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Abstract We study risk sharing problems with quantile-based risk measures
and heterogeneous beliefs, motivated by the use of internal models in finance
and insurance. Explicit forms of Pareto-optimal allocations and competitive
equilibria are obtained by solving various optimization problems. For Expected
Shortfall (ES) agents, Pareto-optimal allocations are shown to be equivalent
to equilibrium allocations, and the equilibrium pricing measure is unique. For
Value-at-Risk (VaR) agents or mixed VaR and ES agents, a competitive equi-
librium does not exist. Our results generalize existing ones on risk sharing
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problems with risk measures and belief homogeneity, and draw an interesting
connection to early work on optimization properties of ES and VaR.
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1 Introduction

The mid to late nineties of the last century were exciting times for Quanti-
tative Risk Management (QRM): Value-at-Risk (VaR) first appeared on Wall
Street around 1994, Expected Shortfall (ES)1 was early on considered as a vi-
able (convex) alternative, and mathematicians started looking into optimiza-
tion problems under VaR and ES objectives or constraints. As one of the early
contributors to these developments, Georg Pflug stressed the importance of
applications of optimization techniques to QRM problems in finance and in-
surance; see for instance Pflug [14]. Since then, G. Pflug contributed widely
to the broader realm of QRM. Relevant examples are to be found in represen-
tation theory ([15]), portfolio selection ([17]), stochastic optimization ([16]),
and model ambiguity ([20]); see the recent paper [18] for a review, and [19] for
a very pedagogic introduction to the field. As a consequence of some of our
results, we obtain generalizations of some VaR and ES optimization properties
in [14].

The main focus of this paper is risk sharing problems with quantile-based
risk measures and heterogeneous beliefs, where various optimization problems
naturally appear. Quantile-based risk measures, including VaR and ES, are
the standard risk metrics used in current banking and insurance regulation,
such as Basel II, III, Solvency II, and the Swiss Solvency Test. Risk sharing
problems via VaR or ES are studied in the context of capital optimization; see
Embrechts et al. [9] and the references therein2.

In the current regulatory frameworks (e.g. [4]), internal models are exten-
sively used, naturally leading to model heterogeneity, that is, firms use different
models for the same future events. See [8] for a recent discussion on the use of
internal models in banking and insurance. Heterogeneous beliefs are typically
represented by a collection of probability measures to reflect the divergence
of agents’ viewpoints3 on the distributions of risks. In this model landscape,
the various agents may not be fully informed on the internal models used by

1 ES is also called CVaR, AVaR or TVaR in various contexts. In particular, CVaR is
common in the optimization literature, e.g. [14] and [22, 23]. In this paper, we stick to the
term ES following the risk management literature, e.g. [13] and [9].

2 Amongst others, [5], [1], [12], [7], [24] and [2] studied risk sharing problems with con-
vex risk measures and expected utilities, different from the setting of quantile-based risk
measures in this paper.

3 Following the tradition in the literature of risk sharing, we refer to a participant in the
risk sharing problem, such as an investor or a firm, as an agent.
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competitors and hence the search for a competitive equilibrium becomes rele-
vant (see Section 2 for definitions). For a discussion on heterogeneous beliefs
in finance, see e.g. [26] and the references therein. Technically, quantile-based
risk sharing problems with heterogeneous beliefs are essentially different from
these with homogeneous beliefs or these based on expected utilities. For in-
stance, the risk sharing problem is straightforward for ES agents if all agents
use the same probability measure as in [9], but highly non-trivial in the setting
of heterogeneous beliefs. Moreover, an expected utility is linear with respect
to the underlying probability measure, whereas quantile-based risk measures
are not.

In this paper, we concentrate mainly on the mathematical results and pro-
vide only brief discussions on their economic relevance. Our main contributions
are summarized as follows. Explicit formulas of Pareto-optimal allocations and
competitive equilibria are obtained for ES agents, and the Fundamental The-
orems of Welfare Economics (see e.g. [25]) are established. For the case of
VaR agents and that of mixed VaR, ES and RVaR (see Section 6 for a defi-
nition) agents, Pareto-optimal allocations share a similar form as in the case
of ES agents, but competitive equilibria do not exist. In all cases, we find a
Pareto-optimal allocation (X∗1 , . . . , X

∗
n) of the general (but not unique) form

X∗i = (X − x∗)IA∗
i

+
x∗

n
, i = 1, . . . , n, (1)

where X is the total risk to share, (A∗1, . . . , A
∗
n) is a partition of the sample

space, and x∗ is a constant. Nevertheless, the determination of (x∗, A∗1, . . . , A
∗
n)

for ES agents is computationally very different from that for VaR agents. As
an interesting consequence of our main results, we obtain a multiple-measure
version of the optimization formula of ES of Rockafellar and Uryasev [22, 23]
and Pflug [14]. Thanks to the convexity of ES, results in [5] on convex risk
measures become helpful in deriving the Pareto-optimal allocations for ES
agents; in the case of VaR, which is not convex, optimization problems become
more involved. Furthermore, the dependence structure of the Pareto-optimal
allocation in (1) can be described as mutual exclusivity (see [21]); this is in
sharp contrast to comonotonicity in the classic setting of risk sharing with
expected utilities or convex risk measures (see [24]).

2 Preliminaries

2.1 Risk sharing

Let (Ω,F) be a measurable space and P be the set of all probability mea-
sures on (Ω,F). Let X be the set of bounded random variables on (Ω,F).
Given a random variable X ∈ X , we define the set of allocations of X as

An(X) =

{
(X1, . . . , Xn) ∈ Xn :

n∑
i=1

Xi = X

}
. (2)
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There are n agents in the risk sharing problem. For i = 1, . . . , n, agent i is
equipped with a risk measure ρi : X → R, which is the agent’s objective
to minimize. The risk measures ρ1, . . . , ρn used in this paper shall later be
specified as VaR and ES under different probability measures.

We consider two classic notions of risk sharing: Pareto optimality and com-
petitive equilibria. First, a Pareto-optimal allocation is one that cannot be
strictly improved.

Definition 1 (Pareto-optimal allocations) Fix the risk measures ρ1, . . . , ρn
and the total risk X ∈ X . An allocation (X1, . . . , Xn) ∈ An(X) is Pareto-
optimal if for any allocation (Y1, . . . , Yn) ∈ An(X), ρi(Yi) ≤ ρi(Xi) for all
i = 1, . . . , n implies ρi(Yi) = ρi(Xi) for all i = 1, . . . , n.

Next we formulate competitive equilibria for a one-period exchange market
in the classic sense of Arrow-Debreu as in [11] and [9]. To reach a competitive
equilibrium, agents in the market minimize their own risk measures by trading
with each other. Assume that agent i has an initial risk (random loss) ξi ∈ X
for i = 1, . . . , n. Let X =

∑n
i=1 ξi be the total risk. A probability measure

Q ∈ P represents the pricing rule (risk-neutral probability measure) for the
microeconomic market among the agents, that is, by taking a risk Y in this
market4, one receives a monetary payment of EQ[Y ].

For each i = 1, . . . , n, agent i may trade the initial risk ξi for a new position
Xi ∈ X , and this under the budget constraint EQ[Xi] ≥ EQ[ξi]. In general,
the budget constraint will be binding (equality is attained) as the admissible
set X is rich enough. In this setting, each agent’s target is

to minimize ρi(Xi) over Xi ∈ X
subject to EQ[Xi] ≥ EQ[ξi],

i = 1, . . . , n. (3)

To reach an equilibrium, the market clearing equation

n∑
i=1

X∗i = X =

n∑
i=1

ξi

needs to be satisfied, where X∗i solves (3), i = 1, . . . , n.

Definition 2 (Competitive equilibria) Fix the risk measures ρ1, . . . , ρn,
the initial risks ξ1, . . . , ξn ∈ X and the total risk X =

∑n
i=1 ξi. A pair

(Q, (X∗1 , . . . , X
∗
n)) ∈ P × An(X) is a competitive equilibrium if

X∗i ∈ arg min
Xi∈X

{
ρi(Xi) : EQ[Xi] ≥ EQ[ξi]

}
, i = 1, . . . , n. (4)

The probability measureQ in a competitive equilibrium is called an equilibrium
pricing measure, and the allocation (X∗1 , . . . , X

∗
n) in a competitive equilibrium

is called an equilibrium allocation.

4 In this paper, all random future positions are already discounted, and that is why
expectations correspond to prices.
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It is well known that, through the classic Fundamental Theorems of Welfare
Economics (e.g. [25]), Pareto-optimal allocations and equilibrium allocations
are closely related. This relationship will become clear in our setting through
the main results of the paper.

