
Four Theorems and a Financial Crisis

Bikramjit Das∗ Paul Embrechts∗† Vicky Fasen∗

ETH Zurich

In this paper we give an academic assessment of the financial crisis (crises) from
our point of view and discuss where quantitative risk management went wrong. We
formulate four mathematical theorems/research areas which have relevance for fi-
nancial crises in general where the underlying theme is model uncertainty. Related
to these theorems, key issues that will be discussed are: financial alchemy on Wall
street, risk aggregation and diversification, tail dependence for a portfolio of losses,
and the significance of correlation bounds.

AMS 2010 Subject Classifications: primary: 00-01, 91G99
secondary: 91B02, 91B30

Keywords: copula, correlation, extreme value theory, model uncertainty, regular variation, risk
management, Value-at-Risk.

∗Department of Mathematics and RiskLab, ETH Zurich, Raemistrasse 101, 8092 Zurich, Switzerland, email:
bikramjit.das@math.ethz.ch, embrecht@math.ethz.ch, vicky.fasen@math.ethz.ch

†SFI Senior Professor

1



1 Introduction
At the time of writing these lines, we find ourselves going from the 2007-2008 subprime crisis
to the 2009-20xy government debt crisis, where hopefully x = 1 but the value of y is unclear at
the moment. The former crisis no doubt had its roots in the USA, the latter more in Europe.
Both, however, have considerable impact on the world at large. The extent to which they can be
viewed as economically separate crises or whether they constitute one single crisis is for future
historians to find out. A very readable discussion on this (in German) is Brunetti (2011), see
also the excellent Kindleberger and Aliber (2011). For the purpose of this paper, we refer to The
Crisis as the economic events which took place around the subprime crisis; the messages given
however extend well beyond.

If there is one clear bubble that surely came out of The Crisis, then it is, without doubt, the
number of articles, press coverings, books, conferences, etc., all devoted to the topic. On the
other hand, serious warnings beforehand were rare, and this in the media, industry as well as
academia. In earlier reactions on The Crisis, mathematics got some of the blame; this resulted
mainly from its contribution to the financial engineering of more and more complex and opaque
products on Wall Street. Products which in the end were understood by very few, if any indeed; a
typical example are the so-called synthetic CDOs, leading eventually to Goldman Sachs’ ABA-
CUS 2700-AC1. Concerning the latter, its creator Fabrice Tourre was quoted as having said:
“What if we created a thing, which has no purpose, which is absolutely conceptual, and highly
theoretical and which nobody knows how to price?” (The Financial Times, 29/1/2007)

As academics, we have a moral obligation and a societal duty to ask ourselves: “What really
went wrong?” and make sure that in our teaching and research we transmit the lessons learned.
The biggest mistake for us would be “to continue as if nothing has happened, or is happening”;
see Embrechts (2011). Clearly the question has to be discussed at all relevant levels of academia
as well as society, including politics. In this paper, we will concentrate in a kind of “mea culpa”-
way on lessons learned from and for (financial) mathematics, including more quantitative fields
of economics and finance. In Donnelly and Embrechts (2010) we summarized, with numerous
references, some of the earlier aspects of the debate.

As already stated above, in this paper we shall highlight some of the mathematical issues
underlying aspects of The Crisis. It is to be hoped that, through the results chosen, the reader
will get a better understanding of the role of mathematics in banking and finance. Of course, we
cannot, and indeed will not treat all aspects of this interaction. If there is one thing that is correct
uniformly throughout mathematics then it is the fact that a result holds true if and only if it is
proven. A somewhat cynical view on banking would be “In banking, a result is right if and only
if it is profitable”; see Rogers (2010). What constitutes a proof in mathematics is hardwired in its
axiomatic foundation and based on centuries of development in mathematical logic. An integral
and crucial part of any theorem are the conditions under which certain (very) precise conclusions
hold. At this point the (often more applied) critic may say: “This is nice and laudable in your
Platonean universe but breaks down in practice!” To a certain extent, this may be true, but at
the same time hides a dangerous argument. From a more technical, methodological point of
view, The Crisis saw numerous examples where “practice” fully misunderstood the conditions
under which some mathematical concepts or results could be applied. Or indeed where models
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were applied to totally insufficient or badly understood data; the typical “garbage in, garbage
out” syndrome. Also, mathematicians have failed in their effort to communicate such conditions
more forcefully, and more broadly. One major theme that mathematicians should have stressed
more is Model Uncertainty.

As the title promises, in this paper we will exemplify the above through four theorems, each
of which has some bearing on The Crisis. In some cases, this will be more philosophical, in
others very concrete. For each of the theorems discussed, we give a precise mathematical for-
mulation, together with a reformulation or translation to circumstances linked to The Crisis. In
Section 2, we start with the Banach-Tarski Theorem (also referred to as Paradox). Investment
Banking, over the recent years, seems to have tried very hard to “apply” this result in practice
and as a consequence did strive for financial product constructions which, for a while and for
those directly involved, led to ridiculous multiplications of gains and wealth. We then move on,
in Section 3, to some results related to (non-)aggregation properties of risk measures used in
capital adequacy calculations within the financial industry. The theorem we focus on goes under
the name of Delbaen and finds its origin in earlier work on the Loss Distribution Approach for
Operational Risk. In Section 4 we highlight a result of Sibuya related to dependence modelling
of multivariate extremal events. This copula-related result lies at the heart of the early accusa-
tions of the mathematics used for pricing and hedging of senior tranches of Collateralized Debt
Obligations (CDOs). The catch-word here is the Gaussian copula. The final theorem we want to
stress is due to Fréchet and Höffding. This result warns for the model uncertainty underlying the
pricing of many products in finance and insurance where the underlying assumptions include sta-
tistical information on the marginal risk factors together with some idea(s) on interdependence.
We conclude in Section 6 by giving an outlook on quantitative risk management research in a
post-crisis period; where it is hoped that “post” means “fairly soon”.

2 The first theorem: Banach-Tarski
In an interview in 1999, the second author made the following statement: “Die Finanzwelt ist
die einzige Welt, wo die Leute immernoch glauben, dass sich Eisen in Gold verwandeln lässt”;
see Embrechts (1999). Translated into English: “The world of finance is the only one in which
people still believe in the possibility of turning iron into gold”. The above statement was made
in the wake of the 1998 LTCM hedge fund crisis; little did we know at the time how true this
statement would become about ten years later!

For The Crisis, asset-backed securities, like CDOs, were in the popular press often likened to
magical financial engineering tools allowing to cut a pizza into several pieces, reassemble them
and end up with two pizzas each in size equal to the one we started from. In the language of
modern finance, the second pizza would be referred to as “a free lunch”. This is the point where
Banach-Tarski enters; the lesson to be learned is to always understand in detail the conclusions
of a mathematical theorem.

Theorem 1 (Banach and Tarski (1924))
Given any two bounded sets A and B in the three-dimensional space R3, each having non-empty
interior, one can partition A into finitely many (at least five) disjoint parts and rearrange them
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by rigid motions (translation, rotation) to form B.

Proof. See Wagon (1993). 2

Remark 1
(a) An excellent and very readable account of this result, including a detailed historical discus-

sion is found in Wapner (2005). The latter text also contains some interesting speculations
on how Theorem 1 may become useful in high-energy particle physics, and especially the
Big Bang Theory in cosmology.

(b) Theorem 1 remains true if one replaces R3 by a general d-dimensional Euclidean space
Rd , d ≥ 3. Interestingly, Theorem 1 does not hold in R2.

(c) Though the statement of Theorem 1 sounds very paradoxical, and hence is often referred
to as the Banach-Tarski Paradox, it is in fact a theorem that follows fully logically from
the standard axioms of mathematics. Before we discuss this, let us first reformulate the
theorem in some of its more paradoxical, folkloristic, but mathematically vague versions
and then return to The Crisis.

Version 1
Given a three-dimensional solid ball (of gold, say), it is possible to cut this ball in finitely many
pieces and reassemble these to form two solid balls, each identical in size to the first one.

Version 2
Any solid, a pea, say, can be partitioned into a finite number of pieces, then reassembled to form
another solid of any specified shape, say the Sun. For this reason, Theorem 1 is often referred to
as “The Pea and the Sun Paradox”.

