of equations with parameters aj , unknowns xj and variables

uj . For given a's we need to �nd x's such that for all u's the above equations

hold. Then there exists b and c such that solving the equation b � x = c � x is

equivalent to solving the original problem.

The construction is straightforward: First, combinatory abstraction trans-

form each equation to the form T ia1 : : : uk = Sia1 : : : un:Next, variables u1; : : : ; uk
are eliminated in each equation using Lk. Then the tupling operators are used

to combine the parameters into one, say a, and also the unknowns, say into x.

Using tupling again, the resulting equations t0
i
(a; x) = s0

i
(a; x); i = 1; : : : ; p; are

combined into one, t(a; x) = s(a; x): This is �nally rewritten into b � x = c � x

by combinatory abstraction. Each one of these operations is invertible, hence a

solution of b � x = c � x can be converted into one of the original problem.

Our favorite example of a combinatory algebra is DA for reasons { apart

from that of personal attachment { which will become clear as we go along.

This algebraic structure is constructed within set theory, starting with a non-

empty set A and closing this set by pairing already obtained elements x with
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�nite sets � of such elements. Writing (� ! x) for such pairs, the formal

de�nition is:

G0(A) = A;

Gn+1(A) = Gn(A) [ f(�! x) : � � Fn(A) �nite, x 2 Gn(A)g:

The set of elements of DA is the set of all subsets of the union G(A) of all

Gn(A): This setDA is made in an algebraic structure by de�ning the application

operation as follows for arbitrary subsets of G(A):

M �N = fx : 9� � N with (�! x) 2Mg

To verify thatDA = hDA; �i is a combinatory algebra, it su�ces, by Sch�on�nkel's

lemma, to point out two elements in DA which can �ll the roles of S and K

respectively:

K = f(fyg ! (; ! y)) : y 2 G(A)g

S = f(f� ! (fr1; : : : ; rng ! s)g ! (f�1 ! r1; : : : ; �n ! rng ! (� ! s)) :

n � 0; r1; : : : ; rn 2 G(A); � [
S
�i = � � G(A); � �nite g:

The veri�cation of S � x � y � z = (x � z) � (y � z) and K � x � y = x are

straightforward.

In fact DA is a combinatory model. The lambda-combinator L can be real-

ized by the set L � G(A), de�ned by

L = ff�! xg ! (� ! x) : � � � � G(A) �nite, x 2 G(A)g:

Again, veri�cation is a simple exercise. (As a general reference for details cf.

[Engeler]; constructions similar to DA were proposed earlier by Plotkin and

Scott, see the classical reference [Barendregt] for combinatory algebra and its

relation to the lambda calculus.)

3 An algebraization of universal algebra

A combinatory algebra D is called 
-universal for an in�nite cardinal 
 if every

combinatory algebra D0 of cardinality � 
 is isomorphic to a substructure of D.

Theorem 3.1 If j A j = 
 then DA is 
-universal.

We actually prove a stronger fact, namely that every algebraic structure of

cardinality � 
 having only one binary operation can be isomorphically embed-

ded in D.

The idea of the proof is really quite simple. Consider an algebraic structure

with universe A, which is no loss of generality, and a binary operation �, written

in in�x notation. Each element a 2 A is viewed as a left multiplier a � b with
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b running over A. Inside DA this view of a translates into a set of transfor-

mation rules which create the representation of the element c = a � b from the

representation of b. Formally, this representation is a map f : A 7! DA de�ned

recursively by f0(a) = fag; fn+1(a) = fn(a) [ ffbg ! x : b 2 A; x 2 fn(a � b)g;

together f(a) =
S
n
fn(a): The map f is one-to-one, since f(a) \A = fag: One

veri�es that f(a) �f(b) equals f(a �b) for all a and b by evaluating the de�nitions.

This proof, and its result, lends itself to generalizations and abstractions from

the set-theoretic constructions on which it and the structure DA are based. We

shall pursue this here also, but with more general algebraic structures and an

additional goal: First, the assumption of just one, binary, algebraic operation

should be dropped. Second, we should like to describe the universe of the

embedded structure in an intrinsic combinatory way.

Therefore, instead of encoding the action of a as a left multiplier into the

representation of a itself, consider the notion of multiplication itself encoded

into an element m of DA. This allows us to embed the original structure more

easily by g : A ! DA de�ned by g(a) = fag; then m need only be de�ned

by m = ffag ! (fbg ! c) : a; b; c 2 Ag: Then g is one-to-one and g(a � b) =

m � g(a) � g(b) for all a; b 2 A: In this fashion each basic operation of a given

algebraic structure is embodied in an element of DA and evaluated as leftmost

multiplier in the corresponding subalgebra of DA.

Indeed, the set of elements of the embedded algebra can also be represented,

in a fashion, by a single element of DA: Consider r = ffag ! a : a 2 Ag[f�!

x : ; 6= �; � not of the form � = fag; a 2 A;x 2 G(A)g: Then r � fag = fag for

a 2 A; r � ; = ;; r � x 2 G(A) for all other x 2 G(A). Also, r � (r � v) = v for all v,

that is, r is a retraction. The retract of r, which is the set of all �xpoints of r,

forms a complete lattice of subsets in this case, with bottom ; and top G(A).