2.2 VaR, ES, and agents with heterogeneous beliefs

The key feature of this paper is belief heterogeneity among agents. The
heterogeneity of probability measures means that the agents hold possibly
different beliefs (models) about the future of the market. Following the setup
of homogeneous beliefs in [9], we mainly consider two popular risk measures,
the Value-at-Risk (VaR) and the Expected Shortfall (ES), both widely used
in modern banking and insurance regulation. For a random loss X ∈ X and a
given level α ∈ [0, 1), its VaR under a probability measure Q ∈ P is defined as

VaRQ
α (X) = inf{x ∈ R : Q(X > x) ≤ α}. (5)

Note that VaRQ
α (X) is the left end-point of the interval of (1−α)-quantiles of

X under Q. For X ∈ X , the Expected Shortfall (ES) at level α ∈ (0, 1) under
the probability measure Q ∈ P is defined as

ESQα (X) =
1

α

∫ α

0

VaRQ
u (X)du. (6)

A well-known optimization property linking VaR and ES is established in [22]
and [14], namely,

ESQα (X) = min

{
1

α
EQ[(X − x)+] + x : x ∈ R

}
, (7)

and

VaRQ
α (X) ∈ arg min

{
1

α
EQ[(X − x)+] + x : x ∈ R

}
. (8)

In this paper, we will generalize the above result in a multi-measure setting.
For i = 1, . . . , n, let agent i be equipped with a probability measure Qi ∈ P

representing her belief about the future randomness. This agent’s objective is
to minimize a VaR or an ES, and she shall be referred to as a VaR agent or an
ES agent, respectively. We will also consider RVaR agents as in [9]; see Section
6.

To study risk sharing problems for risk measures, define the inf-convolution
of risk measures (see [24]) as

n

�
i=1

ρi(X) = inf

{
n∑
i=1

ρi(Xi) : (X1, · · · , Xn) ∈ An(X)

}
, X ∈ X . (9)

It is well-known that for monetary risk measures ([3]) including VaR and
ES, Pareto optimality is equivalent to optimality with respect to the sum
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(see Proposition 1 of [9]). More precisely, (X1, . . . , Xn) is a Pareto-optimal
allocation of X if and only if

n∑
i=1

ρ(Xi) =
n
�
i=1

ρi(X). (10)

Therefore, the following two optimization problems are of crucial importance
in our study of risk sharing problems, namely,

n
�
i=1

VaRQi
αi

(X) = inf

{
n∑
i=1

VaRQi
αi

(Xi) : (X1, · · · , Xn) ∈ An(X)

}
, (11)

and

�ni=1ESQi
αi

(X) = inf

{
n∑
i=1

ESQi
αi

(Xi) : (X1, · · · , Xn) ∈ An(X)

}
, (12)

where αi ∈ (0, 1), i = 1, . . . , n.

Notation. Throughout the paper, we use IA to represent the indicator
function of the event A ∈ F , and let πn(A) be the set of n-partitions of
(A,F|A). For real numbers x1, . . . , xn, write

∧n
i=1 xi = min{x1, . . . , xn} and∨n

i=1 xi = max{x1, . . . , xn}.

3 Pareto-optimal allocations for ES agents

In this section, we investigate Pareto-optimal allocations for ES agents.
Throughout this section, α1, . . . , αn ∈ (0, 1), Q1, . . . , Qn ∈ P, and the risk
measure of agent i is ESQi

αi
, i = 1, . . . , n. We first give a necessary and sufficient

condition for the existence of a Pareto-optimal allocation. In the proposition
below, sup(∅) is set to −∞ by convention.

Proposition 1 For X ∈ X , the following hold.

(i) �ni=1 ESQi
αi

(X) = sup{EQ[X] : Q ∈ Q}, where

Q =

{
Q ∈ P :

dQ

dQi
≤ 1

αi
, i = 1, . . . , n

}
. (13)

(ii) A Pareto-optimal allocation of X exists if and only if

n∑
i=1

1

αi
Qi(Ai) ≥ 1 for all (A1, . . . , An) ∈ πn(Ω). (14)
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Proof Note that each ESQi
αi

is a convex risk measure. The part (i) follows
immediately from [5]. Moreover, the “if” part of (ii) follows from Theorem
11.3 of [24]. It suffices to show the “only if” part of (ii). Note that a Pareto-
optimal allocation of X exists only if Q is non-empty. We assert that this is
in turn equivalent to (14). Indeed, for any A ∈ F , define

Q′(A) = min

{
n∑
i=1

Qi(A ∩Ai)
αi

: (A1, . . . , An) ∈ πn(Ω)

}
.

It can be verified that Q′ satisfies monotonicity and σ-additivity with Q′(∅) =
0, that is, Q′ is a measure on (Ω,F). On the other hand, for a probability
measure Q, Q ≤ Q′ if and only if Q ∈ Q. To see this, first note that if Q ≤ Q′,
then for A ∈ F , letting Ai = A yields Q(A) ≤ Q′(A) ≤ Qi(A)/αi, i = 1, . . . , n.
This implies dQ/dQi ≤ 1/αi and thus, Q ∈ Q. On the other hand, Q ∈ Q
implies

Q(A) ≤ Qi(A)

αi
for any A ∈ F , i = 1, . . . , n,

and hence, for any (A1, . . . , An) ∈ πn(Ω),

Q(A) =

n∑
i=1

Q(A ∩Ai) ≤
n∑
i=1

Qi(A ∩Ai)
αi

for any A ∈ F ,

so that Q ≤ Q′. That is, Q ≤ Q′ if and only if Q ∈ Q. Hence, Q is non-empty
if and only if Q′(Ω) ≥ 1, that is, (14) holds. ut

Remark 1 From Proposition 1 (ii), the existence of a Pareto-optimal allocation
only depends on (α1, . . . , αn) and (Q1, . . . , Qn), but not on the total risk X.

Next we explicitly describe Pareto-optimal allocations for the ES agents.
First we translate the inf-convolution of ES into another optimization problem.
For given Q1, . . . , Qn ∈ P, we let Q be a measure dominating Q1, . . . , Qn, and

Bj =

{
1

αj

dQj
dQ

=

n∧
i=1

1

αi

dQi
dQ

}
\

(
j−1⋃
k=1

Bk

)
, j = 1, . . . , n. (15)

We shall fix B = (B1, . . . , Bn) as in (15) throughout the rest of Sections 3-
4. Apparently, the choice of Q is irrelevant in the definition of B1, . . . , Bn,
and one can safely choose Q =

∑n
i=1Qi/n. Roughly speaking, Bj is the set

of points on which dQj/αj is the smallest among dQi/αi, i = 1, . . . , n, and
we only count once if there is a tie for the minimum. From the definition of
B1, . . . , Bn, it is straightforward to verify

min

{
n∑
i=1

1

αi
Qi(Ai) : (A1, . . . , An) ∈ πn(Ω)

}
=

n∑
i=1

1

αi
Qi(Bi),

and therefore by Proposition 1 (ii), a Pareto-optimal allocation exists if and
only if

∑n
i=1Qi(Bi)/αi ≥ 1.
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Proposition 2 Assume Q in (13) is non-empty. Then for X ∈ X ,

n

�
i=1

ESQi
αi

(X)

= min

{
n∑
i=1

1

αi
EQi [(X − x)+IAi ] + x : (A1, . . . , An) ∈ πn(Ω), x ∈ R

}

= min

{
n∑
i=1

1

αi
EQi [(X − x)+IBi

] + x : x ∈ R

}
.

Proof Fix X ∈ X . As Q is non-empty, or equivalently (14) holds, we have
�ni=1ESQi

αi
(X) > −∞. Define

V (X) = inf

{
n∑
i=1

1

αi
EQi [(X − x)+IAi

] + x : (A1, . . . , An) ∈ πn(Ω), x ∈ R

}
.

(16)
We first show

n
�
i=1

ESQi
αi

(X) ≤ V (X). (17)

For any (A1, . . . , An) ∈ πn(Ω) and x ∈ R, let Xi = (X−x)IAi
+ x
n , i = 1, . . . , n.

Clearly, X1 + · · ·+Xn = X. Moreover, for i = 1, . . . , n,

ESQi
αi

(Xi) = ESQi
αi

((X − x)IAi
) +

x

n

≤ ESQi
αi

((X − x)+IAi
) +

x

n
≤ 1

αi
EQi [(X − x)+IAi

] +
x

n
.

Therefore, for all x ∈ R and (A1, . . . , An) ∈ πn(Ω), there exists (X1, . . . , Xn) ∈
An(X) such that

n∑
i=1

ESQi
αi

(Xi) ≤
n∑
i=1

1

αi
EQi [(X − x)+IAi ] + x.