As already stated above, Theorem 1 can be proved within the standard axiomatic, so-called
Zermelo-Fraenkel logical framework of mathematics, often abbreviated as ZFC. Within ZFC
there is one axiom, the Axiom of Choice (hence the C), which logicians have discussed a lot;
for mainstream mathematicians, its acceptance is not an issue, despite consequential results like
Theorem 1. The paradox disappears from Theorem 1 if one looks more carefully at its proof (and
also what the theorem does not say); in particular, though one does have existence of the partition
of A, its constituents are non-measurable (here the Axiom of Choice enters in an essential way),
so the standard notion of volume does not apply to these pieces. As a result, one cannot construct
the solution. And yet, over and over again, Wall Street tries to convince the public that such
magical tricks of creating something out of nothing are possible. As a consequence, one should
not be surprised that “quants” (financial engineers) are often referred to as “The Alchemists or
Wizards of Wall Street”; see Kazanjian (2000), or also Braithwaite (2011) who wrote: “ So by
financial alchemy, assets can be transmuted from garbage to gold - and therefore, requires less
capital.”

As already stated in the Introduction, this first section (Theorem 1) may seem a bit far-fetched.
Its main contribution is that with any concept, result, new methodology, one has to look very
carefully at the precise definitions and possible conclusions. And concerning “creating some-
thing out of nothing” in finance, this not only reflects on financial engineering on Wall Street.
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We strongly advice the interested reader to have a critical look at the history and the development
of fractional-reserve banking (FRB), the corner stone of the modern banking industry, and draw
his/her own conclusions on whether Banach-Tarski is so far off. Of course, FRB is the initial liq-
uidity provided to the banking system facilitating the transformation of short term deposits into
long term loans; the raison d’être of a banking system. The title of Rothbard (2008), The Mys-
tery of Banking, shows that our discussion above is perhaps not all that distant from economic
reality. This so-called Austrian point of view on economic theory is presented in full detail in the
monumental Huerta de Soto (2009). See also The Economist (2011) for a discussion on the alter-
native schools on macro-economics. It is no coincidence that The Crisis has led to an increased
interest into these alternative theories. And finally, Dewdney (1989) gives an amusing account
of his friend Arlo Lipof who claimed to have been able to physically realize the Banach-Tarski
construction. However, be careful, “Arlo Lipof” is an anagram of “April Fool”.

3 The second theorem: Delbaen
The second theorem concerns the concepts of risk aggregation and diversification, especially
in the presence of (very) heavy-tailed or catastrophic risks. For a loss random variable X with
distribution function F , a heavy-tailed model is typically characterized through power-tail (or
Pareto-type) behavior, i.e., for some δ ≥ 0,

F(x) := 1−F(x) = x−δ L(x), (1)

where the measurable function L : (0,∞)→ (0,∞) is slowly varying at ∞ in Karamata’s sense:

lim
t→∞

L(tx)
L(t)

= 1 for all x > 0. (2)

Standard notation is L ∈ SV (∞) and F ∈ RV−δ (∞), i.e., F is regularly varying at ∞ with index
of regular variation −δ ≤ 0. Typical examples for distributions which have tails in RV−δ (∞)
are stable distributions with index of stability 0 < δ < 2 and Pareto distributions with index
δ > 0. The theory and applications of functions satisfying (1) (and (2)) are encyclopedically
summarized in Bingham et al. (1987). The key result proved by Jovan Karamata, Karamata
(1930), is that the convergence in (2) holds uniformly on all compact subsets in (0,∞). From
this, an extremely powerful theory can be worked out with numerous deep applications to (mainly
limit theorems in) probability theory and statistics. The importance of this was early on realized
by William Feller in his classic Feller (1971). Interestingly, both Feller and Karamata came from
the same city of Zagreb.

For our purposes, we consider Lp-spaces of random variables X (also called risks) defined on
some atomless probability space (Ω,F ,P) where X ∈ Lp iff E(|X |p)< ∞. It is well-known that
for F ∈ RV−δ (∞), X ∈ Lp for p < δ and for p > δ , E(|X |p) = ∞. In particular, for δ < 1 the
first moment of X is infinite. From a risk management point of view, such extremely heavy-
tailed models do occur in the modeling of catastrophic events. Examples include the modeling
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of Operational Risk under Basel (II/ III), earthquake damage, nuclear plant disasters, pyroclastic
flows, internet traffic data, etc. McNeil et al. (2005) contains a discussion and further references
on the former, Operational Risk. A typical question, from a risk management perspective, is how
to measure the risk associated with such extremely heavy-tailed models. Indeed most popular
methodologies of risk measurement typically assume the existence of the second moment, or at
least the first moment. The second theorem in this paper clarifies this issue to some extent. It says
that if we restrict to risks on the space Lp, 0 < p < 1, there does not exist any risk measure that
admits diversification. The mathematical background of this result is to be found in functional
analysis; see Rudin (1973), p.35-36. A formulation, immediately applicable to quantitative risk
management, is given in Delbaen (2009). For this let E be a vector space of random variables
defined on (Ω,F ,P) which satisfies the following two conditions:

(i) Rearrangement invariant: If X and Y have the same distribution and X ∈ E, then also
Y ∈ E.

(ii) Solid: If |Y | ≤ |X | and X ∈ E, then also Y ∈ E.

In particular, any Lp-space is both rearrangement invariant and solid. How can we now quantify
the risk of the financial loss X in E? This is done through the notion of a risk measure. Starting
from the pioneering work of Paul Samuelson in the 1960’s risk entered the portfolio manager’s
equation next to return. Over the last decades, there has been a real explosion of papers on
the measurement of risk in the financial industry, and this partly due to international regulatory
pressure. Perhaps startling is the fact that, despite this academic research output, at the height of
The Crisis we went half a century backwards and took risk again out of the equation by solely
focussing on return.

For the purpose of this section, we concentrate on a very basic, somewhat simplified inter-
pretation of risk. Throughout, a one-period risk will be denoted as a random variable X on the
probability space (Ω,F ,P); it denotes the value (or sometimes the change in value) of a financial
or insurance position at time 1 (future), viewed from time 0 (now). We denote the distribution
function of X by F . The most popular risk measures currently in use throughout the financial in-
dustry are the VaR (Value-at-Risk) entering so-called Pillar 1 capital adequacy calculations under
Basel (II/III) and Solvency II, and the ES (Expected Shortfall) used in the Swiss Solvency test.
The VaR at confidence level α ∈ (0,1) is then defined as the α-quantile, VaRα(X) = F←(α),
where F← is the generalized inverse F←(α) = inf{x ∈R : F(x)≥ α}. The Expected Shortfall at
confidence α ∈ (0,1) is defined as ESα(X) = 1

1−α

∫ 1
α

VaRu(X)du if E|X |< ∞. Note that, for F
continuous, ESα(X) = E(X |X > VaRα(X)), hence its name. In general a risk measure ρ is only
defined as a map from E to R. Within the banking regulatory framework, the value of ρ(X) can
be interpreted as the amount of capital that should be kept aside or invested in a risk-free asset in
order to avoid a shortfall on the risk X .

Thus, we understand ρ(X) as the risk capital needed for holding the position X . For a risk
measure to be reasonable, it should satisfy certain basic properties (axioms). Convex and co-
herent risk measures are among the very widely used axiomatic systems in the literature. The
study of coherent risk measures started with Artzner et al. (1997, 1999) and Delbaen (2000); for
more details on convex risk measures see Frittelli and Gianin (2002) and Föllmer and Schied
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(2011). The latter contains numerous references, also to the earlier economics literature. Kaina
and Rüschendorf (2009) investigate in particular the properties of convex risk measures on Lp-
spaces.

Definition 1 (Convex risk measure)
A convex risk measure ρ : E→ R satisfies for all X ,Y ∈ E:

(a) ρ(0) = 0.

(b) Monotonicity: If X ≤ Y a.s., then ρ(X)≤ ρ(Y ).

(c) Translation-Invariance: If η ∈ R, then ρ(X +η) = ρ(X)+η .

(d) Convexity: ρ(λX +(1−λ )Y )≤ λρ(X)+(1−λ )ρ(Y ) for 0≤ λ ≤ 1.

If ρ(X)≤ 0 then the risk X is acceptable and no additional capital is necessary. The first property
says that without risk, there is no reserve capital requirement. Moreover, if X is less risky than Y ,
then capital requirement for X is also less than that of Y (see (b) ). The meaning of translation-
invariance (see (c) ) is that if we add the risk free amount η to X then the risk capital has to be
increased by η ; this sounds odd but only reflects the fact that we consider losses as well as risk
capital as positive. Finally, by convexity the portfolio of X and Y requires less risk capital than
the proportional individual risk capitals. This property encourages diversification.

