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Bounds for Functions of Multivariate Risks

Abstract. Li, Scarsini, and Shaked (1996a) provide bounds on the distribution and the
tail for functions of dependent random vectors having fixed multivariate marginals. In this
paper, we correct a result stated in the above article and we give improved bounds in the case
of the sum of identically distributed random vectors. Moreover, we provide the dependence
structures meeting the bounds when the fixed marginals are uniformly distributed on the
k-dimensional hypercube. Finally, a definition of a multivariate risk measure is given along
with actuariaffinancial applications.
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1. Introduction

In this paper we provide bounds on the distribution and onahéor functions of
dependent risks having fixed multivariate marginals. Gaeneasurable function
¥ (RY" - RX andk-variate random vectors (rv®, ..., X, on some proba-
bility space £, %, P), with associated distribution functions (df8), ..., F,, we
investigate:

my(9) := inf{P[y(X1,...,Xn) <8 : Xi -~ Fi,1<i<n},seRK (1.1)
My (9) := SURP[¥(X1, ..., Xn) = § : Xj «~ F;,1<i <n},seRK (1.2)

In the univariate cas& (= 1) the above problems are equivalent and have received
a considerable interest in the literature, see EmbrectdsParccetti (2004) and
references therein. On the contrary, the multivariateginat set-upk > 1), which
constitutes a natural framework for risk management, haseen given much
attention.

In fact, dealing with multivariate marginals causes ext@bfems. As shown
in Scarsini (1989), the conceptobpula(see Nelsen (1999, Def. 2.10.6)) as a tool
to generate dfs from a set of marginals, becomes inadeqete eealing with the
product of multivariate spaces. Compared to the univarzeginal situation, this
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is a great disadvantage. IndeedkiE 1 andF,..., F, are continuous, then the
set ofn-dimensional copulas is isomorphic to the Fréchet cis$s, ..., F,) of

dfs on R¥)" having such marginals. Moreover, Genest et al. (1995, Apptate

that in the multivariate case the only copula generatingia §{F, . .., F,) for all
possible choices of thE;’s is the independence measuig, F;. This fact guar-
antees that the above problems at least make sense. Theuctinstof diferent
elementsirg(F4, ..., Fy) has been treated in Cohen (1984); Riischendorf (1985);
Sanchez Algarra (1986); Marco and Ruiz-Rivas (1992), evail d€fort to create a
copula-like tool in multivariate spaces has been made by &i.€1996b).

To our knowledge, Li et al. (1996a) seems to be the only papersvbounds
on (1.1) and (1.2) are given. In the following, we correctsutegiven in the latter
paper and give improved bounds ag(s) and M,(s) for identically distributed
risks. While sharpness of the bounds holds for general $etsaagginals only in
the case of the sum of two rvs, we derive an explicit solutammfiultidimensional
uniform portfolios.

Concerning applications in insurance and finance, we givafiaition of mul-
tivariate Value-at-Risk

2. Preliminaries and fundamental duality results
2.1. Notation

Givenn (row) vectorsx, ..., X, € R, xi' indicates thej-th component of thé-

th vector, fori € N := {1,...,n} andj € K := {1,...,k}. Operations on and
relations between vectors are defined componentwisexe.g. (<) Xz iff x‘1 <
(<) ), forall j € K. On the contrary, we writg; £ (£) X whenx) > (=) )

for somej’ € K. Analogously, ak-valued real functionf is non-decreasingf
for all x;,x, € RK with x; < X, we havef(x;) < f(x). Given a dfF, L*(F)
denotes the class of all functiofis R — R which areF-integrable. For a vector
s = (s4,...,9) e RK, we use also the notation-¢o,s) := Hlj;l(—oo,sj) and
[s +o0) = ]’I'j‘:l[sj, +00). Finally, I stands for the unit interval on the real line and

the indicator function of the s& c RX is the function % : RK — {0, 1},

1 ifbeB,
0 otherwise

1g(b) := {

For reason of notational simplicity, throughout the papey,use the notatiow
both for vectors irRK as well in R¥)"; the appropriate meaning should always be
clear from the context.