Altogether then, the given algebraic structure is represented by a list of

elements : r, the retraction representing its universe, and an element m for each

one of its basic operations. The set m proposed above is almost the correct one

(there is some need to accommodate ; and DA), but leaving such technicalities

aside, we have provided what amounts to an inner algebra of DA isomorphic to

the original algebra. Formally: Let � be a binary operation on the nonempty

set A; extend this algebraic structure by two elements >;? to is completion by

de�ning x � ? = > � x = ? all x; s � y = > all other cases. Then this structure is

isomorphic to the structure obtained on the retract of r using left-multiplication

with m.

This formulation of the embedding result generalizes to arbitrary many op-

erations and allows us to consider classes of algebraic structures as tuples of

elements of DA; indeed, by using the tupling operator available in DA, simply

as sets of elements in DA. This is what is meant by the title of the present

chapter.

One problem arises immediately: While DA may provide for very many

such inner algebras, due to its set-theoretic richness, this is not to be expected

of every combinatory model D . The question as to the exact additional axioms
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has been dealt with by Trudy Weibel, (see chapter II). Furthermore, considering

for example classes V of algebras as sets V of elements of D, the question arises

of whether the way that V was de�ned { e.g. by a set of equations { can

be translated into a way to de�ne V , perhaps again as a set of solutions to

equations in D. Again, Weibel was able to lift the positive answer from DA to

her axiomatically de�ned class of combinatory models.

By this approach, universal algebra has been turned into a study of solutions

of equations in combinatory models, and programmatic questions come to the

foreground: What happens to the basic results on universal algebras if they

are translated into theorems about combinatory models? This very tempting

question has been pursued by Beatrice Amrhein. She shows (see chapter III)

that some of these results turn into characterization theorems for solution sets

of combinatory equations and into basis theorems that show how to compose

general solutions from \irreducible" ones. Finally, Oliver Gloor shows how a

theory of extensions of combinatory algebras can be stated and related, for

example, to degrees of recursive enumerability.

4 Objects re
ected in their properties

For the mathematician, \objects of thoughts" originate either as constructs

within mathematical frameworks or as abstractions, again of mathematical char-

acter, associated with natural or technological \real" objects. It may be main-

tained that such objects of thought have reality in so far as they are individuated

and that their properties are formulated, or formulable, in a conventionalized

language. Our standpoint will be: objects are to be identi�ed with the totality

of their properties.

As a rule, such formal languages refer to a mathematical framework; e.g.

\this body has weight x and temperature y", \this function is periodic of period

p and bounded by �2 and +3" etc. To be (abstractly) concrete, let us assume

that such basic properties of objects are formulated in a �rst-order predicate

language. We assume this language to be augmented by a symbol @, intended

to denote the object in question in the current context. Thus, the objects above

would contain (in their set of properties):

weight @ = x ^ temp (@) = y;

8 t [ (@) (t) = @ (t+ p) ^ �2 � @ (t) � 3]:

The purpose of theories (of mathematical objects) is to treat of relations

between such objects, relations that represent (mathematical or natural) laws.

Again, such laws are clear objects of thoughts in so far as they can be individ-

ualized and their properties formally described and collected into a set, which

we would then again identify with this \law-object". If, for example, we have

two pendula p1 and p2 coupled by a spring, and we wish to describe the lawful
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behavior of this system, our approach would be as follows: p1 and p2 are sets of

formulas (describing the individual behavior of the pendulum); the interaction

between p1 and p2 is then a pair of set-functions 
1 and 
2 with

p1 = 
1(p1; p2); p2 = 
2(p1; p2):

The combinatory approach suggests that the laws 
1 and 
2 are again objects

of thought, i.e. elements of a suitable combinatory algebra. There is one that

lies closely at hand, namely DA, with A = the set of formulas with which we

describe basic properties. Thus we would postulate elements g1; g2 2 DA with

p1 = g1 � p1 � p2; p2 = g2 � p1 � p2;

indeed, gi = f�! (� ! a) : a 2 
i(�; �); � � p1; � � p2g: In fact, such gi exist

if and only if the 
i are continuous, i.e. whenever


i(p; q) =
[
f
i(�; �) : � � p; � � q; �nite g:

Of course, one may think of laws 
 which do not have this continuity property,

but such examples are not easy to come by: in most natural contexts, knowledge

about individual objects p is composed of items on whose presence the laws

turns; more knowledge about the objects to which the laws apply will result in

more knowledge about the e�ects of the laws.

In chapter III and IV the approach sketched above is completed in three

separate types of context:

(a) As a general discipline of modeling systems from the natural and technical

sciences by sets of combinatory equations in suitable DA, (Schw�arzler).

(b) As an algebraic theory of approximate (numerical) solutions of functional

and di�erential equations in real analysis, (Aberer).

(c) As a motivation to include among the formal solution to such equations

also object-functions which are given by programs in some programming

languages, (von Mohrenschildt).

In each of these worked-out examples, the combinatory approach is essential,

not only as a device for the presentation of the results, but more importantly

as a means of connecting the theory with computing: the approach is always

pushed to the point where actual implementation is available: a modeling system

CULP (cumulative logic programs) for (a); a system for approximating solutions

of di�erential and functional equations by intervals of rational functions, for

(b); and an extension of the Risch algorithms for closed-form integration to

discontinuous functions in MAPLE, for (c).
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