A subset of the set of convex risk measures are the coherent risk measures, where (d) is
replaced by the axioms of positive homogeneity and subadditivity as follows. For all X ,Y ∈ E:

(d1) Positive Homogeneity: ρ(λX) = λρ(X) for any λ ≥ 0.

(d2) Subadditivity: ρ(X +Y )≤ ρ(X)+ρ(Y ).

The choice of axioms (d1) and (d2) are perhaps debatable from a practical point of view and there
exists a whole body of research on this topic. Positive homogeneity is often criticized as it does
not take concentration of risk and liquidity risk sufficiently into account, whereas subadditivity,
which reflects diversification, is criticized as it does not necessarily hold for several important
situations relevant in practice; for the latter, see Embrechts and Puccetti (2010), Section 3.

Now we are ready to present the second theorem along with some interpretations. In contrast
to the original paper Delbaen (2009) we formulate this theorem for risk measures instead of
utility functions (i.e., u(X) =−ρ(−X) satisfying the conditions in Delbaen (2009)).

Theorem 2 (Delbaen (2009), Theorem 4)
Let E be a vector space which is rearrangement invariant and solid, and ρ : E→ R be a convex
risk measure, then E ⊂ L1.

Thus, any non-trivial risk measure on Lp, 0 < p < 1, is not convex and hence in particular, not
coherent. The ES, the classical example of a coherent risk measure, can by construction only be
defined on L1 and not on Lp, 0 < p < 1, and hence is in line with Theorem 2. However, VaR
defined on Lp, 0 < p < 1, can by Theorem 2 not be convex and hence cannot be coherent. Why
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is the above result relevant for finance in general and risk management in particular? Theorem 2
raises the question to what extent can catastrophic events (in particular the ones statistically
pointing at infinite mean models) be insured. We will not enter into the more applied economic
discussion of this issue, but refer the reader to some relevant literature precisely on this topic; see
below. For our purposes, and indeed historically the reason why we include Theorem 2 in this
paper, is the key example of the quantitative (so-called Pillar 1) modeling of Operational Risk
under Basel II/III; see Chapter 10 in McNeil et al. (2005). In this context, a pivotal publication
was the regulatory document Moscadelli (2009). In the latter paper, based on over 40,000 opera-
tional risk losses, numerous business lines conformed with an infinite mean model, i.e., δ < 1 in
(1). Of course one can discuss the wisdom of allowing such models in our range of possibilities.
The same can of course be said for any model with some divergent moment (i.e., all power-tail
models (1), 0 < δ < ∞) or indeed any distributional model with unbounded support. The point
is that, if careful statistical analysis (in the case of Moscadelli (2009) based on extreme value
theory) statistically points at 0 < δ < 1 in (1), then extreme care has to be taken on the risk man-
agement conclusions for such portfolios. And this is exactly where Theorem 2 enters. Within
the context of Operational Risk, this issue was first raised in Nešlehová et al. (2006). The latter
paper gives further references on the topic from the realm of economics and finance.

These early papers have given rise to a whole industry of results on risk aggregation and risk
diversification in the presence of catastrophic risks. A key observation underlying these results
is the fact that for X and Y independent and identically distributed with distribution function F
so that F ∈ RV−δ (∞),0 < δ < 1, we have that for α sufficiently close to 1,

VaRα(X +Y )> VaRα(X)+VaRα(Y ). (3)

As a consequence, if one interprets VaRα(X) as the risk capital needed for holding the position
X , diversification benefit (reflected in subadditivity) breaks down. In this example diversification
leads to an increase in risk. Specific examples include F(x) = x−1/2 for x≥ 1, i.e., δ = 1/2 (here
(3) can be calculated explicitly), and δ -stable distributions with δ ∈ (0,1). In these cases (3)
holds for all 0.5 < α < 1 (see Ibragimov and Walden (2007), Proposition 1). Several of these
results were already discussed in Embrechts et al. (2002). For a discussion on the economic
consequences of situations where (3) occurs, see for instance Ibragimov et al. (2009, 2011) and
the references therein.

Inequality (3) is not only valid under the independence assumption. An example relevant for
practice is given in Embrechts et al. (2009); for this we need the following definition.

Definition 2 (Elliptical distribution)
A random vector X has an elliptical distribution with mean µ ∈ Rd and dispersion matrix Σ in
Rd×d , if there exist R,A and U satisfying

X d
= µ +RAU

where

(a) R≥ 0 is a non-negative random variable with distribution function FR;
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(b) U is uniformly distributed on the unit sphere {x ∈ Rd : ‖x‖2 = 1} and independent of R;

(c) A ∈ Rd×d with AA′ = Σ.

It is well known (see McNeil et al. (2005), Theorem 6.8) that for (X ,Y ) elliptically distributed
and α ∈ (0.5,1),

VaRα(X +Y )< VaRα(X)+VaRα(Y ).

This means that VaRα , α ∈ (0.5,1), restricted to the space of elliptical distributions is a coherent
risk measure for both finite and infinite mean models. We investigate now the special case where

(a) FR ∈ RV−δ (∞), δ ≥ 0,

(b) A =

(
1 0
ρ
√

1−ρ2

)
for some ρ ∈ (0,1),

and we define

(X̃ ,Ỹ ) = (X ,Y )|(X ≥ 0 and Y ≥ 0).

If δ ∈ (0,1) and α is close to 1, then

VaRα(X̃ + Ỹ )> VaRα(X̃)+VaRα(Ỹ ).

For the risks X̃ and Ỹ , diversification (measured through VaR) increases the risk although for
X and Y it is contrary. This shows that not only the dependence structure and the tail behav-
ior but also the support of the distribution functions have an influence on diversification. In the
symmetric, hence two-sided case, large losses of X can be compensated by large gains of Y and
vice versa. This results in the subadditivity of VaRα for α close to 1. The reasoning clearly
breaks down in the (X̃ ,Ỹ )-case, where diversification, in fact, increases the risk. Similar con-
structions can be made if one cuts out other parts of the support of (X ,Y ) in order to obtain
(X̃ ,Ỹ ); a construction which in practice often can be made through derivatives or reinsurance,
say. For a more mathematical view on aggregation of dependent risks see, e.g., Embrechts et al.
(2009) and Degen et al. (2010). A thorough analysis based on the theory of multivariate regu-
lar variation is to be found in Embrechts and Mainik (2012). For a discussion in the realm of
econometrics, see Danı́elsson (2011), Section 4.4. The reader should however be warned that the
summary statement at the beginning of Section 4.4.3 of the aforementioned text contains some
imprecise statements, the corrections of which are to be found in the more mathematical papers
listed above. However, we want to point out that the non-diversification results of VaR are not
only an issue for catastrophic events. Superadditivity of VaR can also occur for very skewed
risks (typically to be found in credit risk; see McNeil et al. (2005), Example 6.7) or risks with
given nice margins, N(0,1), say, but special dependence structures. The latter can be achieved
through a special copula construction; see McNeil et al. (2005), Example 6.22 and Ibragimov
and Walden (2007), Theorem 1, for a related result.
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4 The third theorem: Sibuya
The single most quoted mathematical concept related to The Crisis is without any doubt the
Gaussian- or normal-copula model. In his web-publication, Salmon (2009), the author puts the
title “The formula that killed Wall Street” above the formula

Pr [TA < 1,TB < 1] = Φ2
(
Φ
−1(FA(1)),Φ−1(FB(1)),γ

)
. (4)

The paper was recently reprinted as Salmon (2012) in the American Statistical Society and Royal
Statistical Society’s Significance, and this as the winner of the ASA’s Excellence in Statistical
Reporting Reporting Award for 2010. Formula (4), properly explained, lies at the heart of one
of the standard pricing formulas for tranches of Collateralized Debt Obligations, CDOs; see Li
(2000). In (4), TA (respectively TB) denotes the time to default of company A (respectively B).
The left hand side hence denotes the joint probability of default (before the end of period 1)
of both companies A and B. The right hand side contains as components a bivariate Gaussian
distribution Φ2 with correlation parameter γ ∈ [−1,1], the quantile function Φ−1 = Φ← of a one-
dimensional standard normal distribution function, as well as the marginal survival probability
distribution functions FA(t) = P(TA ≤ t) and FB = P(TB ≤ t) for t ≥ 0.

