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Abstract. The question of the measurement of strategic long-term financial
risks is of considerable importance. Existing modelling instruments allow for a
good measurement of market risks of trading books over relatively small time
intervals. However, these approaches may have severe deficiencies if they are
routinely applied to longer time periods. In this paper we give an overview on
methodologies that can be used to model the evolution of risk factors over a
one-year horizon. Different models are tested on financial time series data by
performing backtesting on their expected shortfall predictions.

1 Introduction

Most of the current research in asset management and market risk management fo-
cuses on short-term risk (daily, weekly). Clearly, in many cases, a long-term analysis
(e.g. quarterly, yearly) is just as relevant and important. Indeed, in financial institutions
(e.g. banks) risk measures are typically calculated for a one-day to two-week horizon. In
insurance for instance risk exposures must be measured and managed over much longer
(i.e. yearly) time spans. While for the measurement of short-term financial risks some
consistent and reliable frameworks already exist, for longer time horizons, only relatively
few papers can be found in the academic literature.

Existing modelling instruments such as RiskMetrics allow for a relatively good mea-
surement of market risks of trading books. These models, however, have some severe
deficiencies if they are applied to longer time periods (typically one year), as needed
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in the case of strategic investments of institutional investors or within insurance. A no-
table exception is the ForeSight Technical Document [29] of the RiskMetrics Group which
focuses on forecasting beyond a two year horizon.

In this paper we develop a theoretically well-understood and empirically-founded con-
ceptual framework for the measurement of long-term financial risk of strategic investment
portfolios. The main criterion to judge the appropriateness of different models is the relia-
bility of expected shortfall estimates of profit and loss distributions for financial portfolios
over a period of one year. Expected shortfall was chosen as risk measure because it is
coherent for continuous distributions in the sense of Artzner et al. [3].

An obvious approach to model yearly financial risks is to use standard methodologies
for short-term risks (i.e. for a horizon h < 1 year), and to apply a scaling rule for the gap
between h and 1 year. It is well known that daily (or higher frequency) returns are de-
pendent due to volatility clustering, while returns over a longer time horizon (fortnightly,
monthly data) are closer to being independent. Because of the weaker dependence for
lower frequency data, time aggregation rules usually perform better when starting with
longer horizons. On the other hand, the serious statistical restrictions due to the small
number of low frequency data should also be taken into account. There is a tradeoff be-
tween bias and variance. The pivotal point is the choice of the data frequency on which
to calibrate the models.

In this paper we present our findings on the evolution of single risk factors. Sec-
tions 3 to 6 give an overview on approaches that can be used to model the risk factors.
In these sections we first investigate dynamical models like random walks, AR(p) and
GARCH(1,1) models, which allow to model price changes. Then we propose a static
approach based on heavy-tailed distributions. We follow a unified framework for the
presentation of the results across the different approaches. First, the model including the
statistical tools used to estimate the parameters is described, then it is shown how re-
turns can be aggregated. Finally, the methodology to compute value-at-risk and expected
shortfall is given. In Section 7 the performances of the different models are compared
with each other. First they are calibrated using exchange rate data, stock indices, 10-year
government bonds and single stock data at different frequencies. Performing backtesting
for the corresponding expected shortfall (and value-at-risk) predictions finally answers
the question which model (and at which frequency) gives the most reliable estimation of
one-year asset risk. Additionally, a variance analysis for the time series models is pro-
vided, and confidence intervals for expected shortfall and value-at-risk for the random
walk approach are computed. The final section contains the main conclusions that can
be drawn from these investigations.

In order to keep the paper relatively short, the reader is occasionally referred to a
RiskLab Technical Report Kaufmann and Patie [27] for further details.

2 Definitions and notation

We introduce a minimum set of definitions and notation. Fix some real-valued con-
tinuously distributed random variable R with finite mean on some probability space
(Ω,A,P). R is considered the return of some asset. By E[.] we denote expectation with
respect to P. Fix also some confidence level p.
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Definition 2.1 The value-at-risk at level p of R is defined as

VaRp(R) = − inf{x ∈ R | P[R ≤ x] ≥ p},
i.e. VaRp(R) is the negative p-quantile of R.

Definition 2.2 The expected shortfall at level p of R is defined as

ESp(R) = −E[R | R < −VaRp(R)].

For continuous distributions, expected shortfall is coherent, whereas value-at-risk does
in general not fulfil the subadditivity property required for a risk measure to be coherent.

Definition 2.3 A measure of risk ρ is subadditive, if ρ(Ra +Rb) ≤ ρ(Ra) + ρ(Rb) for
all random variables Ra, Rb.

Artzner et al. [3] explain why the subadditivity property is a natural requirement
for risk measures and show that this property holds under certain restrictions on the
discounted risks, as well as on the underlying probability space. Rockafellar and Urya-
sev [37] give an equivalent representation of the conditional expected value as the solution
of an optimization problem only requiring the probability distribution of the risk to be
continuous. From this minimization problem, Pflug [35] shows the convexity (including
the subadditivity property) of expected shortfall. Finally, Acerbi and Tasche [1] and
Rockafellar and Uryasev [38] give an alternative definition of conditional value-at-risk,
which is identical to expected shortfall for continuous distributions, but stays coherent
even in the case of discontinuous underlying return distributions. Moreover, this alter-
native definition of conditional value-at-risk (and hence for continuous distributions also
expected shortfall) is consistent with second degree stochastic dominance, which is im-
portant for decision theory, see Ogryczak and Ruszczynski [34]. In Embrechts et al. [20]
it is shown that value-at-risk is coherent for elliptically distributed risk factors.

Notation. Throughout the rest of the paper we use the following notation. St denotes
the asset price at time t, st = log St is the asset log-price, h denotes the length (in days) of

one period, Rt = St−St−h
St−h

is the one-period asset return, rt = st−st−h the one-period asset

log-return, and rkt denotes the k-period (i.e. kh-day) asset log-return (think of kh days
being 1 year). The mean µ of one-period asset log-returns is assumed to be constant over
time, and rt = rt − µ is the centered one-period asset log-return.

3 Random walks

A simple, but for many practical applications crucial starting model for h-day log-
returns is the random walk model with normal innovations.

Definition 3.1 The process (st)t∈hN is a random walk process with constant trend
and normal innovations, if for all t ∈ hN it satisfies the equation

st = st−h + rt, with rt
i.i.d.∼ N (µ, σ2). (3.1)
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3.1 Scaling rule.

When changes in the log-price are independent and identically distributed with mean
µ = 0 and variance σ2 < ∞, then the k-period log-returns rkt =

∑k−1
i=0 rt−ih have mean

zero and standard deviation
√
kσ. Hence the one-period volatility can be multiplied by

the square-root-of-time to calculate the k-period volatility in the i.i.d. case. Assuming
additionally normality like in (3.1), the same scaling law holds for the quantiles.

It is well known that daily log-returns show neither independent nor normally dis-
tributed behaviour (see Fama [21], or Campbell et al. [8]). Lower frequency data are
closer to the normality assumption which is needed to apply the square-root-of-time rule;
see for instance Campbell et al. [8] and Dacorogna et al. [11]. Hence, this scaling rule
should work better for models fitted to monthly or even lower frequency data.

In general, the square-root-of-time scaling rule cannot be applied directly to log-
returns. First the mean µ has to be subtracted. For i.i.d. normally distributed one-period
log-returns with constant mean µ = E[rt] and constant variance σ2 = E[r2

t ], the following

rule for k-period log-returns holds: rkt
d∼ kµ +

√
k(rt − µ), where

d∼ denotes equality in
distribution.