2.2. The Main Duality Theorem

On some probability spac@(, P), let Xy, .. ., X, beRK-valued rvs having given
dfs Fi(x) = P[X] < X, j € K],i € N. Givenk measurable functions; : R" —
R, j € K, we define the function : (R¥)" — R as follows:

Y(X) =YX, ..., Xn) = (lﬂl(Xi,. . .,Xﬁ),...,lﬂk(xk,. . .,Xﬁ)).
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It will be useful to think aboulX := (Xi,...,X,) as a portfolio of one-period
multivariate insurance or financial risks. In this view, faactiony makes sense
if the risks are componentwise homogeneous.

Problems (1.1) and (1.2) have a dual counterpart, as statedrnachandran
and Riuschendorf (1995).

Theorem 2.1 (Main Duality Theorem).Let X4, ..., Xn, with n> 1, be rvs orRK
having marginal dfs I, ..., F,. Then

n

my(s) = s,up{Zf]Rk fidFi : fi e LY(Fi),i € N with
i=1

- 2.1)
D () < Lws (@) forall x e (]Rk)“},
i=1
M, (s) = inf ZfR fidF; : fi e LY(Fy),i € N with
=1 (2.2)

M:

fi(x) 2 Jgs.o () for all x € (24"},

1
iy

According to Lindvall (1992, (1.1)), we call every K¢ = (X$,...,XS) with
df in F(F4,...,Fn) acoupling Given a couplingX® and two sets of functions
f = (f,....f) andgd = (gu.....3n) which are admissible for (2.1), respectively
for (2.2), we obviously have that

P[y(X©) < 9)] = my(s) > Zf fidFi, (2.3)
i=1

P 2 9] < M9 < ). [ (2.4)
i=1

In this case we caflandg dual choicegor (2.1), respectively for (2.2). A coupling
and a dual choice which satisfy (2.3) ((2.4)) with two edfirdi will be called an
optimal couplingand adual solution respectively, since they solve problem (1.1)
((1.2)).

In the case of identically distributed rvs, Remark 2 ifila and Ruschendorf
(1981) can be easily adapted to give the following corollary

Corollary 1 (Reduced Duality). Under the assumptions of Theorem 2.1, letF
F,i € N andyj, j € K be symmetric, i.6/j(X1, ..., %) = ¥j(Xeq), - - - » Xo(n)) fOr
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all permutationsr- : N — N. Then

mA9=su4n fdF : f € LY(F) with

nfR (2.5)
D 100) < L g @(X) for all x € &, suppF)
i=1

Mugznnqn fdF : f € LY(F) with
nf]R (2.6)
D 16) > Loy W) for all x € L 5uppE) .

i=1

The dual formulations (2.1) and (2.2) are veryfidult to solve. For non-
decreasing functionalg, solutions under general marginal dfs are known only
whenk = 1 andn = 2; see Embrechts and Puccetti (2004). fcf +, the sum op-
erator, Li et al. (1996a) give,(s) for n = 2 and arbitrank. Finally, whenn > 2,
the only explicit solution known is given in Riischendorf&R) for the sum of
risks uniformly distributed on the unit interval.

3. Standard bounds

In line with Embrechts and Puccetti (2004), we ctdindard boundghose bounds
obtained by choosingiecewise-constamtual choices in (2.1) and (2.2).

Theorem 3.1.Let X4, ..., X, n > 1, be rvs onRK having marginals I, . .., Fy.
Letys,..., ¥k : R" - R be non-decreasing in each coordinate and increasing in
the last. Then, for everye R¥, we have

n-1 +
my(s) > sup [Z Fi(u) + Fa(un) -n+1{ , (3.1)
UE((R)k)”, i=1
Y(u)<s

where F;(un) := P[X) < ul, j € K].