The proper interpretation of (4) uses the notion of a 2-dimensional copula C, which is a dis-
tribution function on [0,1]2 with uniformly distributed margins. Given marginal distribution
functions FX and FY , one can always define a joint distribution function

F(x,y) =C(FX(x),FY (y)) for (x,y) ∈ R2. (5)

Conversely, for any joint distribution function F , there exists a copula C such that (5) holds. For
FX and FY continuous, C is unique:

C(u,v) = F(F←X (u),F←Y (v)) for (u,v) ∈ [0,1]2.

This forms the content of Sklar’s Theorem, as for instance discussed in McNeil et al. (2005),
Theorem 5.3. A version of (5) applies also to the joint survival function F(x,y) =P(X > x,Y > y)
of the bivariate random vector (X ,Y ) with distribution F , margins FX and FY , and tails FX(x) =
1−FX(x) and FY (y) = 1−FY (y). Then there exists again a copula C, the survival copula, such
that

F(x,y) =C(FX(x),FY (y)) for (x,y) ∈ R2. (6)

In the bivariate case C and C are related as follows:

C(u,v) = u+ v−1+C(1−u,1− v) for (u,v) ∈ [0,1]2.

In finance, no doubt the most (in-)famous copula model is the Gaussian copula:

CΦ,γ(u,v) = Φ2(Φ
←(u),Φ←(v)) for (u,v) ∈ [0,1]2,
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with Φ2 and Φ← as defined earlier. For the Gaussian copula, we can check that

CΦ,γ(u,v) =CΦ,γ(u,v). (7)

Copula theory has taken finance and econometrics by storm, and this from around 1997-8. As
explained in Genest et al. (2009), the main paper that triggered this interest in copulas in finance
is Embrechts et al. (2002), available as a RiskLab preprint from 1998 onwards. Starting from
examples like in Section 5 below, the latter paper highlighted several pitfalls and fallacies in the
use of linear correlation in finance in general and quantitative risk management in particular. For
a paper summarizing a more historical perspective on the topic of copulas, see Embrechts (2009).
With these definitions, (4) reduces to a Gaussian copula model CΦ,γ with correlation coefficient
γ applied to the marginal default (or marginal) distribution functions FA and FB, i.e.,

P(TA < 1,TB < 1) =CΦ,γ(FA(1),FB(1)).

One easily extends this formula to d companies A1, . . . ,Ad yielding a formula for the joint default
probability P(TA1 < 1, . . . ,TAd < 1). A critical aspect of such joint default modeling in credit risk
management, say, is the possibility of high joint default probabilities. It is however a fact that
the Gaussian copula model (4) does not allow for such events and consequently may severely
underestimate the probabilities of joint default in periods of stress. The reason for this can be
found in Theorem 3 below. Before we state the theorem, let us recall a few concepts of joint
extremes of random variables; see for instance Beirlant et al. (2004) and McNeil et al. (2005) for
the relevant background from extreme value theory. We restrict ourselves to two dimensions for
conceptual ease; although most of the results can be extended to general finite dimensions d ≥ 2.

Suppose (X ,Y ) ∈ R2 is a random vector denoting losses incurred from two separate, but
perhaps related investments. The investor would be quite concerned about the possibility of
having high losses in both investments together, in other words, he/she would want to know
the probability P(X > t|Y > t) for large thresholds t. In such a context, for a random vector
(X ,Y ) ∈ R2 with identically distributed, possibly dependent components and right end-point
x∗ = sup{t ∈ R : P(X ≤ t)< 1}, asymptotic independence is the property that

lim
t↑x∗

P(X > t|Y > t) = lim
t↑x∗

P(X > t,Y > t)
P(Y > t)

= 0. (8)

Independent random vectors are trivially asymptotically independent. The property of asymp-
totic independence can be quite nicely described via copula functions as follows. The coefficients
of upper and lower tail dependence of a bivariate random vector (X ,Y ) with distribution function
F , margins FX and FY , copula C as in (5) and survival copula C as in (6) are defined as

λU = lim
u↓0

C(u,u)
u

and λL = lim
u↓0

C(u,u)
u

(9)

given that these limits exist. If we assume that FX = FY with common right end-point x∗, then
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asymptotic independence of F is equivalent to having λU = 0 since,

λU = lim
u↓0

C(u,u)
u

= lim
t↑x∗

C(FX(t),FX(t))
FX(t)

= lim
t↑x∗

P(X > t,Y > t)
P(Y > t)

= lim
t↑x∗

P(X > t|Y > t) = 0;

more details can be found in Reiss (1989), Chapter 7, and Resnick (2008), Chapter 5. Hence, for
asymptotically independent random variables X and Y it is very unlikely that X and Y are large
at the same time. Moreover from (7) and (9) we can already conclude that for a Gaussian copula
λL = λU . This leads to the third theorem.

Theorem 3 (Sibuya (1960))
Suppose (X ,Y ) is a random vector following a bivariate normal distribution with correlation
coefficient γ ∈ [−1,1). Then X and Y are asymptotically independent.

Proof. See Sibuya (1960), Theorem 3 and also McNeil et al. (2005), Example 5.32. 2

In other words, what Theorem 3 states is that it is highly unlikely that jointly normal variables
are both large together if they have correlation coefficient strictly less than 1; a property one
can easily illustrate through simulation. A further consequence of (9) is that asymptotic tail
independence as defined above is strictly a copula property and hence does not depend on, nor
can be influenced by, the marginal distributions. Hence it is relevant to look more in detail at
the asymptotic property of (9). In terms of “The formula that killed Wall street” given in (4), if
we assume that the one-period survival probabilities for both companies A and B are equal, i.e.,
FA(1) = FB(1) = u, then Sibuya’s Theorem, (7) and (9) imply that

P(TA < 1,TB < 1) = Φ2 (Φ
←(u),Φ←(u);γ)

=CΦ,γ(u,u) =CΦ,γ(u,u) = o(u) as u→ 0, (10)

for any correlation coefficient γ ∈ [−1,1). Thus joint default probabilities are of lower order
than the individual default probabilities under a Gaussian dependence structure and this is true
whatever the marginal distribution FA and FB. This phenomenon ignores the empirically ob-
served clustering of defaults in extreme circumstances. Donnelly and Embrechts (2010) lists the
drawbacks of a (Gaussian) copula-based model in modeling credit risk which we do not dwell
upon further in this paper. Our point of view is that while blind acceptance is not always wise,
as has happened with the Gaussian copula model in credit risk modeling, blind rejection is not
prudent either. It is necessary to understand where a model may fail or succeed before applying
it in practice. Thus, here we dig a little bit deeper into the world of joint tail dependence. The
implication of Theorem 3, while quite trivial and obvious for the correlation coefficient γ = 0, is
not quite as intuitive when γ 6= 0. Let us consider the following example to illustrate how much
of the details we miss if we do not consider other concepts of tail dependence.

Example 1
Suppose (X ,Y ) corresponds to a loss vector having a Gaussian copula dependence with cor-
relation γ and margins FX = FY = N(2,1). Then P(X > 4) = P(Y > 4) = 0.023. Now if we
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want to calculate the probability of at least one loss being greater than 4 then by the asymptotic
independence property we are tempted to estimate

P(max(X ,Y )> 4) = P(X > 4)+P(Y > 4)−P(X > 4,Y > 4)≈ P(X > 4)+P(Y > 4) = 0.046,

for any γ < 1. But actually calculating the probability, we see that

P(max(X ,Y )> 4) =


0.045 if γ = 0,
0.041 if γ = 0.5,
0.032 if γ = 0.9.

(11)

Hence, for γ = 0 the true probability of 0.045 and the approximate probability 0.046 are very
close. However, for γ close to one the approximate probability differs significantly from the true
probability.

After all asymptotic independence does not mean that there is no dependence between X and
Y if both take high values. Therefore we will introduce some well known dependence concepts.
Analogous to regularly varying functions at ∞ as defined in (1), we define regularly varying
functions at 0. A measurable function f : (0,∞)→ (0,∞) is regularly varying at 0 with index δ

if limt→0 f (tx)/ f (t)→ xδ for any x > 0 and we write f ∈ RVδ (0) = SV (0). Now, following Hua
and Joe (2011), we introduce the definition of tail order.

Definition 3 (Tail order)
Let F be a bivariate distribution with copula C and survival copula C as given in (5) and (6),
respectively. If there exist κL > 0 and L ∈ SV (0) such that

C(u,u)∼ uκLL(u) as u→ 0, (12)

then we call κL the lower tail order of F. In a similar manner, if there exist κU > 0 and L∈ SV (0)
such that

C(u,u)∼ uκU L(u) as u→ 0, (13)

then we call κU the upper tail order of F.