It follows that (17) holds.

Next we need to show �ni=1ESQi

i (X) ≥ V (X). For A := (A1, . . . , An) ∈
πn(Ω), write

vA(x) =

n∑
i=1

1

αi
EQi [(X − x)+IAi

] + x, x ∈ R. (18)

Clearly, vA is a convex function and has right-derivative at any point in R.
Denote by v′A(x) the right-derivative of vA at x ∈ R and

v′A(x) = −
n∑
i=1

1

αi
Qi(X > x,Ai) + 1.
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Therefore, v′A is an increasing function of x, with v′A(∞) = 1 and

v′A(−∞) = 1−
n∑
i=1

1

αi
Qi(Ai) ≤ 0

as a result of the condition (14). Let x∗A = inf{x ∈ R : v′A(x) ≥ 0}. Obviously
x∗A minimizes vA. Moreover, noting that Qi(X > x,Ai) is right-continuous in
x for i = 1, . . . , n, v′A is a right-continuous function. Therefore, v′A(x∗A) ≥ 0,
and equivalently,

n∑
i=1

1

αi
Qi(X > x∗A, Ai) ≤ 1. (19)

Next, let

Q∗A(C) =

n∑
i=1

1

αi
Qi(C ∩Ai ∩ {X > x∗A}), C ∈ F .

Let us verify

1. Q∗A is σ-additive, because it is the sum of n measures.
2. Q∗A(Ω) ≤ 1 by (19).

Now we make some adjustment to Q∗A so that Q∗A(Ω) = 1. Note that by a
symmetric argument,

n∑
i=1

1

αi
Qi(X ≥ x∗A, Ai) ≥ 1. (20)

Therefore, if Q∗A(Ω) < 1, we can replace Q∗A by Q∗∗A , which is a linear combi-
nation of Q∗A and Q′A, defined as

Q′A(C) =

n∑
i=1

1

αi
Qi(C ∩Ai ∩ {X ≥ x∗A}), C ∈ F ,

so that Q∗∗A (Ω) = 1. In the following we safely assume Q∗A(Ω) = 1 (otherwise
we just replace it by Q∗∗A ), that is, Q∗A is a probability measure. We can verify

EQ
∗
A [X] =

n∑
i=1

1

αi
EQi [XI{X>x∗

A}IAi
]

=

n∑
i=1

1

αi
EQi [(X − x∗A + x∗A)I{X>x∗

A}IAi
]

=

n∑
i=1

1

αi
EQi [(X − x∗A)+IAi ] + x∗AQ

∗
A(Ω) = vA(x∗A). (21)

Therefore,

V (X) ≤ EQ
∗
A [X] for all (A1, . . . , An) ∈ πn(Ω). (22)
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Let Bj , j = 1, . . . , n be defined as in (15). Clearly B = (B1, . . . , Bn) ∈ πn(Ω).
It follows that, for C ∈ F ,

Q∗B(C) =

n∑
i=1

1

αi
Qi(C ∩Bi ∩ {X > x∗B})

≤
n∑
i=1

1

αj
Qj(C ∩Bi) ≤

1

αj
Qj(C), j = 1, . . . , n.

As a consequence, we have Q∗B ∈ Q. It follows that

EQ
∗
B [X] ≤ sup

Q∈Q
EQ[X] =

n
�
i=1

ESQi
αi

(X).

Together with (17) and (22), we have

V (X) ≤ EQ
∗
B [X] ≤

n
�
i=1

ESQi
αi

(X) ≤ V (X). (23)

This completes the proof. ut

With the help of Proposition 2, we are ready to present an explicit form of
Pareto-optimal allocations for the ES agents. Define

x∗B = inf

{
x ∈ R :

n∑
i=1

1

αi
Qi(X > x,Bi) ≤ 1

}
, (24)

and

y∗B = inf

{
x ∈ R :

n∑
i=1

1

αi
Qi(X > x,Bi) < 1

}
. (25)

The quantities x∗B and y∗B will be used repeatedly later in the paper. Note
that, if Q1 = · · · = Qn = Q, then by definition of (B1, . . . , Bn),

x∗B = inf

{
x ∈ R :

1

α
Q(X > x) ≤ 1

}
= VaRQ

α (X),

where α =
∨n
i=1 αi. Thus, x∗B can be seen as a generalized left-quantile (VaR)

of X in the multi-measure framework, whereas y∗B is a generalized right-
quantile of X. By definition, Qi(x

∗
B < X < y∗B , Bi) = 0 for i = 1, . . . , n.

Similarly to the left/right-quantiles, x∗B and y∗B are often identical for practi-
cal settings.

Theorem 1 Assume Q in (13) is non-empty. A Pareto-optimal allocation
(X∗1 , . . . , X

∗
n) of X ∈ X is given by

X∗i = (X − x∗)IBi
+
x∗

n
, i = 1, . . . , n, (26)

for x∗ ∈ [x∗B , y
∗
B ], where (B1, . . . , Bn), x∗B and y∗B are in (15), (24) and (25).
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Proof For i = 1, . . . , n, using (7) with x = x∗/n , we have

ESQi
αi

(X∗i ) ≤ 1

αi
EQi [(X − x∗)+IBi

] +
x∗

n
.

By taking a derivative of vB defined by (18) with Ai replaced by Bi, i =
1, . . . , n, we have, for x∗ ∈ [x∗B , y

∗
B ],

n∑
i=1

1

αi
EQi [(X−x∗)+IBi ] +x∗ = min

{
n∑
i=1

1

αi
EQi [(X − x)+IBi ] + x : x ∈ R

}
.

Therefore, by Proposition 2, we have
∑n
i=1 ESQi

αi
(X∗i ) ≤ �ni=1 ESQi

αi
(X). This

implies the Pareto optimality of (X∗1 , . . . , X
∗
n). ut

The economic interpretation of the Pareto-optimal allocation in (26) is very
simple. For each i = 1, . . . , n, agent i takes the risk (X−x∗)IBi

plus a constant
(side-payment). Looking at the definition of Bi, it is clear that agent i thinks
the event Bi is the least likely to happen, compared to other agents’ beliefs on
the same event. The rest of the risk, which is more likely to happen according
to agent i (relative to other agents), is taken by others. This intuitively implies,
quoting [6], “When agents disagree about disaster risk, they will insure each
other against the types of disasters they fear most”.

We make some technical observations about Theorem 1.

(i) A constant shift (side-payment) among X∗1 , . . . , X
∗
n defined in (26) does

not compromise the optimality; hence, (X∗1 + c1, . . . , X
∗
n + cn) is also a

Pareto-optimal allocation, where c1, . . . , cn are constants and
∑n
i=1 ci =

0. Later we shall see in Proposition 3 that, under an extra condition, the
Pareto-optimal allocation is unique on the set {X > y∗B} up to constant
shifts.

(ii) The dependence structure of the Pareto-optimal allocation (X∗1 , . . . , X
∗
n)

in (26) is worth noting. On the set {X > x∗}, X∗1 , . . . , X∗n are mutually
exclusive, a form of extremal negative dependence (see [21]). This is in
sharp contrast to the case of homogeneous beliefs, where a Pareto-optimal
allocation for strictly convex functionals is always comonotonic (see [24]),
a form of extremal positive dependence.

(iii) As an immediate consequence of Theorem 1, for x∗ ∈ [x∗B , y
∗
B ],

n

�
i=1

ESQi
αi

(X) =

n∑
i=1

1

αi
EQi [(X − x∗)+IBi ] + x∗. (27)

We can easily see that in the case of n = 1, Proposition 2 gives, for any
α ∈ (0, 1), Q ∈ P and X ∈ X ,

ESQα (X) = min

{
1

α
EQ[(X − x)+] + x : x ∈ R

}
, (28)

and Theorem 1 (setting n = 1) implies that the above minimum is achieved
by x∗ = VaRQ

α (X), a celebrated result (see (7) and (8)) established by [22].
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In other words, Theorem 1 can be regarded as a generalization of the result
of [22] in a multiple-measure framework. Using (28), we obtain the following
corollary of Theorem 1, giving a solution to an optimization problem similar
to (7) and (8).

Corollary 1 The optimization problem

to minimize

n∑
i=1

1

αi
EQi [(Xi − xi)+] +

n∑
i=1

xi

over x1, . . . , xn ∈ R, (X1, . . . , Xn) ∈ An(X)

admits a solution (x∗1, . . . , x
∗
n, X

∗
1 , . . . , X

∗
n) where x∗1 = · · · = x∗n = x∗/n, and

x∗ and X∗1 , . . . , X
∗
n are given in Theorem 1.