The one-period mean µ and the one-period standard deviation σ can be estimated

via µ̂ = 1
n

∑n
i=1 rih and σ̂ =

√
1

n−1

∑n
i=1(rih − µ̂)2. The square-root-of-time rule leads

to σ̂k =
√
k σ̂ for the k-period variance. The trend for k periods can be estimated by

µ̂k = k µ̂.

3.2 Estimation of value-at-risk and expected shortfall.

The estimate for a k-period (think of one year) value-at-risk at level p is

V̂aR
p

= −
(

exp
(
µ̂k + σ̂kxp

)
− 1
)
, (3.2)

and correspondingly for expected shortfall,

ÊS
p

= −
(

exp
(
µ̂k +

(σ̂k)2

2

) Φ(xp − σ̂k)
p

− 1
)
, (3.3)

where xp is the p-quantile of a standard normal random variable, and Φ denotes the
cumulative standard normal distribution function.

4 Autoregressive processes

A first model that takes into account the dependence of subsequent log-returns is the
AR(p) process.

Definition 4.1 The process (st)t∈hN is an AR(p) process with trend, if for all t ∈ hN
it satisfies the equation

st =

p∑

i=1

ai st−ih + εt, (4.1)

where ai are (constant) coefficients fulfilling the stationarity condition
∑p

i=1|ai| < 1,
εt ∼ N (µ0 + µ1t, σ

2), (εt)t∈hN are independent, and σ2 is the variance of the innovation
process.
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The constant term µ0 has only a translation effect on the process (st)t∈hN. Hence
setting the constant term to zero has no effect on log-returns (rt)t∈hN. Equation (4.1) can
be rewritten as an AR(p)-process with i.i.d. N (0, σ2) innovations:

st =

p∑

i=1

aist−ih + εt, t ∈ hN, (4.2)

where st = st − µt are the detrended log-prices, µ = µ1

1−∑p
i=1 ai

, εt
i.i.d.∼ N (0, σ2), and ai, σ

2

are as in (4.1).

4.1 Scaling rule.

For one-period steps, the AR(p)-process (4.2) can be used to model the detrended
log-prices (st)t∈hN. To calculate k-period parameters from a sample of n h-day periods,
we proceed as follows:

– Subtract the linear trend from log-prices st: st = st − µ̂t for t ∈ hN, where µ̂ =
snh−s0
nh

.
– Fit the AR(p)-process to the drift-free one-period log-prices (st)t∈hN: maximum

likelihood estimation (MLE) gives the estimates p̂, âi (i = 1, . . . , p̂) and σ̂ε. Note

that σ̂ε =
√

1
n−1

∑n
i=1(εih)2 is the volatility of the innovation process (εt)t∈hN and

not of the detrended log-prices (st)t∈hN.
– At time t, forecast the k-period log-return using the relation µ̂k = khµ̂+ m̂, where
m̂ = s̃t+kh − s̃t, and s̃t+kh is defined recursively: s̃t+jh =

∑p̂
i=1 âis̃t+(j−i)h (j =

1, . . . , k), and s̃u = su for u ≤ t.

– Forecast the k-period volatility using the scheme σ̂k = σ̂ε

√∑k−1
j=0 δ

2
j , where δ0 = 1,

δj =
∑j

i=1 âiδj−i, âi = 0 for all i > p̂.

Conditioned on st, the one-year forecast st+kh has distribution N (st + µk, (σk)2), where
µk and σk can be estimated as shown in the above steps.

4.2 Estimation of value-at-risk and expected shortfall.

Like in the random walk model, the k-period value-at-risk at level p can be estimated
by

V̂aR
p

= −
(
exp
(
µ̂k + σ̂k xp

)
− 1
)
, (4.3)

and the corresponding expected shortfall by

ÊS
p

= −
(

exp
(
µ̂k +

(σ̂k)2

2

) Φ(xp − σ̂k)
p

− 1
)
, (4.4)

where xp is the p-quantile of a standard normal random variable, and Φ denotes the
cumulative standard normal distribution function.

5 The GARCH(1,1) model

A widely used approach to model the dependence between subsequent one-period
log-returns via the volatility, is the famous family of GARCH(1,1) processes.
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Definition 5.1 The process (st)t∈hN is generated by a GARCH(1,1) process, if for all
t ∈ hN it satisfies the equation

st = st−h + rt, where rt = rt + µ, (5.1)

and (rt)t∈hN is a GARCH(1,1) process:

rt = σt εt,

σ2
t = α0 + α1r

2
t−h + β1σ

2
t−h,

εt i.i.d., E[εt] = 0, E[ε2t ] = 1.

(5.2)

In this paper, the innovations (εt)t∈hN are assumed to be Student-t distributed, and
the stationarity conditions 0 < α0 <∞, α1 ≥ 0, β1 ≥ 0 and α1 + β1 < 1 are assumed to
be fulfilled.

This model is known to be well-suited for reproducing the heteroscedastic behaviour
of the conditional volatility of financial daily returns. In practice, it is intensively used for
estimating the 10-day value-at-risk; see however the critical paper Stărică [39]. One often
fits the model to daily data, and then applies the square-root-of-time rule to extend the
results to a longer time horizon (e.g. 10 days). Brummelhuis and Kaufmann [7] show that
the square-root-of-time rule works well to scale a one-day 1% value-at-risk to a 10-day
1% value-at-risk in GARCH(1,1) processes. However, this scaling is inappropriate when
applied to long term horizon conversion. Christoffersen et al. [10] discuss the square-root-
of-time scaling rule, showing that in GARCH(1,1) models for large k (such as k > 15
days) applying this standard rule to the strongly varying short-time volatilities σt leads
to an overestimation of (actually low) volatility fluctuations of k-period log-returns (see
also McNeil and Frey [31] for a critical discussion of this scaling rule).

5.1 Scaling rule.

Drost and Nijman [13] investigate the temporal aggregation of so-called weak GARCH
processes. We refer to their paper for the formal definition of this version of GARCH
processes. The so-called Drost-Nijman formula allows to extend short-term risk esti-
mates to longer horizons. Suppose the one-period log-prices (st)t∈hN are generated by a
GARCH(1,1) process as in Definition 5.1, with symmetric innovations. Drost and Nij-
man [13] show that, under regularity conditions, the corresponding k-period log-prices
are generated by a weak GARCH(1,1) process with

(σkt )2 = αk,0 + αk,1 (rkt−kh)
2 + βk,1 (σkt−kh)

2, (5.3)

where (rkt )t∈khN denote the centered k-period log-returns, αk,0 = k α0
1−(α1+β1)k

1−(α1+β1)
, αk,1 =

(α1 + β1)k − βk,1, and |βk,1| < 1 is the solution of the quadratic equation
βk,1

1+(βk,1)2 =
a(α1+β1)k−b

a(1+(α1+β1)2k)−2b
. Further,

a = k (1−β1)2 + 2k (k− 1)
(1−β1−α1)2(1−β2

1−2α1β1)

(κ̃−1)(1−(α1+β1)2)
+ 4 (k−1−k(α1+β1)+(α1+β1)k)(α1−α1β1(α1+β1))

1−(α1+β1)2

and b = (α1 − α1 β1 (α1 + β1)) 1−(α1+β1)2k

1−(α1+β1)2 .