If the upper tail order κU > 1, then X and Y with distribution F are asymptotically independent.
Under the assumption that X and Y are unit Fréchet distributed, i.e., FX(x) = FY (x) = exp(−1/x)
for x ≥ 0, the definition of upper tail order is equivalent to the definition of coefficient of tail
dependence as defined in Ledford and Tawn (1996). In essence, the latter paper introduced the
ideas which have been further investigated as tail order and the more general concept of hidden
regular variation which is discussed later.

Further investigation into the Gaussian dependence structure reveals that for γ ∈ (−1,1), the
exact rate of the joint copula tail is

CΦ,γ(u,u) =CΦ,γ(u,u)∼ uκL(u) as u→ 0, (14)
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where κ = κU = κL = 2
γ+1 are the tail orders and L ∈ SV (0) with

L(u)∼ O((− logu)−γ/(γ+1)) as u→ 0;

see Reiss (1989), Chapter 7 and Ledford and Tawn (1996). Clearly for independent X and Y
(γ = 0) we have κ = 2 and L(u) = 1. Equation (14) gives us the exact order of the joint tail.
Thus, although (X ,Y ) exhibits asymptotic independence for γ 6= 0, there is still some kind of
intermediate order dependence in the extremes, which is not neglectable. The notion of tail order
is very closely related to the notion of hidden regular variation given in Resnick (2002) which
describes intermediate order dependence in a more general framework; in a certain sense one
could speak of hidden dependence in models exhibiting tail independence.

In order to talk about hidden regular variation we resort to multivariate regular variation (still
restricting to two dimensions). The connection between extreme value theory and regular vari-
ation has been emphasized time and again. The space where our random variables (risks) lie
is the non-negative orthant [0,∞)2. For topological convenience this space is compactified and
then {(0,0)} is removed from it to get E = [0,∞]2 \ {(0,0)}. Moreover, we work on the space
E0 = (0,∞]2 = E\{the axes}. In the space E, sets bounded away from {(0,0)} are relatively
compact, hence we have the already well-developed theory of (vague) convergence, denoted by

v−→, of (Radon) measures in order to find asymptotic limits of probability measures for such tail
sets; for more details see Resnick (2007).

Definition 4 (Multivariate and hidden regular variation)
Suppose (X ,Y ) is a non-negative random vector with joint distribution function F.

(a) We say that (X ,Y ) is multivariate regularly varying on E, if there exist a function b(t) ↑ ∞

as t→ ∞ and a Radon measure ν 6= 0 on the Borel sets of E such that as t→ ∞,

tF(b(t) ·) = tP
(
(X ,Y )
b(t)

∈ ·
)

v−→ ν(·)

in the space of Radon measures on E. We write F ∈MRV (b,ν) and (X ,Y ) ∈MRV (b,ν).

(b) Let (X ,Y ) ∈ MRV (b,ν). We say that (X ,Y ) exhibits hidden regular variation on E0, if
there exist a function b0(t) ↑∞ as t→∞ with limt→∞ b(t)/b0(t) = ∞ and a Radon measure
ν0 6= 0 on the Borel sets of E0 such that as t→ ∞,

tF(b0(t) ·) = tP
(
(X ,Y )
b0(t)

∈ ·
)

v−→ ν0(·)

in the space of Radon measures on E0. We write F ∈ HRV (b,b0,ν ,ν0) and
(X ,Y ) ∈ HRV (b,b0,ν ,ν0).

If F ∈MRV (b,ν) then b∈RV1/δ (∞) for some δ > 0 and δ is called the index of regular variation.
If F exhibits additionally hidden regular variation then b0 ∈ RV1/δ0(∞) for some δ0 ≥ δ . The
index δ0 is called the index of hidden regular variation. To illustrate the notion of hidden regular
variation we want to present an example.
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Example 2
Suppose X and Y are independent and identically distributed random variables (alternatively,
think of a risk or loss vector) with distribution function FX(x) = 1− 1

x for x≥ 1; for b(t) = t, t ≥ 0,
and x,y > 0, we have that

tP
(
(X ,Y )
b(t)

∈ [(0,0),(x,y)]c
)
=

1
x
+

1
y
− 1

txy
t→∞−→ 1

x
+

1
y
=: ν ([(0,0),(x,y)]c)

and

tP
(
(X ,Y )
b(t)

∈ (x,∞]× (y,∞]

)
t→∞−→ 0 = ν ((x,∞]× (y,∞]) . (15)

Thus, (X ,Y ) ∈MRV (b,ν) with index 1 and the limit measure ν concentrates on the axes of E,
i.e., ν is non-zero only on {0}× (0,∞] and (0,∞]×{0}. But clearly there is some mass on
E0 = E\{the axes} which vanished with the normalization b(t) = t. This is what hidden regular
variation is designed to capture. For b0(t) = t1/2,

tP
(
(X ,Y )
b0(t)

∈ (x,∞]× (y,∞]

)
= 1

xy =: ν0 ((x,∞]× (y,∞]) . (16)

Hence, the index of hidden regular variation is δ0 = 2. In this example (X ,Y ) has independence
copula C⊥(u,u) = u2 with upper tail order κU = 2. This means κU = δ0. Although (15) suggests
that X and Y can not be large at the same time, the different normalization in (16) shows that
there is still (positive but a low) probability that this can happen. Hidden regular variation re-
flects the extremal behavior on E\{the axes}, yielding information which can be lost by classical
multivariate regular variation. 2

Hence, what hidden regular variation captures is a part of the measure that has escaped due
to the stronger normalization under multivariate regular variation. This phenomenon is observed
in Example 2, but it holds more generally. We can also observe such phenomenon if we use
an equally distributed bivariate distribution with Gaussian copula with correlation parameter
γ and Pareto(1) margins. If we look at tail dependence on the non-negative orthant, with a
normalization b(t) = t, we get the same limit measure ν on E as in Example 2, i.e., the limit
measure lies on the axes. But if γ < 1 with a softer normalization b0(t) ∈ RV(γ+1)/2 we get a
different limit measure ν0 on E0 as in Example 2 (for γ = 0). This is visualized in Figure 1,
where we look at empirical estimates of the limiting densities of ν and ν0. Since ν0 has no
closed form if γ 6= 0, we simulated the density of ν0. The graphs portray some bias resulting
from approximation in the simulations. The top two figures show the densities of ν and ν0,
respectively restricted to [0.1,0.3]2 for γ = 0.1. The bottom figures do the same for the case
γ = 0.9. Whereas, there is hardly any mass in the left figures (in reality ν |[0.1,0.3]2 = 0 so that
there is no mass on [0.1,0.3]2), the right figures show different concentrations of mass for γ = 0.1
and γ = 0.9. Both γ = 0.1 and γ = 0.9 exhibit hidden regular variation but with different limit
measures ν0 and with different normalizations: b0(t) ∈ RV0.55 for γ = 0.1 and b0(t) ∈ RV0.95
for γ = 0.9. Thus the model with γ = 0.1 requires a softer normalization than the model with
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Figure 1: Empirical density ν for Pareto(1) margins with Gaussian copula restricted to [0.1,0.3]2

(left) and ν0 restricted to [0.1,0.3]2 (right) with γ = 0.1 (top) and γ = 0.9 (bottom) from
2000,000 simulations for both distributions.

γ = 0.9, so that the hidden limit measures do not blow up in compact intervals, as also observed
empirically in the right two figures.

The following proposition relates now hidden regular variation to tail orders and asymptotic
independence.

Proposition 1
Let F ∈ HRV (b,b0,ν ,ν0) with index of regular variation δ > 0 and hidden regular variation
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δ0 ≥ δ . Moreover, the margins FX and FY have the same distribution and are continuous. Then
F has upper tail order κU = δ0/δ . If δ0 > δ then X and Y are asymptotically independent.

Now coming back to the Gaussian dependence structure, we know that the Gaussian copula
CΦ,γ admits asymptotic independence as exhibited in Theorem 3 and furthermore we had the
upper (and lower) tail order given by κ = 2

γ+1 . But something more is true in general. If F
is a bivariate distribution function with margins which are identical Pareto distributions with
parameter δ > 0 and Gaussian copula CΦ,γ with −1 < γ < 1, then in fact F is multivariate
regularly varying with index δ and exhibits hidden regular variation with index δ0 = 2δ

γ+1 ; see
Reiss (1989), Example 7.2.7 for the exact calculations. Therefore, the tail order κ = 2

γ+1 is in
fact a consequence of Proposition 1 here.