Remark 2 If Q1 = · · · = Qn = P, Proposition 2 reduces to the classic result

n
�
i=1

ESP
αi

(X) = min

{
1∨n

i=1 αi
EP[(X − x)+] + x : x ∈ R

}
= ESP∨n

i=1 αi
(X).

In this case, according to Theorem 1, the Pareto-optimal allocation is one
where all the risk is taken by one agent with the largest αi value, and the other
agents make side-payments to this agent. This is a special case of Theorem 2
of [9].

Next we study the uniqueness of the form of Pareto-optimal allocations.
Since an ES only depends on the tail part of a risk, it is natural that uniqueness
can only be established on the set {X > y∗B}. Moreover, it is straightforward
to verify that the allocation can be very flexible on the set {dQi/dQ = 0} for
each i = 1, . . . , n, where Q =

∑n
i=1Qi/n. Hence, we focus our discussion on

the case in which Q1, . . . , Qn are equivalent.
The following proposition characterizes the form of Pareto-optimal alloca-

tions, which requires an intuitive condition

the sets

{
1

αj

dQj
dQ

=

n∧
i=1

1

αi

dQi
dQ

}
, j = 1, . . . , n, are disjoint, (29)

so that the sets on which (dQi/dQ)/αi is the smallest, i = 1, . . . , n, are dis-
tinguishable.

Proposition 3 Suppose that Q1, . . . , Qn are equivalent to Q ∈ P and (29)
holds. Any Pareto-optimal allocation (X∗1 , . . . , X

∗
n) of X ∈ X satisfies, for

some constants c1, . . . , cn ∈ R,

(X∗i − ci)+ = (X − y∗B)+IBi
Q-a.s., i = 1, . . . , n,

where y∗B is defined in (25).
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Proof Assume Q in (13) is non-empty so that a Pareto-optimal allocation
exists; otherwise there is nothing to show. Let (X∗1 , . . . , X

∗
n) be a Pareto-

optimal allocation and yi = VaRQi
αi

(X∗i ), i = 1, . . . , n. Fix i = 1, . . . , n. We
assert that X∗i > yi implies X∗j ≥ yj for any j 6= i, Qi-almost surely. To see
this, assume that there exist i and j such that Qi(X

∗
i > yi, X

∗
j < yj) > 0.

Then there exists δ > 0 such that Qi(X
∗
i > yi, X

∗
j < yj − δ) > 0. Let A =

{X∗i > yi, X
∗
j < yj − δ}. It follows that ESQi

αi
(X∗i − δIA) < ESQi

αi
(X∗i ) whereas

ESQj
αj

(X∗j + δIA) = ESQj
αj

(X∗j ) since VaRQi
αi

(X∗i ) = yi and VaRQj
αj

(X∗j ) = yj .
This contradicts the Pareto optimality of (X∗1 , . . . , X

∗
n). Hence, we have

Qi(X
∗
i > yi, X

∗
j < yj) = 0 for all i, j = 1, . . . , n.

Since Q1, . . . , Qn are equivalent, it follows that

n∑
i=1

(X∗i − yi)+ =

(
n∑
i=1

X∗i −
n∑
i=1

yi

)
+

=

(
X −

n∑
i=1

yi

)
+

Q-a.s. (30)

Define Zi = 1
αi

dQi

dQ , i = 1, . . . , n. By (28), the minimization problem in

(12) is equivalent to

to minimize
∑n
i=1 EQ[Zi(Xi −VaRQi

αi
(Xi))+] +

∑n
i=1 VaRQi

αi
(Xi)

over (X1, . . . , Xn) ∈ An(X).
(31)

From (7) and (30), we know that an optimizer (X∗1 , . . . , X
∗
n) of (31) satisfies∑n

i=1(X∗i − yi)+ = (X −
∑n
i=1 yi)+ Q-almost surely, where yi = VaRQi

αi
(X∗i ),

i = 1, . . . , n. Consider the optimization problem

to minimize
∑n
i=1 EQ[ZiWi] + y

over (W1, . . . ,Wn) ∈ An((X − y)+), y ∈ R
subject to Wi ≥ 0, i = 1, . . . , n.

(32)

Note that the constraints in (31) are replaced by weaker constraints, and we
allow to choose y ∈ R in (32) which is fixed as y =

∑n
i=1 VaRQi

αi
(Xi) in (31).

From there, it is clear that the minimum value of (32) is no larger than that
of (31). We shall later see that (31) and (32) are indeed equivalent. Recall
Bj = {Zj =

∧n
i=1 Zi}, j = 1, . . . , n, and B1, . . . , Bn are disjoint. For fixed

y ∈ R, writing W = (X − y)+, the optimization problem

to minimize
∑n
i=1 EQ[ZiWi] + y

over (W1, . . . ,Wn) ∈ An(W )
subject to Wi ≥ 0, i = 1, . . . , n

(33)

admits a unique optimizer via point-wise optimization,

W ∗i = W IBi
, i = 1, . . . , n.

Next, we consider the second-step optimization of (32),

to minimize
∑n
i=1

1
αi
EQi [(X − y)+IBi

] + y over y ∈ R. (34)
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By taking a derivative with respect to y, the set of optimizers of the prob-
lem (34) is the interval [x∗B , y

∗
B ]. Let y∗ ∈ [x∗B , y

∗
B ]. For x1, . . . , xn ∈ R with∑n

i=1 xi = y∗, define X∗i = (X − y∗)IBi
+ xi, i = 1, . . . , n. We can verify

(X∗1 , . . . , X
∗
n) ∈ An(X) and (X∗i − xi)+ = W ∗i , i = 1, . . . , n. Thus, optimiza-

tion problems (31) and (32) have the same minimum objective values, and
an optimizer (X∗1 , . . . , X

∗
n) of (31) necessarily satisfies (X∗i − xi)+ = W IBi

=
(X − y∗)+IBi for some x1, . . . , xn ∈ R with

∑n
i=1 xi = y∗.

In summary, for any Pareto-optimal allocation (X∗1 , . . . , X
∗
n), there exist

(x1, . . . , xn) ∈ R and y∗ ∈ [x∗B , y
∗
B ] satisfying

∑n
i=1 xi = y∗, such that for

i = 1, . . . , n,
(X∗i − xi)+ = (X − y∗)+IBi

.

Finally, noting that {X > y∗} = {X > y∗B} Q-almost surely and y∗B ≥ y∗, by
letting ci = xi − y∗ + y∗B , we have

(X∗i − ci)+ = (X − y∗B)+IBi
, i = 1, . . . , n.

This completes the proof. ut

The following corollary of Proposition 3 characterizes all Pareto-optimal
allocations for ES agents under the conditions of Proposition 3.

Corollary 2 Suppose that Q1, . . . , Qn are equivalent to Q ∈ P and (29) holds.
A random vector (X∗1 , . . . , X

∗
n) ∈ Xn is a Pareto-optimal allocation of X ∈ X

if and only if it has the following form, where y∗B is defined by (25),

X∗i = (X − y∗B)+IBi
+ Zi + ci Q-a.s., i = 1, . . . , n, (35)

for some (c1, . . . , cn) ∈ Rn satisfying
∑n
i=1 ci = y∗B and some (Z1, . . . , Zn) ∈

An(−(y∗B −X)+) satisfying Zi ≤ 0 and ZiI{X>y∗B}∩Bi
= 0 for i = 1, . . . , n.

Proof By Proposition 3, any Pareto-optimal allocation (X∗1 , . . . , X
∗
n) satisfies

(X∗i − ci)+ = (X − y∗B)+IBi
Q-a.s., i = 1, . . . , n,

which, together with
∑n
i=1X

∗
i = X, gives (35). Next we show that (X∗1 , . . . , X

∗
n)

in (35) is optimal. It is easy to verify that (X∗1 , . . . , X
∗
n) in (35) satisfies∑n

i=1X
∗
i = X. Note that

n∑
i=1

ESQi
αi

(X∗i ) ≤
n∑
i=1

(
ESQi

αi
((X − y∗B)+IBi) + ci

)
=

n∑
i=1

ESQi
αi

((X − y∗B)+IBi) + y∗B

≤
n∑
i=1

1

αi
EQi [(X − y∗B)+IBi ] + y∗B =

n

�
i=1

ESQi
αi

(X),

where the last equality is due to (27). This shows that (X∗1 , . . . , X
∗
n) is a

Pareto-optimal allocation. ut
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4 Competitive equilibria for ES agents

In this section, we study competitive equilibria as in Definition 2 for ES
agents. Similarly to Section 3, throughout this section, α1, . . . , αn ∈ (0, 1),
Q1, . . . , Qn ∈ P, and the risk measure of agent i is ESQi

αi
, i = 1, . . . , n. Each

agent’s objective is

to minimize ESQi
αi

(Xi) over Xi ∈ X
subject to EQ[Xi] ≥ EQ[ξi]

i = 1, . . . , n, (36)

where (ξ1, . . . , ξn) ∈ An(X) is the vector of initial risks.