Note that the Drost-Nijman scaling rule does not give exact information about the
distribution of the innovations (εkt )t∈khN. Only even moments (up to order four) are cal-
culated. Indeed, all odd moments are zero because of the symmetry assumption for one-
period innovations. We follow the approach of modelling k-period innovations (εkt )t∈khN
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with Student-t distributions with correct first five moments (i.e. two even moments). The
second moment E[ε2t ] equals one. The fourth moment, the conditional k-period kurtosis
κk, can be calculated via the unconditional k-period kurtosis κ̃k:

κk =
1− (α1 + β1)2 + α2

1

1− (α1 + β1)2 + α2
1 κ̃

k
κ̃k. (5.4)

The unconditional kurtosis κ̃k of (rkt )t∈khN is given by

κ̃k = 3 +
κ̃− 3

k
+ 6(κ̃− 1)

(k − 1− k(α1 + β1) + (α1 + β1)k)(α1 − α1β1(α1 + β1))

k2(1− α1 − β1)2(1− β2
1 − 2α1β1)

(5.5)

(see Drost and Nijman [13]), where κ̃ denotes the unconditional one-period kurtosis,
which can be expressed via the conditional one:

κ̃ =
1− (α1 + β1)2

1− (α1 + β1)2 − α1
2 (κ− 1)

κ. (5.6)

Proofs of equations (5.4) and (5.6) can be found in the Technical Report, Kaufmann and
Patie [27].

When Student-t distributions are assumed for one-period innovations (εt)t∈hN, the
estimation procedure for the parameter νk of the Student-tνk distributed k-period inno-
vations consists of the following steps:

– Estimate the parameter ν of the Student-tν distributed one-period innovations.
– Calculate the conditional kurtosis κ via κ = 3ν−6

ν−4
.

– Calculate the unconditional kurtosis κ̃ via (5.6).
– Apply (5.5) to get the unconditional kurtosis κ̃k for k-period log-returns.
– Calculate the conditional kurtosis κk for k-period log-returns via (5.4).
– Calculate the parameter νk of the Student-tνk distributed innovations (εkt )t∈khN via

νk = 4κk−6
κk−3

.

Since α1 + β1 < 1 (and α1 ≥ 0, β1 ≥ 0), the stationarity condition 0 ≤ αk,1 + βk,1 < 1
is fulfilled for the k-period parameters, and the asymptotic behaviour limk→∞

αk,0
k

=
α0

1−(α1+β1)
holds. From the formulas for αk,1 and βk,1, it can be seen that αk,1 → 0 and

βk,1 → 0 as k →∞. This means that long term volatility fluctuations stay rather small.
More precisely, asymptotically the volatility becomes constant, and therefore the weak
GARCH(1,1) process behaves in the limit like a random walk.

To make the quasi maximum likelihood estimation (QMLE) procedure for the param-
eters in the one-period GARCH(1,1) process more stable (but somewhat less flexible),
we simplify model (5.2) and continue working with standard normally distributed inno-
vations for one-period log-returns:

rt = σt εt,

σ2
t = α0 + α1r

2
t−h + β1σ

2
t−h,

εt
i.i.d.∼ N (0, 1).

(5.7)

After estimating α̂0, α̂1 and β̂1, the Drost-Nijman scaling rule can be applied to calculate

α̂k,0, α̂k,1 and β̂k,1 for the centered k-period log-returns. For estimating νk, we use the
six steps listed above. In the first step, we take the limit ν → ∞, which corresponds to
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assuming standard normally distributed one-period innovations (εt)t∈hN, and which yields
κ = 3 in the second step.

An alternative approach to taking ν →∞ would be to continue working with Student-
t distributed one-period innovations, and to only assume normality during the estimation

procedure (to get α̂0, α̂1 and β̂1). The parameter ν can then be estimated from the
residuals. Gouriéroux [24] shows that this so-called pseudo-maximum-likelihood method
yields a consistent and asymptotically normal estimator, see also Straumann [41] and
Straumann and Mikosch [42].

At time t, the k-period conditional volatility σ̂k = σ̂(t, t) can be forecasted using a
recursive relation: for t∗ = t−(n−1)kh, . . . , t−kh, t (where n stands for the total number

of k-period log-returns) σ̂2(t∗, t) = α̂0 + α̂1(rkt∗ − µ̂k)2 + β̂1σ̂
2(t∗ − kh, t), starting with

σ̂2(t−nkh, t) = k
nk−1

∑nk−1
i=0 (rt−ih− µ̂)2. For the k-period mean we use µ̂k = kµ̂, where µ̂

stands for the QMLE for the mean one-period log-return up to time t.

5.2 Estimation of value-at-risk and expected shortfall.

Since the k-period innovations are fitted with Student-t distributions, the k-period
(one-year) value-at-risk at level p can be estimated by

V̂aR
p

= −
(
exp
(
µ̂k + σ̂k xp

ν̂k

)
− 1
)
, (5.8)

and the corresponding expected shortfall by

ÊS
p

= −
(

1

p

∫ p

0

exp(µ̂k + σ̂k xq
ν̂k

)dq − 1

)
, (5.9)

where xpν denotes the p-quantile of a Student-tν distributed random variable with mean
zero and variance one. The integral in (5.9) can be evaluated numerically.

As shown in Kaufmann and Patie [27], stationarity conditions are often violated for
parameters estimated on a one-month (or longer) horizon. Hence, in the present paper,
GARCH(1,1) models are only calibrated on shorter horizons.

6 Heavy-tailed distributions

Extreme Value Theory (EVT) provides procedures for estimating extreme quantiles.
It has attracted much interest from the finance industry lately. For an exhaustive descrip-
tion of EVT see the monograph of Embrechts et al. [19]. Applications to risk management
are summarised in Embrechts [18].

Definition 6.1 Log-returns rt = st − st−h of the process (st)t∈hN are said to have a
heavy-tailed distribution, if for all t ∈ hN they satisfy

P[rt < −x] = x−αL(x) as x→∞, (6.1)

where α ∈ R+ and L is a slowly varying function, i.e. limx→∞
L(tx)
L(x)

= 1 for all t > 0.

For heavy-tailed distributions (6.1), the mth moment is infinite for all m > α.
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6.1 Scaling rule.

A natural estimator for the tail index α is the so-called Hill estimator

α̂−1
l,n =

1

l

l∑

i=1

log

(
r(i)

r(l)

)
, (6.2)

where n is the sample size and r(l) is the lth order statistic (i.e. r(1) ≤ r(2) ≤ · · · ≤ r(n)),
taken as a threshold. Other estimators, as discussed in Embrechts et al. [19], can also be
used.

From (6.1), estimates for the p-quantile x̂pl,n can be derived. On the one hand, putting

x = −r(l) leads to l
n

= P[r < r(l)] = (−r(l))
−αL(−r(l)). On the other hand, setting

x = −xpl,n yields

p = P[r < xpl,n] = (−xpl,n)−αL(−xpl,n). (6.3)

Combining these equations gives the estimate

x̂pl,n = r(l)

(
l

np

)1/α̂l,n

. (6.4)

Equation (6.4) yields an easy way to calculate the p-quantile once the tail (shape) param-
eter α is estimated. As the Hill estimator (6.2) is based upon the lowest order statistics,
only a proportionally small subsample of the whole data set is considered. Consequently,
a large data set to start with is desirable. Therefore, rather high frequency data should
be used to estimate α, and to calculate x̂pl,n. Then, a theoretical scaling rule can be
applied to get the quantile estimate at the required frequency.