We conclude that even within the framework of asymptotic independence where joint extremes
are quite unlikely, much more can be said about the structure of the dependence in the tails. We
want to stress this idea since, while considering models where joint extremes may occur (e.g.,
pricing CDO tranches), there exist many models which exhibit asymptotic independence like the
Gaussian copula, but with a dependence structure which exhibits hidden regular variation. In
such cases, the underlying hidden regular variation index may be more conducive to the study
of joint extremes. It is therefore important, for models used in practice, to investigate the tail
behavior in the extremes also using hidden regular variation or tail order (a consequence of
hidden regular variation via Proposition 1).

5 The fourth theorem: Fréchet-Höffding
Since the mid-nineties, RiskLab has on several occasions been contacted by practitioners with
questions of the following type (as example): “In a risk management context, simulate from
a bivariate model with marginal lognormal distributions LN(0,1), LN(0,4) and linear correla-
tion 70%”. At first sight, this seems a totally harmless question, examples of which abound
in actuarial science, economics and finance. Somewhat more generally, the question reformu-
lates as: “Find a model for a multivariate vector of random variables (X1, . . . ,Xd) with given
marginal distribution functions (F1, . . . ,Fd) and some dependence structure”. Formulated in this
generality, the first question coming to mind should be: “Does such a multivariate model exist?”
And indeed, the answer to the lognormal question above is “No!”. Given X ∼ FX = LN(0,1)
and Y ∼ FY = LN(0,4), the maximum linear correlation across all bivariate models with these
marginal distributions is 0.6658. And since 0.7 > 0.6658, the answer is: “Such a model does not
exist!”. Also, if the condition of 70% were to be lowered to 60%, then there are infinitely many
solutions, hence we enter the realm of Model Uncertainty.

The solution to the above problem is based on results of Wassily Höffding and Maurice Fréchet
in the 1940s. Before we can formulate these results, we need some notation. Suppose X and Y
are non-degenerate random variables with finite second moment and joint distribution function
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F , then the linear (also called Pearson) correlation γ between X and Y is defined as

γ = γ(X ,Y ) =
Cov(X ,Y )√

Var(X)Var(Y )
∈ [−1,1].

An alternative representation of the correlation coefficient is

γ(X ,Y ) =
∫ 1

0
∫ 1

0 [C(FX(x),FY (y))−FX(x)FY (y)]dxdy√
Var(X)Var(Y )

, (17)

here C is the copula in (5); this result is referred to as Höffdings Lemma, see McNeil et al.
(2005), Lemma 5.24. The representation (17) nicely exhibits the influence on γ(X ,Y ) of both the
marginal distributions and the copula. Also recall that if there exist an increasing function Ψ1
and an increasing (decreasing) Ψ2 and a random variable Z so that X = Ψ1(Z) and Y = Ψ2(Z)
almost surely then (X ,Y ) is called co-(counter-)monotonic. The copula for a comonotonic pair
of random variables, the comonotonic copula, is given by

Cmax(u,v) = min(u,v) for (u,v) ∈ [0,1]2

and analogously the countermonotonic copula is given by

Cmin(u,v) = max(u+ v−1,0) for (u,v) ∈ [0,1]2.

Both co- and countermonotonicity reflect a strong (even functional) dependence. The former can
easily be generalized to arbitrary dimensions; countermonotonicity though is a two-dimensional
concept.

Theorem 4 (Höffding (1940, 1941), Fréchet (1957))
Let (X ,Y ) be a bivariate random vector with finite variances, non-degenerate marginal dis-
tribution functions FX and FY and an unspecified joint distribution function F. The following
statements holds.

1. The attainable correlations from any joint model F with the above specifications form a
closed interval

[γmin,γmax]⊂ [−1,1]

with −1≤ γmin < 0 < γmax ≤ 1.

2. The minimum correlation γmin is attained if and only if (X ,Y ) is countermonotonic; the
maximum correlation γmax if and only if (X ,Y ) is comonotonic.

3. γmin = −1 if and only if X and −Y are of the same type; γmax = 1 if and only if X and Y
are of the same type.

Proof. See McNeil et al. (2005), p. 205. 2
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Though the result is well known to probabilists and statisticians, it was mainly its explicit
appearance in Embrechts et al. (2002) that brought it to the attention of the more applied risk
management community. In our experience, Theorem 4, though being truly fundamental to lin-
ear correlation based quantitative risk management, still needs broader knowledge. For a full
discussion, see McNeil et al. (2005), Section 5.2. Often, especially in credit risk management,
stress testing of credit risk portfolios is performed by “moving the correlations up to 1”. Theo-
rem 4 warns us that, if correlation is to be interpreted as linear correlation, one has to be careful
by doing so, not to move the stressed model out of the range of existing models! Also note that,
from Theorem 4 it follows that γ = γmax corresponds to comonotonicity of the risk vector (X ,Y ),
hence strong (monotone) functional dependence, and

γmax = γmax(FX ,FY ) =

∫ 1
0
∫ 1

0 [min(FX(x),FY (y))−FX(x)FY (y)]dxdy√
Var(X)Var(Y )

. (18)

Similarly, γ = γmin corresponds to countermonotonicity of the risk vector (X ,Y ) and

γmin = γmin(FX ,FY ) =

∫ 1
0
∫ 1

0 [max(FX(x)+FY (y)−1,0)−FX(x)FY (y)]dxdy√
Var(X)Var(Y )

. (19)

One easily shows that for X ∼ LN(0,σ2
1 ), Y ∼ LN(0,σ2

2 ), σ1,σ2 > 0,

γmax(LN(0,σ2
1 ),LN(0,σ2

2 )) =
eσ1σ2−1√

(eσ2
1 −1)(eσ2

2 −1)
,

γmin(LN(0,σ2
1 ),LN(0,σ2

2 )) =
e−σ1σ2−1√

(eσ2
1 −1)(eσ2

2 −1)
;

see McNeil et al. (2005), Example 5.26. Thus, for the lognormal example, maximum (as well
as minimum) correlation can be made arbitrarily small by increasing one of σ2

1 and σ2
2 , while

keeping the other one fixed, i.e.

lim
σ1→∞

γmax(LN(0,σ2
1 ),LN(0,σ2

2 )) = lim
σ1→∞

γmin(LN(0,σ2
1 ),LN(0,σ2

2 )) = 0,

while lim|σ1−σ2|→0 γmax(LN(0,σ2
1 ),LN(0,σ2

2 )) = 1. Near perfect negative correlation
γmin(LN(0,σ2

1 ),LN(0,σ2
2 ))→ −1 is achieved if both σ2

1 and σ2
2 are close to zero. Note that

if σ2
1 and σ2

2 tend to zero then both X and Y become more and more symmetric around 1, so that
X −1 and −(Y −1) are approximately equally distributed, which relates to Theorem 4, making
X and −Y being of the same type; thus γmin(LN(0,σ2

1 ),LN(0,σ2
2 )) ∼ −1. Similarly we obtain

γmax(LN(0,σ2
1 ),LN(0,σ2

2 )) ∼ 1 if σ2
1 ,σ

2
2 tend to zero. This example also clearly shows that

one has to be careful with statements like “small (linear) correlation implies close to indepen-
dence” and this especially in very skewed portfolios; indeed for σ1 increasing and σ2 small,
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LN(0,σ2
1 )and LN(0,σ2

2 ) have very different skewness.
In Table 1 we provide a list of maximum and minimum attainable correlations for some bivari-

ate distributions which have marginal distributions FX and FY belonging to the same parametric
family. Since univariate normal distributions are symmetric and any two of them are always of
the same type, the first result in the table is immediate.

FX ,FY γmax γmin

N(0,σ2
1 ), N(0,σ2

2 ), σ1,σ2 > 0 1 −1

LN(0,σ2
1 ), LN(0,σ2

2 ), σ1,σ2 > 0 eσ1σ2−1√
(eσ2

1−1)(eσ2
2−1)

e−σ1σ2−1√
(eσ2

1−1)(e−σ2
2−1)

Pareto(α), Pareto(β ), α,β > 2
√

αβ (α−2)(β−2)
αβ−α−β

√
(α−2)(β−2)

(
(α−1)(β−1)Beta(1− 1

α
,1− 1

β
)−αβ

)
√

αβ

Beta(1,1), Beta(α,1), α > 0
√

3α(α+2)
(2α+1) −

√
3α(α+2)
(2α+1)

Table 1: Table of γmax(FX ,FY ) and γmin(FX ,FY ) for different pairs of marginal distributions FX
and FY .