With the Pareto optimality problem solved explicitly in Section 3, we estab-
lish in this section that for ES agents, a Pareto-optimal allocation is equivalent
to an equilibrium allocation. Thus, the two Fundamental Theorems of Welfare
Economics (FTWE) hold for ES agents5. As in the proof of Proposition 2,
throughout this section we define the probability measure Q∗B via

Q∗B(C) =

n∑
i=1

1

αi
Qi(C ∩Bi ∩ {X > x∗B}), C ∈ F , (37)

where B = (B1, . . . , Bn) and x∗B are defined by (15) and (24). We can verify
that Q∗B does not depend on the order of Q1, . . . , Qn, although the choice of B
in (15) does. Later we shall see that the probability measure Q∗B turns out to
be the unique equilibrium pricing measure for the ES agents. We first present
the FTWE for ES agents.

Theorem 2 An allocation of X ∈ X is Pareto-optimal if and only if it is an
equilibrium allocation for some initial risks (ξ1, . . . ξn) ∈ An(X).

Proof First, an equilibrium allocation is necessarily Pareto-optimal, as the
so-called non-satiation condition (see [25]) holds for the ES agents. For the
reader who is not familiar with the FTWE, we provide a self-contained sim-
ple proof. Suppose that (Q, (X∗1 , . . . , X

∗
n)) is a competitive equilibrium, and

(X∗1 , . . . , X
∗
n) is not Pareto-optimal. Then, there exists (Y1, . . . , Yn) ∈ An(X)

such that ESQi
αi

(Yi) ≤ ESQi
αi

(X∗i ) for all i = 1, . . . , n and there exists j ∈
{1, . . . , n} such that ESQj

αj
(Yj) < ESQj

αj
(X∗j ). If EQ[Yj ] ≥ EQ[ξj ], then X∗j

is not optimal for (36) since it is strictly dominated by Yj , and thus a con-
tradiction. If EQ[Yj ] < EQ[ξj ], then there exists k ∈ {1, . . . , n} such that
EQ[Yk] > EQ[ξk]. Similarly, X∗k is not optimal for (36) since it is strictly dom-
inated by Yk − EQ[Yk] + EQ[ξk], and thus a contradiction.

Next we show that a Pareto-optimal allocation is necessarily an equilibrium
allocation. Let (X∗1 , . . . , X

∗
n) be a Pareto-optimal allocation. For i = 1, . . . , n,

5 Roughly speaking, the first FTWE states that, under some conditions, an equilibrium
allocation is Pareto-optimal, and the second FTWE states that, under some conditions, a
Pareto-optimal allocation is an equilibrium allocation.
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consider the individual optimization problem in (36) with the initial risks
ξi = X∗i , i = 1, . . . , n, and the pricing measure Q∗B , namely

min
Xi∈X

ESQi
αi

(Xi) subject to EQ
∗
B [Xi] ≥ EQ

∗
B [X∗i ]. (38)

Note that for any Xi ∈ X with EQ∗
B [Xi] ≥ EQ∗

B [X∗i ], we have

ESQi
αi

(Xi) = sup
Q∈P, dQ/dQi≤1/αi

EQ[Xi] ≥ EQ
∗
B [Xi] ≥ EQ

∗
B [X∗i ],

where the first inequality follows from Q∗B ∈ Q with Q defined in (13). There-
fore, the minimum value of the objective in the optimization problem (38)
is at least EQ∗

B [X∗i ]. As a consequence, ESQi
αi

(X∗i ) ≥ EQ∗
B [X∗i ]. Noting that

(X∗1 , . . . , X
∗
n) is a Pareto-optimal allocation, from (23) we have

n∑
i=1

ESQi
αi

(X∗i ) = �ni=1ESQi
αi

(X) = EQ
∗
B [X]. (39)

Combined with the fact that ESQi
αi

(X∗i ) ≥ EQ∗
B [X∗i ], we have

ESQi
αi

(X∗i ) = EQ
∗
B [X∗i ], i = 1, . . . , n.

That is, X∗i is an optimizer of the optimization problem (38). By definition,
(Q∗B , (X

∗
1 , . . . , X

∗
n)) is a competitive equilibrium. ut

Remark 3 From Proposition 1 and Theorem 2, Pareto-optimal allocations and
equilibria may exist for ES agents even if their beliefs are not equivalent. This
is in sharp contrast to the classic setting of expected utility agents, where
generally no Pareto-optimal allocations or equilibria exist if beliefs are not
equivalent.

In the proof of Theorem 2, we have already seen that Q∗B is an equilibrium
pricing measure for the ES agents. The next theorem verifies that Q∗B is indeed
the unique equilibrium pricing measure.

Theorem 3 For a given X ∈ X , the equilibrium pricing measure is uniquely
given by Q∗B.

Proof Let (Q, (X∗1 , . . . , X
∗
n)) be a competitive equilibrium. We show the unique-

ness of the equilibrium pricing measure in two steps.

(i) Assume for the purpose of contradiction that there existsA ∈ F withA ⊂
{X > x∗B} such that Q(A) > Q∗B(A). Since Q∗B(A) =

∑n
i=1

1
αi
Qi(A∩Bi),

we know that Q(A∩Bj) > 1
αj
Qj(A∩Bj) for some j ∈ {1, . . . , n}. For a
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positive constant m, take Yj = X∗j +mIA∩Bj −mQ(A ∩Bj). Obviously,

EQ[Yj ] = EQ[X∗i ]. We can verify that

ESQj
αj

(Yj) = ESQj
αj

(X∗j +mIA∩Bj
−mQ(A ∩Bj))

= ESQj
αj

(X∗j +m(IA∩Bj
))−mQ(A ∩Bj)

≤ ESQj
αj

(X∗j ) +mESQj
αj

(IA∩Bj
)−mQ(A ∩Bj)

≤ ESQj
αj

(X∗j ) +m
1

αj
Qj(A ∩Bj)−mQ(A ∩Bj) < ESQj

αj
(X∗j ),

where the first inequality is due to the subadditivity of ES (see e.g. [10]).
This contradicts the fact that (Q, (X∗1 , . . . , X

∗
n)) is a competitive equi-

librium, since Yj strictly dominates X∗j in the individual optimization
(36). Therefore, we conclude that Q(A) ≤ Q∗B(A) for all A ∈ F with
A ⊂ {X > x∗B}.

(ii) By Theorem 2, (X∗1 , . . . , X
∗
n) is Pareto-optimal, and hence (39) holds.

Since (Q, (X∗1 , . . . , X
∗
n)) is a competitive equilibrium, for i = 1, . . . , n,

we have ESQi
αi

(X∗i ) ≤ EQ[X∗i ], otherwise X∗i would have been strictly
dominated by Yi = EQ[X∗i ]. By (39), we have

EQ
∗
B [X] =

n∑
i=1

ESQi
αi

(X∗i ) ≤
n∑
i=1

EQ[X∗i ] = EQ[X]. (40)

From part (i), we know that Q is dominated by Q∗B on {X > x∗B}.
Assume Q(X ≤ x∗B) > 0. It follows that∫

{X>x∗
B}
Xd(Q∗B −Q) > x∗B(Q∗B(X > x∗B)−Q(X > x∗B))

= x∗BQ(X ≤ x∗B).

Therefore,

EQ
∗
B [X]− EQ[X] =

∫
{X>x∗

B}
Xd(Q∗B −Q) +

∫
{X≤x∗

B}
Xd(Q∗B −Q)

> x∗BQ(X ≤ x∗B)−
∫
{X≤x∗

B}
XdQ

≥ x∗BQ(X ≤ x∗B)− x∗BQ(X ≤ x∗B) = 0,

contradicting (40). From there, we conclude that Q(X ≤ x∗B) = 0.

Combining (i) and (ii), we have Q(A) ≤ Q∗B(A) for all A ∈ F . Since both Q
and Q∗B are probability measures, we conclude that Q = Q∗B . ut

As a consequence of Theorems 2 and 3, we have the following corollary
characterizing all equilibria for given initial risks.
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Corollary 3 For any choice of initial risks (ξ1, . . . ξn) ∈ An(X), a competitive
equilibrium is necessarily and sufficiently given by (Q∗B , (X

∗
1 , . . . , X

∗
n)), where

(X∗1 , . . . , X
∗
n) ∈ An(X) is a Pareto-optimal allocation such that EQ∗

B [X∗i ] =
EQ∗

B [ξi], i = 1, . . . , n.