For one-period log-returns which are i.i.d., and which satisfy (6.1), by the subexpo-
nentiality property (see e.g. Feller [23, VIII.8, p.271] and more in detail Embrechts et
al. [19]), the k-period log-returns (rkt )t∈khN fulfil

P
[
rkt < −x

]
= k x−αL(x)(1 + o(1)), as x→∞. (6.5)

This result supplements the central limit theorem by providing information concerning
the tails. It describes the self-additivity in the tails of heavy-tailed distributions. The
implication of this result for portfolio analysis has been discussed in the specific case of
non-normal stable distributions by Fama and Miller [22]. In that case α < 2 holds, and
the variance is therefore infinite. Here we focus on the finite variance case. Dacorogna et
al. [11] show the following asymptotic result, which can be derived from (6.3) and (6.5):

xk,p ∼ k1/αxp, as p→ 0, (6.6)

where xk,p is the p-quantile of the k-period log-returns. This means that for a constant
probability p, increasing the time horizon by a factor k increases the p-quantile for the
heavy-tailed model by a factor k1/α. For financial log-returns, the estimated tail index α
usually belongs to the interval (2, 5) (see Dacorogna et al. [11] and Straetmans [40]
for empirical studies on foreign exchange rate and stock index data). For α > 2, the
factor k1/α is smaller than for the normal model, where the value-at-risk is increased
by the factor k1/2. Hence the square-root-of-time rule – used very often in practice to
scale quantiles – leads to an overestimation of value-at-risk. More details about this time
aggregation issue for heavy-tailed distributions can be found in Kaufmann and Patie [27],
Section 7.2.3.
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In comparison with the normal model, the probability of an extreme one-period loss
is higher for the heavy-tailed model. However, as we saw before, the multiplication factor
used to obtain the multi-period value-at-risk is smaller for heavy-tailed log-returns (k1/α,
α ∈ (2, 5)) than for normal log-returns (k1/2). Based on this, the value of an estimated
extreme k-period quantile may still be larger for the normal model than for the EVT
model, if k is chosen large enough (as shown by simulation in Dacorogna et al. [11]).

6.2 Estimation of value-at-risk and expected shortfall.

Estimates for the k-period value-at-risk at level p can be derived by applying the
quantile transformation (6.6) to one-period values fulfilling (6.1):

V̂aR
p

= −
(

exp
((k ln,p

n p

)1/α̂ln,p,n r(ln,p)

)
− 1
)
, (6.7)

and for the corresponding one-year expected shortfall

ÊS
p

= −
(

1

p

∫ p

0

exp
((k ln,p

n q

)1/α̂ln,p,n r(ln,p)

)
dq − 1

)
, (6.8)

where ln,p = bn(p + 0.045 + 0.005 h)c, α̂−1
l,n = 1

l

∑l
i=1 log(r(i)/r(l)) is the Hill estimator,

and r(l) denotes the lth order statistic of one-period log-returns. The integral in the

estimation of ÊS
p

can be evaluated numerically. The choice made for ln,p works well in
practice; it turns out that the results are rather insensitive to the exact choice of ln,p.

7 Model comparison

In this section, the suitability of the models for estimating one-year financial risks is
compared. As explained before, we first fix a horizon h < 1 year, on which the various
models are calibrated. For the gap between h days and one year (kh days), we use the
corresponding scaling rule. This finally gives the values for one-year value-at-risk and
expected shortfall.

Modelling h-day log-returns causes a first uncertainty. Scaling h-day log-returns to
one-year log-returns produces a second uncertainty. The optimal horizon h for a chosen
model is the one leading to the minimal total uncertainty, in our case measured by the
quality of the prediction for expected shortfall. In Section 7.1.1 the measures used for
backtesting expected shortfall estimates are described. In order to find eventually the
best model among the ones investigated, the backtesting measures are evaluated and
compared for all the models for several intermediate horizons h.

7.1 Backtesting.

7.1.1 Description of the backtesting measures.

For backtesting the forecasted expected shortfall ÊS
p

t , we introduce two measures.
The first measure V ES

1 evaluates excesses below the negative of the estimated value-at-risk

V̂aR
p

t . This is a standard method for backtesting expected shortfall estimates. In detail

we proceed as follows: every model provides for each point of time t an estimation ÊS
p

t

for the one-year ahead expected shortfall ESpt . Now the difference between the observed
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one-year (k-period) return Rk
t and the negative of the estimation ÊS

p

t is taken, and then

the conditional average of these differences is calculated, conditioned on {Rk
t < −V̂aR

p

t },

V ES
1 =

∑t1
t=t0

(
Rk
t − (−ÊS

p

t )
)

1{Rkt<−V̂aR
p
t }∑t1

t=t0
1{Rkt<−V̂aR

p
t }

.

A good estimation for expected shortfall will lead to a low absolute value of V ES
1 .

This first measure sticks very closely to the theoretical definition of expected short-
fall. Its weakness is that it depends strongly on the VaR estimates (without adequately
reflecting the goodness/badness of these values), since only values which fall below the
VaR threshold are considered. This is possibly a fraction which is far away from 1% of
the values – which is the fraction one would actually like to average over. Hence, when
analysing the values of V ES

1 , these results should be combined with the ones given by the
frequency of exceedances V freq which will be described below.

In practice, one is primarily interested in the loss incurred in a one in 1/p-event, as
opposed to getting information about the behaviour below a certain estimated value.
Therefore we introduce a second measure V ES

2 , which evaluates values below the “one in
1/p-event”:

V ES
2 =

∑t1
t=t0

Dt 1{Dt<Dp}∑t1
t=t0

1{Dt<Dp}
,

where Dt := Rk
t − (−ÊS

p

t ) and Dp denotes the empirical p-quantile of {Dt}t0≤t≤t1 . Note

that, since ÊS
p

t is an estimate on a level p, we expect Dt to be negative in less than
one out of 1/p cases. A good estimation for expected shortfall will again lead to a low
absolute value of V ES

2 .
The next step is to combine the two measures V ES

1 and V ES
2 :

V ES =
|V ES

1 |+ |V ES
2 |

2
.

This measure – which tells how well the forecasted one-year expected shortfall fits real
data – will be used in this paper to backtest the quality of the models.

We introduce one more measure that provides information about the quality of the
estimators: the frequency of exceedances

V freq =
1

t1 − t0 + 1

t1∑

t=t0

1{Rkt<−V̂aR
p

t }.

This measure is used by the Basel Committee on Banking Supervision, which in order
to encourage institutions to report their true value-at-risk numbers, devised a system in
which penalties are set depending on the frequency of violations. A good estimation for
value-at-risk will lead to a value of V freq which is close to the level p.

7.1.2 Backtesting results.

We start this section by describing the set-up for backtesting expected shortfall. For
each data set, the models (random walk, AR(p) process, GARCH(1,1) process, heavy-
tailed distributions) are calibrated at different frequencies (one day, one week, one month,
three months, one year). For the GARCH(1,1) model, horizons from one month upwards
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are missing since stationarity conditions are violated for the estimated parameters. For
heavy-tailed distributions there are not enough quarterly and yearly data to estimate the
tail index with the Hill and indeed any other EVT based estimator.

In a second step, one-year value-at-risk and expected shortfall are estimated as de-
scribed in Sections 3.2–6.2. Finally, the backtesting measures presented in Section 7.1.1
are evaluated. Comparing the results across all models and all calibration horizons then
tells which model yields the most reliable estimation for one-year asset risk.

In a first study, we use foreign exchange rates, stock indices, and 10-year bonds from
five different markets. In a second part, we concentrate on single stocks. For all data
sets under investigation, the well-known stylized facts of financial log-returns can be
observed: leptokurtosis (which decreases with increasing time horizon), skewness (which
is persistent for all time horizons), and significant positive autocorrelations; see Kaufmann
and Patie [27] for details.

a) Foreign exchange rates, stock indices and 10-year bonds

We first use the following data sets, obtained from Datastream: foreign exchange rates
(DEM/CHF, GBP/CHF, USD/CHF, JPY/CHF), stock indices (SMI, DAX, FTSE, S&P,
NIKKEI), 10-year government bonds (CH, DE, UK, US, JP). For each of these data sets,
when trying to backtest the models, one encounters the problem that the number of
yearly data is rather small to estimate model parameters and proceeding the backtesting
in a significant way. This problem can be handled by aggregating the backtesting results
for several data sets. For each of the four foreign exchange rates, 16 years of data are
available (1985–2000, n=4173 daily log-returns). For both stock indices and bonds we
have five samples each containing 11 years of data (1990–2000, n=2869 daily log-returns).
The backtesting is carried out on each sample independently, and then the results are
aggregated within each of the three types of data. In detail, for each level p, each model,
each intermediate horizon h and each data sample, we proceed as follows:

– Estimate the yearly forecasted expected shortfall ÊS
p

t on a window containing half
of the data. l = bn/2hc non-overlapping h-day log-returns are used for this esti-
mation.