Proof. Fix u e (R4)" with y(u) < sand define the functionf’, ..., fY,

=1...,n=-1,

ﬁ“(x) o {1/n if X < uj,

N
1/n—-1 otherwise

f:?(x):z 1/n |fx<ur1,
1/n-1 otherwise.

We show thatf" := (fY,..., f) is a dual choice for (2.1). SincglL, f <
>, 1/n =1, for admissibility it is séficient to show thaf. , fAi“(xi) < Oforevery
x € (R¥)" such thaty(x) ¢ s. For this, suppose that for soriie > ﬁ“()”(i) > 0.
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By definition of thef!s, this implies thatf!(X) = 1/n for everyi € N, yield-
ing % < uj,i =1,...n-1andX, < u,. Since they;'s are non-decreasing and
increasing in the last coordinate, we have
YR = (K, 8, k(L RK)
< (a(ud, ... uh), (UL )
=y(u) <s

which proves admissibility o, Substituting the‘Ai“’s in (2.1) we find
n-1
m(9) > 1/n| D (F() + (1= (1~ F(w)
i=1

+Fp(un) + (1 -n)(1 - Fy(un))

n—-

1
= Z Fi(ui) + F(up) —n+ 1.
i=1

Noting thatm, (s) is non-negative and taking the supremum oveual(R*)" such
thaty(u) < s, we get (3.1). O

We give an analogous bound fidf(s).

Theorem 3.2.Let X4, ..., X, n > 1, be rvs onR* having continuous marginals
Fi,...,Fn. Letyg, ..., ¥k : R" — R be increasing in each coordinate. Then, for
everys € R, we have

My (9) < ”wl((r%f)s min{l/z{n + ;(Ei(ui) - Fi(ui))] , 1}, (3.2)

whereF;(u;) := P[X) > U/, j e K],i € N.

Proof. The proof is analogous to that of Theorem (3.1), with the diraicef!
replaced by

0 if X < Ui, X # Ui,
fli: =41 ifx>u, JieN.
1/2 otherwise.

]

Remark 3.1The bound given by this theorem can be adapted to non-cantgu
marginals by adding () >;'; P[Xi = ui] to the first argument of the min operator
in (3.2).

For generali’s, (3.1) and (3.2) are fficult to calculate. In the case of the sum
of risks they reduce to easier expressions, as the folloaxagnple shows.



6 Paul Embrechts, Giovanni Puccetti

Example 3.1In case ofy; = +, j € K, we obtain

n-1 n-1 +
m.(s) > sup [ Fi(ui) + Fy {S—Zui]"”l g (33)
Uz,....un-1€R¥ L 27 i=1
n-1
M.(9) < sup min{l/z n+ Z(Ei(ui) - Fi(u))
U1,...,Un_1€RK i=1
N (3.4)

S-S

i=1 i=

Whenn = 2, (3.3) improves the rhs of Bound (2.5) in Li et al. (1996apt&\
that in that paper dfs are defined to be continuous from belbeveover, (3.4)
is the correct version of the rhs of.{2) in the above reference. In fact, as the
following counterexample shows, the latter is not correct.

Example 3.2Let X3, X, be bivariate rvs uniformly distributed on the unit square,
i.e.Xj - U(®),i =12 Fors=(1,1), (2.14) in Li et al. (1996a) gives

sup  P[X1+X2=(L,1)]= inf min{P[X1>u] +P[X;2>V],1}
F(U(I2),U(12)) u+v=(1,1)

< P[X; > (1,0)] + P[X5 > (0, 1)] = O.

This is wrong since it is possible to s)ég = (1,1) - X; to obtainP[ X + xg >
(1,1)] = 1. Itis not dificult to show that (3.4) provides the correct value in this
case.

In the univariate case, the bounds stated in Theorems 3.3.2rdle equivalent
and pointwise best-possible whei- 2; see Ruschendorf (1982). The correspond-
ing optimal coupling is given in Frank et al. (1987).