In most cases however, analytic expressions for γmin or γmax are not available and one has to
resort to numerical evaluations of (18) and (19). Figure 2 contains as an example the attainable
values of the correlation γ for the Gamma distribution, Γ(α,β ) for α,β > 0 which is quite often
encountered in insurance mathematics and credit risk management. The scale parameter β is
fixed at β = 1 for both margins; indeed we have that

γmin/max(Γ(1,1),Γ(α,1)) = γmin/max(Γ(1,β1),Γ(α,β2)),

for any α > 0 and β1,β2 > 0, thus β1,β2 have no influence on the correlation bounds. Note further
that, specifically for the case where both X and Y are identically distributed as Γ(1,1)≡ Exp(1),
we have that

γmin(Γ(1,1),Γ(1,1)) = 1− π2

6
and γmax(Γ(1,1),Γ(1,1)) = 1.

Interestingly, this result is closely related to the Pareto case presented in Nešlehová et al. (2006)
(see Table 1 and Figure 3) where

lim
α→∞

γmin(Pareto(α),Pareto(α)) = 1− π2

6 = γmin(Γ(1,1),Γ(1,1)),

lim
α→∞

γmax(Pareto(α),Pareto(α)) = 1 = γmax(Γ(1,1),Γ(1,1)).
(20)
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Figure 2: The shaded portion gives the attainable correlations for FX ∼ Γ(1,1) and FY ∼ Γ(α,1)
depending on α .

This can be explained by the following argument. Let Xα denote a Pareto distributed random
variable with distribution function Fα(x) = 1− x−α for x ≥ 1 and XExp be an exponentially dis-
tributed random variable with distribution function FExp(x) = 1− exp(−x) for x ≥ 0. Then for
any 0 < u < 1,

lim
α→∞

F←α
′(u)√

Var(Xα)
=

F←Exp
′(u)√

Var(XExp)
,

where the prime means that we take the derivative. Therefore the integrands in (18) (and (19))
are approximately the same if both the margins are either FExp or Fα with very high value of
α and hence, (20) follows. This example further highlights that the linear (Pearson) correlation
coefficient, while good in detecting linear dependence, might not perform so well to assess other
forms of dependence; see also the monograph of Drouet and Kotz (2001) on correlation and
dependence where many more examples are to be found. If, however, correlation stands for rank
correlation (Kendall’s tau, Spearman’s rho), then the results are quite different. Kendall’s tau γτ

and Spearman’s rho γS have the copula representations

γτ(X ,Y ) = 4
∫ 1

0

∫ 1

0
C(u,v)dC(u,v)−1 and γS(X ,Y ) = 12

∫ 1

0

∫ 1

0
[C(u,v)−uv]dudv.

They do not depend on the marginal distributions in contrast to the linear correlation in (17). Let
λ ∈ [−1,1], define the joint distribution of (X ,Y ) as

F(x,y) =
1+λ

2
Cmax(FX(x),FY (y))+

1−λ

2
Cmin(FX(x),FY (y)).
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Figure 3: The left figure shows γmin(Pareto(α),Pareto(β )) for (α,β ) ∈ [2.5,7]2 and the right
figure shows γmax(Pareto(α),Pareto(β )) for (α,β ) ∈ [2.5,7]2.

One easily obtains that

γτ(X ,Y ) = γS(X ,Y ) = λ .

Thus we can attain any correlation (in the sense of Spearman’s rho or Kendall’s tau) given arbi-
trary marginal distributions. So also in the introductory LN-example from this section, if we want
bivariate distributions with margins LN(0,1), LN(0,4) and given rank correlation γτ(X ,Y ) = 0.7
or γS(X ,Y ) = 0.7 we always have a solution. This is the good news and also a main reason that
in quantitative risk management, one should consider these alternative correlation coefficients
more seriously. The bad news however is that typically, infinitely many solutions to the above
question exist, hence leading to Model Uncertainty. There exists a huge literature on calculating
bounds for risk measures on financial and insurance positions where only partial information on
the marginal distributions and/or the dependence structure (the copula) is given. The interested
reader is advised to search for (numerous) publications by Ludger Rüschendorf and Giovanni
Puccetti; see Embrechts and Puccetti (2010) for a start.

In Theorem 4 we see that for two random variables with fixed marginal distributions, the max-
imum (respectively minimum) correlation is attained when the joint distribution is comonotonic
(respectively countermonotonic). A question that naturally follows is whether there is an exten-
sion of Theorem 4 for vectors X,Y in Rd which represent vectors of losses for different lines
or policies. Unfortunately, there is no general notion of comonotonicity in this case, and for
instance, min(CX(u1, . . . ,ud),CY(v1, . . . ,vd)) is not necessarily a 2d-dimensional copula where
CX and CY are the copulas of X and Y. Hence, the case d > 1 is clearly not as straightforward
as d = 1. There have been several attempts at defining multivariate comonotonicity; see Puccetti
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and Scarsini (2010) for an overview on different definitions and their pros and cons. We present
below a few of the most common examples. For this, let X,Y be random vectors in Rd with
distributions FX and FY.

(a) (X,Y) is s(tronly)-comonotonic if there exist a random variable Z and increasing functions

f1, . . . , fd , g1, . . . ,gd such that (X,Y)
d
= (( f1(Z), . . . , fd(Z)),(g1(Z), . . . ,gd(Z))).

(b) (X,Y) is π-comonotonic if there exist a random vector Z = (Z1, . . . ,Zd) and increasing

functions f1, . . . , fd , g1, . . . ,gd such that (X,Y)
d
=(( f1(Z1), . . . , fd(Zd)),(g1(Z1), . . . ,gd(Zd))).

(c) (X,Y) is c-comonotonic if sup{E(〈X̃, Ỹ〉) : X̃∼ FX, Ỹ∼ FY}< ∞ and

E(〈X,Y〉) = sup{E(〈X̃, Ỹ〉) : X̃∼ FX, Ỹ∼ FY},

where 〈·, ·〉 denotes the Euclidean scalar product.

(d) (X,Y) is µ-comonotonic if µ is a probability measure on Rd that vanishes on Borel subsets
of Hausdorff dimension d−1 and there exists a random vector V∼ µ such that

V ∈ argmax
Ṽ
{E(〈X, Ṽ〉) : Ṽ∼ µ} and V ∈ argmax

Ṽ
{E(〈Y, Ṽ〉) : Ṽ∼ µ}.

In the one-dimensional case d = 1 the above definitions (a) -(d) of comonotonicity are equivalent
to the usual definition of comonotonicity given earlier. In particular, the definition in (c) is a
conclusion of Theorem 4. However, in the multivariate case d > 1, (a) represents the strongest
version of comonotonicity. The notions of comonotonicity get weaker, in fact strictly weaker
from (a) to (d) (only from (c) to (d) we require additional assumptions). Are there further
differences between the cases d = 1 to d > 1? For example when d = 1 and given any pair
of marginal distributions FX and FY in R there exists a bivariate comonotonic random vector
with margins FX ,FY . Unfortunately when d > 1, given any pair of marginal distributions FX
and FY in Rd there does not necessarily exists a s- (π-)comonotonic pair of random vectors
with margins FX and FY. On the other hand, given margins FX and FY there always exists a c-
(µ-)comonotonic pair of random vectors with these margins. One common element of all four
definitions of comonotonicity mentioned here is that if X and Y have the same distribution and
(X,Y) is s- (π-, c- or µ-)comonotone then X=Y almost surely. Besides, if E(X)=E(Y)= 0 and
E(XX′) = E(YY′) = Id (the d-dimensional identity matrix), then the set {E(X̃Ỹ′) : X̃∼ FX, Ỹ∼
FY} ⊂ Rd×d is a compact and convex set and for d = 1 it is equal to [γmin(FX ,FY ),γmax(FX ,FY )]
(see Villani (2003)).