– Compare these estimates with the observed one-year returns Rk
t .

– Move the window by one, then repeat steps 1 and 2 till the end of the data set.
– Finally, for each of the three pooled samples (foreign exchange rates, stock indices

and bonds), the risk measures can be evaluated as described in 7.1.1.

The results for the three types of data for p = 1% and p = 5% are presented in Tables 1,
2 and 3. Since risk managers are mainly interested in rare event cases, our main focus
will be on the outcomes for the 1% expected shortfall. Results for the 5% level will be
used to confirm the reliability and the flexibility of each approach.

For foreign exchange rates (Table 1) all four models seem to perform rather well for
appropriate choices of the calibration horizon h. The best results are obtained when the
models are calibrated with monthly (h = 22) or quarterly (h = 65) data. This behaviour
was expected, since most scaling rules (for random walks, AR(p) processes, heavy-tailed
distributions) require some independence structure between returns and, in some cases,
the normality assumption for innovations. Low frequency (h ≥ 22) returns are closer
to fulfil this hypothesis than daily or weekly returns. Concerning the comparison across
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models, it can be observed that the random walk and the heavy-tailed distributions per-
form better than the other models. However, one should point out that the heavy-tailed
approach is not reliable at frequencies other than the monthly one. While the random
walk model and the heavy-tailed distributions slightly overestimate the risk measures,
the AR(p) model underestimates them, which can be explained by the frequent underes-
timation of variance for this approach. We will come back to this issue in Section 7.3.

For stock indices (Table 2) the same lines of analysis can be followed. Here, the
random walk model with h ≤ 65 days and the GARCH(1,1) model calibrated on daily
data outperform the other models. Finally, for 10-year government bonds (Table 3),
the random walk models calibrated on horizons h ≤ 65 days provide the most reliable
forecasts for one-year 1% expected shortfall, and they are at the same time reliable on
the 5% level.

Summarising the results for the three types of data, we can say that random walk pro-
cesses with a constant trend and normal innovations, calibrated on horizons h ≤ 65 days
are a good choice. They clearly outperform the other models under investigation. How-
ever, these backtesting results do not provide direct information about the variability of
the risk measures. For the random walk models with normal innovations, we will inves-
tigate this issue in Section 7.4 by calculating confidence intervals for expected shortfall
and value-at-risk.

b) German stock data

After backtesting foreign exchange rates, stock indices and government bonds, we
now do the same for single stocks. For this study we use a data set of 22 single stocks
which are part of the German stock index DAX.

Like in a), there do not exist enough stationary returns per stock in order to perform
the backtesting in a straightforward way. In the case of German stock data, we evaluate
the backtesting measures on the pooled sample of all 22 stocks. Each sample contains
23.5 years of data (n=6146 daily values). We proceed as described in a).

The results for p = 1% and p = 5% are presented in Table 4. It can be seen that
for this data set the random walk model achieves its best performance when working
directly with yearly data. For a GARCH(1,1) model a one week horizon seems to be a
good choice. The results for AR(p) models do not seem to depend much on the calibration
horizon. For the heavy-tailed distributions the optimal calibration horizon for p = 1% is
one month. However, this choice gives very unsatisfactory results for p = 5%. Moreover
– as will be discussed in Section 7.2 – for appropriate models the backtesting results on a
5% level should indicate a slight overestimation of the risk. The results in Table 4 show
the opposite behaviour for heavy-tailed distributions applied to monthly data.

Comparing the four models with each other, and considering the shortcomings of
heavy-tailed distributions, GARCH(1,1) models applied to weekly data provide the best
forecasts, measured by their suitability to predict one-year 1% expected shortfall (and
considering the corresponding 5% prediction). Also a random walk calibrated on yearly
data seems to give reasonable forecasts for these German stock data.

7.2 Further investigations for a simulated random walk.

The results of the backtesting showed that random walk models with a constant trend
and normal innovations are a good choice for estimating 1% expected shortfall for a one-
year period. In order to get a better understanding of these backtesting results, we repeat
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the same analysis for a time series where the distribution of the log-returns is known. We
analyse the properties of a simulated random walk with normal innovations. We proceed
as follows. We simulate one-period log-returns

r̃
(j)
t

i.i.d.∼ N (µ̃(j), σ̃(j)), j = 1, . . . , 5, t = h, 2h, . . . , nh, (7.1)

where µ̃(j) = 1
n

∑n
i=1 r

(j)
ih and σ̃(j) =

√
1

n−1

∑n
i=1(r

(j)
ih − µ̃(j))2 are mean and standard devi-

ation estimated for the one-period (h-day) log-returns r
(j)
t of the stock indices SMI (j=1),

DAX (j=2), FTSE (j=3), S&P (j=4) and NIKKEI (j=5).
We proceed as described in Section 3 to get estimates for the risk measures. The

backtesting in done as explained in Section 7.1. Since the results vary from simulation
to simulation, we repeat the whole procedure several times. The results are displayed in
Table 5, together with a recapitulation of the corresponding results for stock index data
(see Table 2). Note that now for these simulated processes ((7.1)) it is known that the
correct model (random walk with normal innovations) is fitted.

We observe that calibration horizons h ≤ 65 days outperform the results for h = 261
days by far. A second observation, which we are going to discuss in more detail, is the
fact that expected shortfall and value-at-risk tend to be overestimated. In particular,
this clearly holds for a level of 5%. This is caused by the statistical properties of the
backtesting measures. To make this clear, we examine the frequency of exceedances

V freq. When evaluating this measure, the portion of returns below −V̂aR
p

is calculated.
Let Q be an estimator of a quantile of log-returns. Since the cumulative distribution
function Φ(q) of a normal random variable Q is convex for q < 0, unbiasedness of Q
(i.e. E[Q] = q) leads to E[Φ(Q)] ≥ Φ(q). This means that the probability of a log-

return being below −V̂aR
p

tends to being overestimated. As an example, we consider
the situation where the mean of a standard normal distribution is overestimated by 0.5
in the first case and underestimated by 0.5 in the second case. On average these two
scenarios lead to an overestimation of the number of values which lie below the real value-
at-risk of 1

2

(
Φ
(
Φ−1(5%) + 0.5

)
+ Φ

(
Φ−1(5%)− 0.5

))
− 5% ≈ 2.11% for the 5% VaR, and

1
2

(
Φ
(
Φ−1(1%)+0.5

)
+Φ
(
Φ−1(1%)−0.5

))
−1% ≈ 0.81% for the 1% VaR. The uncertainty

in the estimated standard deviation has a similar effect. This even enlarges the above

differences. Since ÊS
p

can be written as 1
p

∫ p
0

V̂aR
q
dq, this fact also holds for expected

shortfall.
The backtesting results in Section 7.1.2 have shown that random walks with normal

innovations and a constant drift give quite good results for the data sets under inves-
tigation. To be critical, we can ask ourselves whether replacing normal innovations by
heavier tailed ones, e.g. Student-tν with ν = 4, would lead to even better results. The
backtesting results lead to the answer “presumably not”. With normal innovations, for
most of the 20 cases (four data sets, h = 1, 5, 22, 65, 261), VaR5% is clearly underesti-

mated (V freq,5% > 5%), while VaR1% is overestimated for three of the four types of data,
see Tables 1–4. This over- and underestimation is approximately of the same order as
for the simulated time series in Table 5. Replacing normal log-returns by heavier tailed
ones would even worsen the slight overestimation for the 1% level. This is due to the
fact that replacing a normal distribution by a Student-t distribution with the same mean
and the same 5% quantile increases the size of the estimated 1% quantile, which is the
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opposite effect to the one we would like to have. This suggests that working with normal
innovations in the random walk model (as done in our study) should be preferred to
assuming Student-t distributed innovations.