Recalling Theorem 1, an explicit form of Pareto-optimal allocations is given
by

X∗i = (X − x∗)IBi + ci, i = 1, . . . , n, (41)

for any x∗ ∈ [x∗B , y
∗
B ], where

∑n
i=1 ci = x∗, B = (B1, . . . , Bn), x∗B and y∗B are

defined in (15), (24) and (25).

Corollary 4 Assume Q in (13) is non-empty. Then (Q∗B , (X
∗
1 , . . . , X

∗
n)) given

in (37) and (41) is a competitive equilibrium.

5 Risk sharing for VaR agents

In this section, we investigate risk-sharing problems for VaR agents. Through-
out this section, α1, . . . , αn ∈ (0, 1), Q1, . . . , Qn ∈ P, and the risk measure of
agent i is VaRQi

αi
, i = 1, . . . , n. The main difference between VaR and ES is

the non-convexity of VaR, and hence the classic approach based on convex
analysis cannot be used.

We introduce a few key quantities in our analysis for VaR agents. For
X ∈ X and x ∈ [−∞,∞), define the set

Γ (x) = {(Q1(X > x,A1), . . . , Qn(X > x,An)) : (A1, . . . , An) ∈ πn(Ω)}+ Rn+,
(42)

where R+ = [0,∞). Note that for fixed A ∈ F and i = 1, . . . , n, Qi(X > x,A)
is right-continuous and decreasing in x, with Qi(X > ∞, A) = 0. Therefore,
for each (α1, . . . , αn) ∈ (0, 1)n, there exists a smallest number x∗ ∈ [−∞,∞)
such that (α1, . . . , αn) ∈ Γ (x∗). That is,

x∗ = min {x ∈ [−∞,∞) : (α1, . . . , αn) ∈ Γ (x)} .

It follows that there exists (A∗1, . . . , A
∗
n) ∈ πn(Ω) such that

(α1, . . . , αn) ≥ (Q1(X > x∗, A∗1), . . . , Qn(X > x∗, A∗n)). (43)

One can verify that for X ∈ X , x∗ > −∞ if and only if

n∨
i=1

Qi(Ai)

αi
> 1 for all (A1, . . . , An) ∈ πn(Ω). (44)

To show this, note that x∗ > −∞ if and only if there exists x ∈ R such that
for all (A1, . . . , An) ∈ πn(Ω), Qi(X > x,Ai) ≥ αi for some i = 1, . . . , n. This
is in turn equivalent to (44).

Now we present the Pareto-optimal allocations for VaR agents.
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Theorem 4 For X ∈ X , the following hold.

(i) We have

n
�
i=1

VaRQi
αi

(X) = min {x ∈ [−∞,∞) : (α1, . . . , αn) ∈ Γ (x)} = x∗,

where Γ is given by (42).
(ii) If (44) holds, that is, x∗ > −∞, a Pareto-optimal allocation (X∗1 , . . . , X

∗
n)

of X is given by

X∗i = (X − x∗)IA∗
i

+
x∗

n
, i = 1, . . . , n,

where (A∗1, . . . , A
∗
n) satisfies (43).

Proof (i) First we show �ni=1 VaRQi
αi

(X) ≥ x∗. For (X1, . . . , Xn) ∈ An(X),

let Di = {Xi > VaRQi
αi

(Xi)}, i = 1, . . . , n. Clearly, Qi(Di) ≤ αi. Let
Ci = Di ∪ (∪nj=1Dj)

c for i = 1, . . . , n. We have ∪ni=1Ci = Ω, and
hence there exists (A1, . . . , An) ∈ πn(Ω) such that Ai ⊂ Ci. Write
x =

∑n
i=1 VaRQi

αi
(Xi). We have

{X > x} =

{
n∑
i=1

Xi >

n∑
i=1

VaRQi
αi

(Xi)

}
⊂

n⋃
i=1

Di.

Therefore, for i = 1, . . . , n,

Qi(X > x,Ai) ≤ Qi(X > x,Ci) = Qi(X > x,Di) ≤ Qi(Di) ≤ αi.

This shows (α1, . . . , αn) ∈ Γ (x). As a consequence,

x∗ = min {x ∈ [−∞,∞) : (α1, . . . , αn) ∈ Γ (x)} ≤ x =

n∑
i=1

VaRQi
αi

(Xi).

From there we obtain �ni=1 VaRQi
αi

(X) ≥ x∗.
Next we show �ni=1 VaRQi

αi
(X) ≤ x∗. Take any x ∈ R such that (α1, . . . , αn) ∈

Γ (x). By definition, there exists (A1, . . . , An) ∈ πn(Ω) such that

Qi((X − x)IAi
> 0) = Qi(X > x,Ai) ≤ αi, i = 1, . . . , n. (45)

Note that (45) implies VaRQi
αi

((X − x)IAi
) ≤ 0 for i = 1, . . . , n. Let

Xi = (X − x)IAi
+
x

n
, i = 1, . . . , n. (46)

We have (X1, . . . , Xn) ∈ An(X) and

n∑
i=1

VaRQi
αi

(Xi) =

n∑
i=1

VaRQi
αi

((X − x)IAi
) + x ≤ x.

This shows �ni=1 VaRQi
αi

(X) ≤ x for all real numbers x ≥ x∗. Therefore,

�ni=1 VaRQi
αi

(X) ≤ x∗. In summary, we have �ni=1 VaRQi
αi

(X) = x∗.
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(ii) Suppose x∗ > −∞. Similarly to (45) and (46), from the definition of x∗

and A∗i , we have

n∑
i=1

VaRQi
αi

(X∗i ) =

n∑
i=1

VaRQi
αi

((X − x∗)IA∗
i
) + x∗ ≤ x∗.

Together with (i), we conclude that (X∗1 , . . . , X
∗
n) is a Pareto-optimal

allocation of X. ut

As an immediate consequence of Theorem 4 (ii), a Pareto-optimal allo-
cation exists if and only if (44) holds. Similarly to the case of ES agents,
the existence of a Pareto-optimal allocation only depends on (α1, . . . , αn) and
(Q1, . . . , Qn), but not on the total risk X.

The Pareto-optimal allocation for VaR agents in Theorem 4,

XVaR
i = (X − x∗)IA∗

i
+
x∗

n
, i = 1, . . . , n,

and that for ES agents in Theorem 1,

XES
i = (X − y∗)IBi

+
y∗

n
, i = 1, . . . , n,

share amazing similarity in their forms. Nevertheless, we should clarify that
the calculation of (A∗1, . . . , A

∗
n, x
∗) and (B∗1 , . . . , B

∗
n, y
∗) above are completely

different, and these two risk sharing problems have essentially distinct features.
We remark two significant differences. First, the optimization problem for VaR
agents is a non-convex one, whereas that for ES agents is convex. Second,
(B∗1 , . . . , B

∗
n, y
∗) has explicit forms, but (A∗1, . . . , A

∗
n, x
∗) does not; an efficient

way to compute (A∗1, . . . , A
∗
n, x
∗) seems unavailable at the moment.

Remark 4 If Q1 = · · · = Qn = P, we have

n

�
i=1

VaRP
αi

(X)

= inf {x ∈ R | P(Axi ) = αi, A
x
i = Ai ∩ {X > x}, (A1, . . . , An) ∈ πn(Ω)}

= inf {x ∈ R | P(X > x) = α1 + · · ·+ αn} = VaRP∑n
i=1 αi

(X).

This is a special case of Theorem 2 of [9].

Next, we observe that a competitive equilibrium for VaR agents does not
exist. In this setting, each agent’s objective is

to minimize VaRQi
αi

(Xi) over Xi ∈ X
subject to EQ[Xi] ≥ EQ[ξi],

i = 1, . . . , n, (47)

Proposition 4 For any choice of initial risks, a competitive equilibrium for
the VaR agents does not exist.
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Proof First note that there is a correspondence between the optimizer of (47)
and that of the following optimization problem

to minimize Vi(Yi) = VaRQi
αi

(Yi)−EQ[Yi] over Yi ∈ X , i = 1, . . . , n, (48)

by choosing Xi = Yi −EQ[Yi] +EQ[ξi]. Note that for any probability measure
Q, one can easily find a random variable Xi such that VaRQi

αi
(Yi) < EQ[Yi].