The most commonly used definition of multivariate comonotonicity is that of µ-comonotonicity,
which plays quite an important role in the study of risk measures, in particular, in the context
of multivariate law-invariant convex and law-invariant coherent risk measures. A multivariate
convex (or coherent) risk measure ρ : Ed → R is defined as the one-dimensional convex (or co-
herent) risk measure of Definition 1, where X ≤ Y a.s. is to be understood componentwise and
in the definition of translation-invariance η is replaced by ηei where ei is the ith-unit vector.
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Law-invariance means that ρ(X) = ρ(Y) if FX = FY. As a consequence of Meilijson and Nadas
(1979) for d = 1, X ,Y ∈ L1 and for all law invariant convex risk measures ρ on L1

ρ(F←X (U)+F←Y (U)) = sup{ρ(X̃ + Ỹ ) : X̃ ∼ FX ,Ỹ ∼ FY},

where U is uniformly distributed on (0,1). Thus, the comonotonic pair (F←X (U),F←Y (U)) is
the worst case couple for any law invariant convex risk measure. In the multivariate setting
unfortunately there does not exist a similar result; in particular there does not exist one worst case
couple for any law invariant convex risk measure. The concept of multivariate max-correlation
risk measures was defined in Rüschendorf (2006) as

ρZ(X) = sup{E(〈X̃,Z〉) : X̃∼ FX}

which is the correlation coefficient up to normalization and where Z = (Z1, . . . ,Zd) satisfies
Zi ≥ 0 and E(Zi) = 1 for i = 1, . . . ,d. Then the random vector X∗ ∼ FX for which E(〈X∗,Z〉) =
sup{E(〈X̃,Z〉) : X̃ ∼ FX} is called the worst case scenario for the risk X ∼ FX and the depen-
dence structure of (X∗,Z) is the worst case dependence structure. For d = 1, a conclusion of
Kusuoka (2001) is that the max-correlation risk measures are the only law-invariant, comono-
tone additive (i.e., ρ(X +Y ) = ρ(X)+ρ(Y ), if (X ,Y ) is comonotone) coherent risk measures.
Hence, the comonotone dependence structure represents the worst case dependence structure
which exhibits no diversification. This fundamental result was extended in Ekeland et al. (2010)
to the multivariate setup by replacing comonotonic additivity by µ-comonotonic additivity. They
concluded that X∗+ Y∗ is the worst case scenario for X + Y with X ∼ FX, Y ∼ FY regard-
ing ρZ if and only if (X∗,Y∗) are FZ-comonotone, i.e., if (X∗,Y∗) are FZ-comonotone then
ρZ(X∗+Y∗) = ρZ(X∗)+ρZ(Y∗) reflecting no diversification. Rüschendorf (2006, 2012b) sum-
marizes that any multivariate law-invariant, coherent risk measure can be characterized by a class
of max-correlation risk measures and their worst case scenarios by µ-comonotonic random vec-
tors. Typically, multivariate law-invariant convex risk measures do admit a diversification effect.
However for the subclass of translated max-correlation measures there exist examples of pairs
(X,Y) without diversification effect. The area of risk management in a multivariate setting is
a very active research area today, and there still remain many unanswered questions; see the
forthcoming monograph Rüschendorf (2012a).

6 And a financial crisis: Conclusion
It should be clear by now that a common thread through the above examples (theorems) is Model
Uncertainty. An important lesson to be learned is that technical questions, like pricing and
hedging, asked in the financial industry often are (or have to be) based on highly incomplete
model assumptions. Economics definitely, and to a high degree finance and insurance, involve an
important social/human factor which cannot be fully captured by rationality. This leads in various
ways to a relatively high degree of uncertainty; it is no coincidence that as a consequence of The
Crisis the classic Knight (1921) on Risk, Uncertainty, and Profit has been rediscovered. Also the
various combinations of the Knowns and Unknowns, as for instance discussed in Diebold et al.
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(2010), have become popular. Finally, extreme views as for instance exposed in Taleb (2007)
doubt whether any value can be given to a scientific/rational approach to finance. As always,
the truth will lie somewhere in the middle between the totally rational and the fully behavioral,
say, points of view. The history of life insurance for instance has shown us how useful actuarial
(mathematical) calculations can be. Similarly, the over-rational hypes during The Crisis brought
many of us with their feet back on solid ground. Concentrating on quantitative (mathematical)
finance, there is no doubt that mathematical finance has been very successful in relating today’s
prices, but is much less confident in explaining (predicting) tomorrow’s ones (Hans Bühlmann,
private communication). Mathematicians are well (or at least ought to be) aware of this.

Going forward, mathematicians (a) have to get much more involved with more applied issues
in insurance and finance, and (b) have to keep on stressing the conditions needed to be fulfilled in
order for certain results to be applied. Our paper contains numerous examples of this. Whereas
(appointed) actuaries in insurance have a long-standing tradition in this respect, in finance there
is much more work to be done. It is therefore not possible to single out one concrete theme
where we would encourage young researchers to start working on. One key observation is that
Quantitative Risk Management (QRM) will gain in importance; and this not just by providing
tools and techniques, like for instance done in McNeil et al. (2005), but more importantly by
drawing a clear line for practice with a sign “careful, those questions asked are with current
knowledge impossible to answer!”. Examples are the pricing and hedging of synthetic CDOs or
the 99.9% VaR estimation of yearly Operational Risk losses.

We see two main areas where QRM research will have to dig deeper:

(a) in going from more frequency oriented “if” questions to a more severity oriented “what if”
approach, and this at several levels, and

(b) thinking more about the (Q)RM landscape in a changing world: “Within the financial
industry, are we covering with our RM radar all relevant corners?”

Let us end with some thoughts on (b) by recalling three main dimensions of risk management:

• Dimension 1: Scope.

– Micro: the individual firm, the trading floor, the client, . . .

– Macro: the country or even worldwide system, networks.

• Dimension 2: Time.

– Short: high frequency trading,� 1 year (or quarter).

– Medium: Solvency 2/ Basel II/III, ∼ 1 year.

– Long: social/ life insurance,� 1 year.

• Dimension 3: Level.

– Quantitative versus qualitative risk assessment.
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The above carving up of the RM-cake is of course rather simplistic, though it is fair to say that
most of the (more mathematical) work has centered on Micro/ Medium/ Quantitative. Mathe-
maticians have to become more aware of the need to spend more time and effort on the other (to
some extent more important) combinations! We very much hope that our paper will arouse some
interest on these issues.
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Embrechts, P., Lambrigger, D.D. and Wüthrich, M.V. (2009). Multivariate extremes and the
aggregation of dependent risks: examples and counter-examples. Extremes, 12(2), 107–127.

Embrechts, P. and Mainik, G. (2012). Asymptotic diversification effects in multivariate regularly
varying models. Preprint.

Embrechts, P., McNeil, A. and Straumann, D. (2002). Correlation and dependence in risk man-
agement: properties and pitfalls. In: M.A.H. Dempster (Ed.), Risk Management: Value at Risk
and Beyond, pages 176–223. Cambridge University Press, Cambridge.

Embrechts, P. and Puccetti, G. (2010). Risk aggregation. In: P. Jaworski, F. Durante, W. Haerdle
and T. Rychlik (Eds.), Copula Theory and its Applications, pages 111–126. Springer, Berlin.

Feller, W. (1971). An Introduction to Probability Theory and Its Applications, vol. 2. 2nd edn.
Wiley, New York.
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Kaina, M. and Rüschendorf, L. (2009). On convex risk measures on Lp-spaces. Mathematical
Methods of Operations Research, 69(3), 475–495.

Karamata, J. (1930). Sur un mode de croissance régulière des fonctions. Mathematica (Cluj.), 4,
38–53.

Kazanjian, K. (2000). Wizards of Wall Street. Aspen publishers.

Kindleberger, C. and Aliber, R. (2011). Manias, Panics, and Crashes: A History of Financial
Crises. Wiley, New York.

Knight, F.H. (1921). Risk, Uncertainty, and Profit. Houghton Mifflin Company, Boston.

Kusuoka, S. (2001). On law invariant coherent risk measures. Advances in Mathematical Eco-
nomics, 3, 83–95.

Ledford, A.W. and Tawn, J.A. (1996). Statistics for near independence in multivariate extreme
values. Biometrika, 83(1), 169–187.

Li, D. (2000). On default correlation: a copula function approach. Journal of Fixed Income,
9(4), 43–54.

McNeil, A., Frey, R. and Embrechts, P. (2005). Quantitative Risk Management: Concepts,
Techniques, Tools. Princeton University Press, Princeton.

28



Meilijson, I. and Nadas, A. (1979). Convex majorization with an application to the length of
critical paths. Journal of Applied Probability, 6, 671–677.

Moscadelli, M. (2009). The modeling of operational risk: experience with the analysis of the
data collected by the Basel committee. Banca d’Italia, Temi di discussione del Servizio Studi,
No. 517.
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