7.3 Variance analysis.

7.3.1 Description.

To learn more about the statistical properties of the models in use, we analyse the
variance of forecasted yearly log-returns. This analysis consists of the following steps:

– For each data set, each model and each intermediate time horizon the model pa-
rameters for h-day (one-period) log-returns are estimated.

– Based on these estimations, the one-year (k-period) variance (and the standard
deviation as its square root) is calculated.

– To get some information about the precision of these standard deviations, 1000 pe-
riods of 16 years (for foreign exchange rates) and 1000 periods of 11 years (for stock
indices and 10-year government bonds) are simulated. These simulations are based
on the parameters estimated in the first step. For each of the 1000 simulations the
yearly standard deviation is estimated. Finally, based on these 1000 values, the
95% confidence intervals for standard deviation are calculated.

For the exact proceeding within these three steps for random walk, AR(p) and GARCH(1,1)
processes, we refer to Kaufmann and Patie [27]. Note that only the confidence intervals
are determined via simulation, whereas the point estimate for standard deviation is the
theoretical one calculated from the parameters estimated in step 1.

7.3.2 Results.

The yearly standard deviations σ̃k, and the 95% confidence intervals are estimated
for random walk, AR(p) and GARCH(1,1) models, calibrated on foreign exchange rates,
stock indices and 10-year government bonds for different horizons. In Figures 1–3, these
values (point estimates and confidence intervals) for calibration horizons varying from
one day to one year are plotted.

As before, for GARCH(1,1) models only horizons up to one week are used, since for
longer horizons stationarity conditions are violated for some of the estimated parameters.
We observe that also for calibration horizons of one day and one week, estimated variances
for GARCH(1,1) models vary significantly. Some of the 95% confidence intervals are huge.

For AR(p) models, variances tend to be underestimated. The confidence intervals are
very asymmetric around the point estimates the simulations are based on. For several
data sets the confidence interval for the standard deviation even does not contain the
value σ̃k, which is the true value of the standard deviation belonging to the parameters
underlying the simulations. This means that the proceeding in AR(p) models provides
unsatisfactory results for estimating the standard deviation of such processes.

Only for random walk models we observe a satisfying behaviour. For most data sets
these variance estimates are fairly stable. As one would expect, the confidence intervals
are increasing with increasing calibration horizon (i.e. using fewer data).

This variance investigation confirms the conclusion of Section 7.1.2, where a random
walk model with a calibration horizon of at most three months was proposed. Considering
the stylised fact that daily (log) returns in a portfolio show dependencies which are not
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present in longer horizon returns, using an intermediate horizon between one week and
one month seems to be most appropriate for modelling one-year returns.

7.4 Confidence intervals for risk estimates in random walk models.

In random walk models with normal innovations, confidence intervals for one-year
expected shortfall can be calculated based on h-day observations. The explicit formula
for these confidence intervals (and also for the ones for value-at-risk) can be found in
Kaufmann and Patie [27].

7.4.1 Confidence intervals for the Swiss Market Index.

Assuming a random walk model, we calculate 95% confidence intervals for VaR1% and
ES1% of the Swiss market index SMI. The estimations are performed using 11 years of data
(January 1, 1990 to December 31, 2000). This gives one-year forecasts for December 31,
2001. The percentage losses, using daily, weekly, monthly, quarterly and yearly data, are
shown graphically in Figure 4. The full and the dotted lines represent 95% confidence
intervals for 1% expected shortfall and 1% value-at-risk, respectively. The dots visualize
the corresponding point estimates. To elucidate what this percentage loss means for
the absolute value of SMI, we transform these one-year point estimates and confidence
intervals into predictions for December 31, 2001, see Figure 5 (value of the SMI at the
end of 2000: 8135.2; at the end of 2001: 6417.8). For example for h = 22 days (1 month),
the point estimate for the 1% value-at-risk gives a value of 0.288. This means that with
a probability of 1%, the SMI will lose 28.8% of its value or more during the year 2001.
Transformed to the value at the end of the year 2001, this gives a point estimate of
5795. Hence with probability 1%, the SMI will be below 5795 at the end of this one-year
period. The 95% confidence interval around the percentual loss goes from 0.191 to 0.388,
which corresponds to a 95% probability that the true 1% value-at-risk lies between these
bounds (which corresponds to the interval [5017, 6584] for the SMI at the end of 2001).
Values for expected shortfall can be read off in a similar way.

The most evident observation in Figures 4 and 5 is the fact that the confidence
intervals get larger as the intermediate time horizon h increases (i.e. as the number of
values used for the prediction decreases). Furthermore, the point estimate for h = 1 year
seems to differ from the ones for shorter intermediate horizons. This suggests that shorter
horizons should be preferred. To figure out whether this clear result is just a coincidence,
or whether there is a clear trend as h increases, we evaluate the point estimates for all
intermediate horizons h between one day and one year, and plot them in Figure 6. This
plot does not confirm such a trend. But it does confirm the increase in variation as h
increases. This suggests once more that a relatively small h (h ≤ 3 months) should be
chosen for estimating one-year asset risks.

7.4.2 Confidence intervals for a simulated random walk.

Like for the SMI data, 95% confidence intervals of VaR1% and ES1% can also be cal-
culated for a simulated random walk. First, from SMI log-returns (11 years of data),
mean and variance are estimated. Based on these values, a random walk (with normal
innovations) of length 11 years is simulated. Finally, one-year value-at-risk and expected
shortfall and the corresponding confidence intervals are estimated based on daily, weekly,
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monthly, quarterly and yearly data. These risk estimates are shown graphically in Fig-
ure 7. The full and the dotted lines represent 95% confidence intervals for 1% expected
shortfall and 1% value-at-risk, respectively. The dots visualize the corresponding point
estimates. The slight overestimation compared to the true values (ES1% = 27.35%, full
horizontal line; VaR1% = 23.09%, dotted horizontal line) stems from the fact that the
average of the simulated daily log-returns is slightly smaller than the mean estimated
from SMI data. At first glance, the estimates for simulated data seem to vary less than
for the SMI (Figure 4). To analyse this further, we evaluate the point estimates for all
calibration horizons h from one day to one year. Figure 8 shows that for simulated ran-
dom walk data these estimates do in fact not behave significantly more stable than for
SMI data. (For comparison: 10% in Figure 8 corresponds to 813.52 units in Figure 6.)
Like before, the variation of the point estimates around the true value increases as the
intermediate horizon h is increased. This confirms again that for a reliable prediction of
one-year risks, h should not be chosen too large.

8 Conclusion

This paper is concerned with the estimation of measures of market risk over a long
term horizons of one year, with emphasis on the expected shortfall. We present and
test dynamical models like random walk, GARCH(1,1) and AR(p) processes. We also
propose a static approach based on heavy-tailed distributions. An important motivation
for choosing these models is the existence of time aggregation rules. Since the main
difficulty on measuring long term risks is the lack of such low frequency (e.g. one year)
data, we calibrate the models on higher frequency data and then apply scaling rules to
get risk estimates at a one-year horizon. We compare the models by applying backtesting
methods. The outcome of these investigations can be summarised as follows:

– As opposed to short term horizons, for a one-year period a good estimate of the
trend of (log-)returns is critical when measuring risks.