Then by the positive homogeneity of Vi, we have that the infimum of the
objective function is −∞, and hence (47) admits no optimizer. ut

Although Theorem 4 obtains Pareto-optimal allocations for VaR agents,
Proposition 4 shows that there is no competitive equilibrium in this setting.
This is a further evidence of the inappropriateness of VaR as a measure of
risk in the context of risk sharing; see, for instance, [13] and [9] for related
discussions on the use of VaR. A possible alternative setting to study compet-
itive equilibria for VaR agents is to restrict the set of admissible positions for
each agent and to slightly relax the definition of pricing measures; see [9] for
the case allowing only 0 ≤ Xi ≤ X. In the latter paper, for VaR agents with
homogeneous beliefs, the equilibrium pricing measure Q is shown to be a zero
measure instead of a probability measure, and this is beyond the framework
of this paper.

6 Risk sharing for mixed VaR and ES agents

In this section, we consider the risk sharing problem in which some agents
are VaR agents and the others are ES agents. The result naturally gener-
alizes to RVaR agents, which shall be defined later. Define the index sets
I = {1, . . . ,m} and J = {m + 1, . . . , n}, 0 ≤ m < n. Without loss of gener-
ality, assume that for i ∈ I and j ∈ J , the objective of agent i is VaRQi

αi
and

that of agent j is ES
Qj

βj
, where αi, βj ∈ (0, 1) and Qi, Qj ∈ P. Note that here

we allow I to be empty but J is assumed non-empty, i.e. there is at least one
ES agent. For notional simplicity, in this section we write, for X ∈ X ,

V (X) = inf

∑
i∈I

VaRQi
αi

(Xi) +
∑
j∈J

ES
Qj

βj
(Xj) : (X1, . . . , Xn) ∈ An(X)

 .

(49)

We first verify that V (X) > −∞ if and only if

n∨
i=1

Qi(Ai)

αi
> 1 for all (A1, . . . , Am) ∈ πm(Ω), (50)

and∑
j∈J

Qj(Bj)

βj
≥ 1 for all (B1, . . . , Bn) ∈ πn(Ω) with Qi(Bi) ≤ αi, i ∈ I. (51)
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To see this, first note that (50) is a necessary condition for V (X) > −∞
by (44). Hence, we only need to show that when (50) holds, V (X) > −∞ if
and only if (51) holds. To show the necessity, assume (51) does not hold.
There exists (B1, . . . , Bn) ∈ πn(Ω) with Qi(Bi) ≤ αi, i ∈ I, such that∑
j∈J Qj(Bj)/βj < 1. Define

Xi = (X + x)IBi
− x

n
, i = 1, . . . , n,

where x > 0. Then∑
i∈I

VaRQi
αi

(Xi) +
∑
j∈J

ES
Qj

βj
(Xj) ≤

∑
j∈J

ES
Qj

βj
((X + x)IBj

)− x

=
∑
j∈J

1

βj
EQj [XIBj ] +

∑
j∈J

Qj(Bj)

βj
x− x.

Letting x → ∞, we have that the right hand side of the above equation
converges to −∞, and hence, V (X) = −∞. The sufficiency is implied by the
following theorem.

Theorem 5 Assume that (50) and (51) hold. Then for X ∈ X ,

V (X) = min

∑
j∈J

1

βj
EQj [(X − x)+IBj ] + x

∣∣∣∣ (B1, . . . , Bn) ∈ πn(Ω)
Qi(Bi) ≤ αi, i ∈ I, x ∈ R

 .

(52)

Proof Note thatX is bounded and both sides of (52) are translation invariant6.
Without loss of generality, we assume X ≥ 0. Denote by R(X) the right hand
side of (52); we will show V (X) = R(X). For any (B1, . . . , Bn) ∈ πn(Ω) such
that Qi(Bi) ≤ αi for i ∈ I, take Xi = XIBi , i = 1, . . . , n. Then, VaRQi

αi
(Xi) =

0, i ∈ I, and for j ∈ J ,

ES
Qj

βj
(Xj) = min

{
1

βj
EQj [(XIBj

− x)+] + x : x ∈ R
}

= min

{
1

βj
EQj [(XIBj

− x)+] + x : x ∈ R+

}
= min

{
1

βj
EQj [(X − x)+IBj ] + x : x ∈ R

}
.

Therefore, for all (B1, . . . , Bn) ∈ πn(Ω) such that Qi(Bi) ≤ αi, i ∈ I, we have

V (X) ≤
∑
j∈J

min

{
1

βj
EQj [(X − x)+IBj

] + x : x ∈ R
}

≤ min

∑
j∈J

1

βj
EQj [(X − x)+IBj

] + x : x ∈ R

 .

6 Following the risk management literature, a functional f : X → R is called translation
invariant if f(X + c) = f(X) + c for all X ∈ X and c ∈ R.
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Hence, V (X) ≤ R(X). To show V (X) ≥ R(X), we need to prove that for any
(X1, . . . , Xn) ∈ An(X), there exists (B1, . . . , Bn) ∈ πn(Ω) with Qi(Bi) ≤ αi,
i ∈ I such that

∑
i∈I

VaRQi
αi

(Xi) +
∑
j∈J

ES
Qj

βj
(Xj) ≥ min

x∈R

∑
j∈J

1

βj
EQj [(X − x)+IBj

] + x

 .

(53)
Because of translation invariance of VaR and ES, without loss of generality,
assume VaRQi

αi
(Xi) = 0, i ∈ I. As Qi({Xi > 0}) ≤ αi, i ∈ I, there exists a set

B1 ∈ F such that {X1 > 0} ⊂ B1 and Q1(B1) ≤ α1. Similarly, for i ∈ I, let Bi
be a set such that {Xi > 0}\∪i−1k=1Bk ⊂ Bi and Qi(Bi) ≤ αi. Let B = ∪i∈IBi,

X∗i = XiIB + d IBi
, i ∈ I, and X∗j = (Xj − d/(n−m))IB +XjIBc , j ∈ J,

where d > 0 is large enough such that

sup[Xj − d/(n−m)|B] < inf[Xj |Bc], j ∈ J.

Clearly, X∗j ≤ Xj for j ∈ J , and VaRQi
αi

(X∗i ) = VaRQi
αi

(Xi) = 0. By (51),

we have Qj(B
c) ≥ βj , implying ES

Qj

βj
(X∗j ) = ES

Qj

βj
(XjIBc). Also note that

∪i∈I{Xi > 0} ⊂ B, implying
∑
j∈J XjIBc =

(
X −

∑
i∈I Xi

)
IBc ≥ XIBc .

Using the above facts, we have∑
i∈I

VaRQi
αi

(Xi) +
∑
j∈J

ES
Qj

βj
(Xj) ≥

∑
i∈I

VaRQi
αi

(X∗i ) +
∑
j∈J

ES
Qj

βj
(X∗j )

=
∑
j∈J

ES
Qj

βj
(XjIBc)

≥ �
j∈J

ES
Qj

βj

∑
j∈J

XjIBc

 ≥ �
j∈J

ES
Qj

βj
(XIBc).

By Proposition 2, and noting that (XIBc−x)+IA ≥ (X−x)+IBc∩A for A ∈ F
and x ∈ R, we have

�
j∈J

ES
Qj

βj
(XIBc)

≥ min

∑
j∈J

1

βj
EQj [(X − x)+ICj

] + x : x ∈ R, (Cj)j∈J ∈ πn−m(Bc)


≥ R(X).

Thus, V (X) ≥ R(X), and this completes the proof. ut
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If I = ∅, Theorem 5 reduces to Proposition 2. The case of J = ∅ (see
Theorem 4) is not included in Theorem 5 since the expression in (52) in-
volves a sum of expectations over J . By Theorem 5, there exist x∗ ∈ R and
(B1, . . . , Bn) ∈ πn(Ω) such that Qi(Bi) ≤ αi, i ∈ I, and

V (X) =
∑
j∈J

1

βj
EQj [(X − x∗)+IBj

] + x∗.

A Pareto-optimal allocation (X∗1 , . . . , X
∗
n) of X is given by

X∗i = (X − x∗)IBi
+
x∗

n
, i = 1, . . . , n. (54)

Nevertheless, analytical formulas of the above x∗ ∈ R and (B1, . . . , Bn) ∈
πn(Ω) are not available. A necessary condition for (B1, . . . , Bn) ∈ πn(Ω) above
is

Bj ⊂

{
1

αj

dQj
dQ

=
∧
i∈J

1

αi

dQi
dQ

}
, j ∈ J,

but to determine (B1, . . . , Bn) seems a very complicated task, even computa-
tionally.

Remark 5 When there are mixed VaR and ES agents, as the VaR agents do
not care about the risk above a certain quantile, an intuitive idea to find the
Pareto-optimal allocation is to first allocate risks for the VaR agents as in
Theorem 4, and then allocate risks for the ES agents as in Theorem 1. Such
a technical treatment turns out to give an optimal allocation in the setting
of homogeneous beliefs in [9]. Unfortunately, it does not necessarily lead to
a Pareto-optimal allocation in our setting of heterogeneous beliefs, and hence
yields a sharp contrast to the case of homogeneous beliefs treated in [9]; see
Example 1 below for a counter-example.

Example 1 Suppose that Ω = (0, 1) and F = B(0, 1). Let Q1 be the Lebesgue
measure on (0, 1). Take another probability measure Q2 on (Ω,F) such that

dQ2

dQ1
(ω) =


2 if ω ∈ (0, 14 ),

1/2 if ω ∈ [ 14 ,
1
2 ) ∪ [ 34 , 1),

1 if ω ∈ [ 12 ,
3
4 ).

Therefore, Q2 ((0, 1/4)) = 1/2, Q2 ([1/4, 1/2)) = 1/8, Q2 ([1/2, 3/4)) = 1/4,
and Q2 ([3/4, 1)) = 1/8. Let

X = I[ 14 ,
1
2 )

+ 4× I[ 12 ,
3
4 )

+ 5× I[ 34 ,1)

and consider the following optimization problem

inf
{

VaRQ1

1/4(X1) + ESQ2

1/4(X2) : X1 +X2 = X, X1, X2 ∈ X
}
.
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For any A ∈ F , if Q1(A) = 1/4, then Q2(Ac) ≥ 1/4 because dQ2

dQ1
≤ 2 implies

that Q2(A) ≤ 1/2 and thus Q2(Ac) ≥ 1/2 > 1/4; therefore (50) and (51) hold
and the above infimum is finite by Theorem 5. If we consider to first allocate
the worst risk of probability 1/4 to agent 1 (because agent 1 does not care any
risk with probability smaller or equal to 1/4), then the resulting allocation is
(X1, X2) where X1 = 5 I[3/4,1) and X2 = X − X1. Note that this allocation
would have been optimal if Q2 = Q1; see Theorem 2 of [9]. Consider another
allocation (Y1, Y2) where Y1 = 4× I[1/2,3/4) and Y2 = X − Y1. One can easily
check

VaRQ1

1/4(X1) + ESQ2

1/4(X2) = 4 > 3 = VaRQ1

1/4(Y1) + ESQ2

1/4(Y2).

Thus, the Pareto-optimal problem of mixed VaR and ES agents with hetero-
geneous beliefs cannot be obtained by separately treating VaR agents and ES
agents. ut

Finally, we present the result for a more general class of risk measures, the
Range-Value-at-Risk (RVaR), as studied in [9]. Recall that for X ∈ X and
Q ∈ P, the RVaR at level (α, β) ∈ [0, 1]2, α+ β ≤ 1 is defined as

RVaRQ
α,β(X) =

{
1
β

∫ α+β
α

VaRQ
γ (X)dγ if β > 0,

VaRQ
α (X) if β = 0.

Clearly, the RVaR family includes both VaR and ES as special cases. For
more details on RVaR, see [9]. To study risk sharing problems for RVaR agents,
the key observation is that RVaR is the inf-convolution of VaR and ES, namely,

RVaRQ
α,β = VaRQ

α � ESQβ ;

see Theorem 2 of [9]. With this result, we can use Theorem 5 to calculate the
inf-convolution of RVaR and identify its corresponding Pareto-optimal alloca-
tions, by decomposing each RVaR agent into two “imaginary” VaR and ES
agents. To guarantee the existence of a Pareto-optimal allocation, or equiva-
lently �ni=1 RVaRQi

αi, βi
(X) > −∞, we require

n∨
i=1

Qi(Ai)

αi
> 1 for all (A1, . . . , An) ∈ πn(Ω), (55)

and

n∑
i=1

Qi(B2i)

βi
≥ 1

for all (B11, B21, . . . , B1n, B2n) ∈ π2n(Ω)
with Qi(B1i) ≤ αi, i = 1, . . . , n.

(56)

Then the following corollary follows directly from Theorem 5.
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Corollary 5 Let X ∈ X and αi, βi ∈ (0, 1), i = 1, . . . , n. Assume that (55)
and (56) hold. Then

n

�
i=1

RVaRQi

αi, βi
(X)

= min

{
n∑
i=1

1

βi
EQi [(X − x)+IB2i ] + x

∣∣∣∣ (B11, B21, . . . , B1n, B2n) ∈ π2n(Ω)
Qi(B1i) ≤ αi, i = 1, . . . , n, x ∈ R

}
.

We conclude this section by observing that, similarly to the case of VaR
agents, a competitive equilibrium does not exist for mixed VaR and ES agents
or RVaR agents, unless all agents are ES agents.

Remark 6 (A final comment.7) Before ending the paper, we discuss how the
results established for bounded random variables can be generalized to the
case when the set of risks X is chosen as the set of random variables bounded
from below, namely,

X = {X ∈ L0(Ω,F) : inf X > −∞}. (57)

Note that we now use X defined by (57) in all places, including all definitions
and all optimization problems.

(i) For ES agents, Pareto-optimal allocations do not exist if �ni=1 ESQi
αi

(X) =
∞. Indeed, in this case, for any allocation (X1, . . . , Xn), there exists
i ∈ {1, . . . , n} such that ESQi

αi
(Xi) = ∞. If ESQj

αj
(Xj) = ∞ for all

j = 1, . . . , n, then the allocation (X, 0, . . . , 0) dominates (X1, . . . , Xn). If
there exists j 6= i such that ESQj

αj
(Xj) <∞, then, by letting X∗i = Xi+1,

X∗j = Xj − 1 and X∗k = Xk for k 6= i, j, (X∗1 , . . . , X
∗
n) dominates

(X1, . . . , Xn). Therefore one needs to assume �ni=1 ESQi
αi

(X) < ∞ in
order for a Pareto-optimal allocation to exist. As one can easily check,
assuming �ni=1 ESQi

αi
(X) < ∞, all results and their proofs in Section 3

are valid for X in (57).
(ii) For results in Section 4, we add to the definition of a competitive equi-

librium that the objective functions at optimum have to be finite. Pre-
cisely, a pair (Q, (X∗1 , . . . , X

∗
n)) ∈ P × An(X) is a competitive equilib-

rium if (4) holds and the minimums in (4) are finite. This is to avoid
cases where the individual optimization problems give positive or neg-
ative infinity. With this natural modification, all results in Section 4
hold for X in (57). To guarantee this, we just need to make sure that
all optimization problems do no involve infinity. First, it is clear that
a competitive equilibrium exists only if �ni=1 ESQi

αi
(X) < ∞. Assum-

ing �ni=1 ESQi
αi

(X) < ∞, there exists an allocation (X∗1 , . . . , X
∗
n) such

that ESQi
αi

(X∗i ) is finite for i = 1, . . . , n, and, as each of ξ1, . . . , ξn is

bounded from below, EQ∗
B [X] < ∞ implies EQ∗

B [ξi] < ∞, i = 1, . . . , n.
Further, it is straightforward to check that in a competitive equilibrium

7 This remark is based on a very valuable suggestion of an anonymous referee.
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(Q, (X∗1 , . . . , X
∗
n)), Q has to satisfy EQ[ξi] < ∞, i = 1, . . . , n, otherwise

the objective function for agent i will be ∞ or −∞. Therefore, there is
no issue regarding infinity, and all proofs in Section 4 are valid for the
set X in (57).

(iii) For VaR agents, one can easily verify that all results in Section 5 are
valid for X in (57), due to the fact that whether random variables are
unbounded is irrelevant for VaR. In addition, for the risk sharing prob-
lem with mixed VaR agents and ES agents, as we only discuss the inf-
convolution, the results in Section 6 also hold for X in (57) if I 6= ∅
(recall that I = ∅ corresponds to the case of ES agents).

7 Conclusion

By solving various optimization problems, we obtain in explicit forms
Pareto-optimal allocations and competitive equilibria for quantile-based risk
measures with belief heterogeneity. For ES agents, we show that Pareto-optimal
allocations and equilibrium allocations are equivalent, and the equilibrium
pricing measure is uniquely determined. In the case of VaR agents, Pareto-
optimal allocations are obtained, but competitive equilibria do not exist. Our
results and economic interpretations differ significantly from those of [9] where
belief homogeneity is assumed. In view of the prominent usage of internal mod-
els for various financial institutions, belief heterogeneity seems to be a more
reasonable assumption for studying risk sharing problems in the context of
regulatory capital calculation and its practical implications.
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