– In general, the best frequencies for calibration are the intermediate ones, like one
month. The statistical restrictions, like the sample size for estimating the models
parameters and the confidence interval of the risk estimates, play an important role
in this choice. A reason why using relatively high frequency data (daily data for ex-
ample) is not perfect is the fact that scaling rules are based on certain assumptions
which are not fulfilled by such data.

– The random walk model performs better on average than other models. It pro-
vides satisfactory results across all classes of data and for both confidence levels
investigated (1%, 5%). However, like all the other models under investigation, the
risk estimates for single stocks are not as good as those for foreign exchange rates,
stock indices, and 10-year bonds.

Based on these results, we recommend to use a random walk model with a constant trend
calibrated on a time horizon of about one month, and to apply the square-root-of-time
rule for estimating the one-year 1% expected shortfall.
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Appendix A Tables

Model
Freq ES1% VaR1% ES5% VaR5%

days V ES V ES
1 V ES

2 V freq V ES V ES
1 V ES

2 V freq

Optimal 0% 0% 0% 1% 0% 0% 0% 5%

Random Walk 1 1.4% 1.1% 1.7% 0.4% 1.0% 0.8% -1.3% 8.6%
5 1.1% 0.8% 1.4% 0.5% 1.1% 1.0% -1.3% 8.7%
22 1.0% 0.7% 1.3% 0.5% 1.2% 1.2% -1.2% 8.1%
65 0.9% 0.5% 1.4% 0.5% 1.1% 1.1% -1.1% 7.1%
261 0.8% -0.4% -1.1% 1.6% 1.7% 0.1% -3.3% 9.4%

GARCH(1,1) 1 N/A N/A 3.9% 0.0% 1.9% 3.7% 0.0% 7.3%
5 2.2% 1.9% 2.6% 0.3% 1.5% 2.0% -1.1% 10.1%

AR(p) 1 2.3% -0.7% -3.9% 6.6% 3.9% -1.1% -6.8% 19.5%
5 2.4% -0.9% -4.0% 5.9% 3.9% -0.9% -6.9% 19.1%
22 2.3% -0.8% -3.8% 5.9% 3.8% -0.8% -6.8% 18.8%
65 2.1% -0.7% -3.4% 5.8% 3.6% -0.8% -6.4% 18.3%
261 5.2% -1.9% -8.6% 10.7% 6.9% -2.3% -11.4% 23.4%

Heavy-tailed 1 5.1% -1.2% -8.9% 15.2% 9.4% -3.1% -15.8% 41.4%
Distribution 5 3.7% 0.2% -7.1% 9.3% 7.8% -1.8% -13.8% 35.8%

22 0.8% 1.6% 0.1% 1.4% 4.8% 0.1% -9.4% 19.8%

Table 1 Backtesting results for the levels p = 1% and p = 5%, using foreign exchange
rate data. Measures for one-year value-at-risk and expected shortfall are evaluated.

Model
Freq ES1% VaR1% ES5% VaR5%

days V ES V ES
1 V ES

2 V freq V ES V ES
1 V ES

2 V freq

Optimal 0% 0% 0% 1% 0% 0% 0% 5%

Random Walk 1 0.8% 0.3% 1.3% 0.8% 3.5% 0.0% -7.0% 8.3%
5 1.2% 0.5% 1.9% 0.7% 3.2% 0.0% -6.4% 8.1%
22 0.7% 0.2% 1.1% 0.8% 3.7% -0.2% -7.1% 8.3%
65 1.3% -1.2% -1.3% 1.0% 4.7% -0.8% -8.5% 8.6%
261 10.5% -6.0% -15.0% 2.5% 11.0% -4.0% -18.0% 9.2%

GARCH(1,1) 1 0.6% 0.2% -1.1% 1.3% 5.4% -0.3% -10.5% 8.8%
5 3.7% 2.6% 4.9% 0.5% 3.1% 1.6% -4.6% 7.6%

AR(p) 1 6.3% -3.2% -9.3% 3.3% 8.5% -3.5% -13.5% 10.6%
5 6.4% -3.2% -9.6% 3.4% 8.5% -3.4% -13.7% 11.0%
22 7.1% -3.8% -10.4% 3.2% 8.8% -3.2% -14.4% 11.2%
65 8.8% -4.1% -13.4% 3.8% 9.9% -3.3% -16.6% 12.3%
261 13.7% -6.4% -21.0% 12.4% 14.7% -6.8% -22.6% 20.9%

Heavy-tailed 1 3.0% 4.1% 1.9% 2.0% 2.5% 1.5% 3.5% 3.6%
Distribution 5 2.4% 1.8% 2.9% 0.8% 4.5% 2.4% 6.7% 2.3%

22 1.7% -0.5% 2.9% 0.5% 8.4% 3.0% 13.8% 0.9%

Table 2 Backtesting results for the levels p = 1% and p = 5%, using stock index data.
Measures for one-year value-at-risk and expected shortfall are evaluated.
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Model
Freq ES1% VaR1% ES5% VaR5%

days V ES V ES
1 V ES

2 V freq V ES V ES
1 V ES

2 V freq

Optimal 0% 0% 0% 1% 0% 0% 0% 5%

Random Walk 1 1.0% 0.3% 1.8% 0.6% 1.9% 0.5% -3.3% 7.3%
5 1.8% 0.5% 3.2% 0.4% 1.6% 0.8% -2.4% 7.1%
22 2.4% -0.4% 4.4% 0.2% 1.2% 1.3% -1.1% 6.7%
65 3.6% 1.1% 6.1% 0.1% 1.0% 1.6% 0.5% 5.6%
261 4.1% -4.7% -3.4% 0.9% 5.2% -2.8% -7.7% 6.0%

GARCH(1,1) 1 6.1% -1.8% 10.4% 0.0% 4.8% 4.4% 5.2% 4.4%
5 10.7% 11.8% 9.5% 0.1% 2.3% 2.6% 2.0% 5.1%

AR(p) 1 5.9% -2.4% -9.3% 3.4% 7.8% -2.1% -13.5% 12.4%
5 5.8% -2.6% -9.0% 3.0% 7.6% -1.9% -13.2% 11.9%
22 5.7% -2.8% -8.5% 2.8% 7.4% -1.9% -12.8% 11.9%
65 6.9% -3.6% -10.2% 3.4% 8.2% -2.3% -14.2% 13.6%
261 13.1% -4.9% -21.2% 13.5% 15.0% -5.9% -24.1% 23.8%

Heavy-tailed 1 11.4% -2.2% -20.5% 35.0% 9.4% -3.1% -15.8% 41.4%
Distribution 5 8.4% -1.2% -15.6% 25.2% 7.8% -1.8% -13.8% 35.8%

22 7.6% -1.4% -13.7% 11.7% 4.8% 0.1% -9.4% 19.8%

Table 3 Backtesting results for the levels p = 1% and p = 5%, using 10-year government
bond data. Measures for one-year value-at-risk and expected shortfall are evaluated.

Model
Freq ES1% VaR1% ES5% VaR5%

days V ES V ES
1 V ES

2 V freq V ES V ES
1 V ES

2 V freq

Optimal 0% 0% 0% 1% 0% 0% 0% 5%

Random Walk 1 10.3% -5.2% -15.4% 3.3% 6.8% -4.2% -9.4% 8.3%
5 9.6% -4.7% -14.6% 3.3% 6.5% -4.0% -9.1% 8.3%
22 8.3% -4.1% -12.5% 2.9% 5.8% -3.7% -7.9% 7.7%
65 9.0% -4.5% -13.6% 3.0% 6.1% -4.0% -8.2% 7.5%
261 4.8% -2.6% -7.0% 2.1% 3.3% -2.5% -4.1% 6.0%

GARCH(1,1) 1 6.1% -2.6% -9.5% 2.3% 4.2% -2.2% -6.1% 7.5%
5 2.6% -1.4% -3.8% 1.4% 1.3% -0.2% -2.4% 6.5%

AR(p) 1 8.8% -3.8% -13.9% 4.4% 6.8% -3.3% -10.2% 11.2%
5 8.6% -3.8% -13.3% 4.0% 6.3% -3.0% -9.6% 10.8%
22 7.7% -3.6% -11.8% 3.4% 5.3% -2.5% -8.2% 9.9%
65 7.3% -3.3% -11.2% 3.5% 5.2% -2.4% -8.1% 10.0%
261 9.8% -4.3% -15.3% 3.2% 5.8% -2.8% -8.9% 8.9%

Heavy-tailed 1 6.1% 1.3% -10.8% 5.2% 2.8% 2.0% -3.5% 10.1%
Distribution 5 6.2% -0.3% -12.1% 4.7% 2.6% 0.5% -4.7% 8.9%

22 1.7% 2.6% 0.8% 1.1% 7.2% 5.7% 8.6% 3.0%

Table 4 Backtesting results for the levels p = 1% and p = 5% for stocks of the DAX.
Measures for one-year value-at-risk and expected shortfall are evaluated.
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Data
Freq ES1% VaR1% ES5% VaR5%

days V ES V ES
1 V ES

2 V freq V ES V ES
1 V ES

2 V freq

Optimal 0% 0% 0% 1% 0% 0% 0% 5%

Stock Indices 1 0.8% 0.3% 1.3% 0.8% 3.5% 0.0% -7.0% 8.3%
5 1.2% 0.5% 1.9% 0.7% 3.2% 0.0% -6.4% 8.1%
22 0.7% 0.2% 1.1% 0.8% 3.7% -0.2% -7.1% 8.3%
65 1.3% -1.2% -1.3% 1.0% 4.7% -0.8% -8.5% 8.6%
261 10.5% -6.0% -15.0% 2.5% 11.0% -4.0% -18.0% 9.2%

Simulation 1 1 1.3% 0.9% -1.7% 2.9% 5.6% -1.1% -10.0% 12.7%
5 1.4% 0.4% -2.4% 3.0% 6.0% -1.3% -10.7% 13.1%
22 2.1% -0.3% -3.9% 3.2% 6.9% -1.8% -11.9% 14.0%
65 2.4% -0.2% -4.5% 3.9% 7.1% -2.0% -12.3% 15.0%
261 9.6% -4.4% -14.8% 6.3% 12.7% -3.8% -21.6% 18.2%

Simulation 2 1 0.9% 1.2% 0.6% 1.2% 4.4% 0.4% -8.5% 9.4%
5 1.8% 1.9% 1.7% 1.1% 4.1% 0.6% -7.6% 9.1%
22 0.4% 0.7% 0.1% 1.2% 4.6% 0.1% -9.0% 9.2%
65 2.5% -1.1% -3.8% 1.9% 6.6% -0.9% -12.3% 11.1%
261 12.0% -5.2% -18.8% 7.1% 14.9% -5.3% -24.6% 16.5%

Simulation 3 1 0.7% 1.2% 0.2% 1.5% 3.6% -0.1% -7.0% 10.5%
5 0.8% 0.8% -0.8% 1.8% 4.1% -0.4% -7.8% 10.8%
22 0.6% 1.0% 0.3% 1.3% 3.5% 0.2% -6.9% 10.8%
65 2.7% 2.3% 3.0% 0.7% 2.5% 0.6% -4.4% 10.2%
261 7.1% -4.0% -10.2% 4.3% 8.4% -2.7% -14.0% 13.8%

Table 5 Backtesting results for a random walk model for the levels p = 1% and p = 5%,
using real stock indices and simulated random walk data, respectively. Measures for one-
year value-at-risk and expected shortfall are evaluated.
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Appendix B Graphs

•

DEM/CHF: standard deviations
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GBP/CHF: standard deviations
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USD/CHF: standard deviations
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JPY/CHF: standard deviations

 

 

1 2 3 4 5

0.
1

0.
2

0.
3

0.
4

0.
5

•

•

•

•

•

•
•

•

•

•

•

•

2.90

h = 1 day h = 1 week h = 1 month h = 3 months h = 1 year

Figure 1 Foreign exchange rates: estimates for standard deviations (including con-
fidence intervals constructed via simulation), using random walk models (full lines),
AR(p) models (dotted lines) and GARCH(1,1) models (dashed lines).
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•

SMI: standard deviations
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DAX: standard deviations
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FTSE: standard deviations
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SnP: standard deviations
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NIKKEI: standard deviations
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Figure 2 Stock indices: estimates for standard deviations (including confidence inter-
vals constructed via simulation), using random walk models (full lines), AR(p) models
(dotted lines) and GARCH(1,1) models (dashed lines).
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•

bonds CH: standard deviations
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•

bonds DE: standard deviations
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bonds UK: standard deviations
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bonds US: standard deviations
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bonds JP: standard deviations
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Figure 3 10-year government bonds: estimates for standard deviations (including con-
fidence intervals constructed via simulation), using random walk models (full lines),
AR(p) models (dotted lines) and GARCH(1,1) models (dashed lines).
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Figure 4 Point estimates and 95% confidence intervals for one-year 1% expected short-
fall and 1% value-at-risk for the SMI (percentage loss), based on different calibration
horizons h. Underlying model: random walk with normal innovations.
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Figure 5 Point estimates and 95% confidence intervals for one-year 1% expected short-
fall and 1% value-at-risk for the SMI, transformed in such a way that the values at the
end of the year 2001 can be read off. The estimates are based on different calibration
horizons h. Underlying model: random walk with normal innovations.
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Figure 6 Point estimates for one-year 1% expected shortfall for the SMI, transformed
in such a way that the values at the end of the year 2001 can be read off. The estimates
are based on calibration horizons h from one day to one year. Underlying model: random
walk with normal innovations.
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Figure 7 Point estimates and 95% confidence intervals for one-year 1% expected short-
fall and 1% value-at-risk (percentage loss) for a simulated random walk, based on five
different calibration horizons h. Underlying model: random walk with normal innova-
tions. The true values (horizontal lines) are 27.35% for expected shortfall and 23.09%
for value-at-risk.



Strategic Long-Term Financial Risks: Single Risk Factors 29

•••
•••

•

••

•

•

•

•
•

•

•

•

•

••

•

••

•
•

•

•

•

•

•

•

•

••

•

••

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•
•

•

•

••
•

•
••

•

•

•

•

•

••

•

•

•

••

••

•

•

•

•

•

•••

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•
•

•

•

••
•••

•
••
•
•

•

•

•

•
•

•

•

•

•

•

•

•

•
••

•

••

•

•

•

••
•

•
••
•

•

•
•
•

•••

•

•

•

•••

•

•

•••

•

•

•

•
•

•

•

•

•

•

•
•
•

•

•
••

•

•

•

•

•

•

•

•

••

•
•

•
•

•

•

•
•

•

•
•

•
•

•

•

•

•
•
•
•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•
•

•

••

•

•

•
•

•

••

••

•

•
•

•

•

••
•
•

••

•
•

•
•
•

•

•
•

•

•
•

•

•
•

1:261

E
S

26
1

0 50 100 150 200 250

0.
25

0.
30

0.
35

Figure 8 Point estimates for one-year 1% expected shortfall (percentage loss) for a
simulated random walk, based on calibration horizons from one day to one year. Un-
derlying model: random walk with normal innovations. The true value (horizontal line)
is 27.35%.