In the multivariate set-up, the situation isférent. Theorem 3.3 in Li et al.
(1996a) states sharpness of (3.3) for the sum ofkwariate risks. In the proof
of this theorem, which is based on Strassen (1965, Th. 1&)atlthors do not
actually use any continuity assumptions on the dfXf ¢ X,) and their result
holds for general sets of marginals. Note that in equatio) (8 the above paper
the last component inside the supremum shoul®{{é-,t — a]¢); see also (5)
in Ruschendorf (1982). The bound (3.4), though being ths-pessible standard
bound, behaves fierently. We show in Section 6 that the latter is not sharp even
whenn = k = 2. We also remark that Theorem 11 in Strassen (1965) cannot be
applied in this case.

4. Uniform multivariate marginals

In this section, we provide optimal couplings solving pexhk (1.1) and (1.2)
in the case of the sum of rvs uniformly distributed BnThe following theorem
explores the two-dimensional case.
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Theorem 4.1.Let X; and X, be rvs uniformly distributed off ands € [0, +).
Then

k

m.(9 =] |9, (4.1)
j=1
k

M9 =] [@-9). (42)
j=1

where8 := min{[s) — 1]*, 1}, j € K.

Proof. First, note that the coupling defined in Example 3.2 yieldg1) = O,
wherel := (1,1). Since we trivially haven,(21) = 1, it sufices to consider
se[1,2]k

With respect to (4.1), tak&$ ~ U(I¥) and letX§ = F(X$), where the function
F : I¥ — I¥is defined as follows:

F(x) = X ) |fx<§
1+5-x otherwise.

Note thatxg has univariate marginals uniformly distributed briMoreover, for
j1 # jo, the random variablexs " and X" depend only i< and X;'?, re-
spectively. Since the latter are independent, the vé(“.fds uniformly distributed
onIk. For everyj € K, we have that

.
+ X =

Cj
X 2

{2xfj <28 <s ifx<9d,
1

1+8 =4 otherwise.

Hencem,(s) < P[X$ + XS < §] = ][, §. To prove the converse inequality, we
show that the functiori : R — R; f(x) := (1/2)1~3(X) is an admissible choice
for (2.5). Since 2 < 1, itis suficient to fix arbitrary vectors,, x, € R€ and check
thatf(xy)+ f(x2) > 0 impliesx; +Xz < s. Under such an hypothesis, it is necessary
that at leasftf (x;) = 1/2, say. It follows thak; < §, implyingx; + X <5+ 1=s.
Hence,f is admissible in (2.5) anth,(s) > 2 f, fdU(I¥) = H'le 8. The proof
for (4.2) follows analogously by choosing the same coupéing the dual choice
fiRK > R, f(X) := (1/2) Yz 100 (X). o

Remark 4.1The first part of the above proof is not necessary since (4.1
plied by Li et al. (1996a, Th. 3.3). However, ocoupling-dualapproach avoids
complicated multivariate optimizations.

The following theorem, which we prove in Appendix A, providen optimal
coupling of more than two risks, hence extending Rischérf@i®82, Th. 1) to the
multivariate set-up.

Theorem 4.2.Let X, ..., Xx,1 be rvs uniformly distributed off ands € [k, k +
1]%. Then '
Mk+1-s)

M.(s) = ki

(4.3)
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B A
A g C 5 ¢
X X¢ X¢

Fig. 4.1.0ptimal coupling in Theorem 4.2 whén= 2.

Remark 4.2Figure 5.1, right, illustrates (4.3). It is important to pbout the fol-
lowing remarks.

(i) The optimal coupling in the three-dimensional case,chhs illustrated in
Figure 4.1, is defined by

X§ = X1, X§ = F(X$) andX§ = F o F(X%),
whereF : 12 — 12,

F(X) = (_Xl_ §X2+Sl,§xl) if X€A2,
X otherwise,

with Ag = {x e I2: 32, £ < 1),

(i) In the proof of this theorem, which we give in Appendix #e show that
an upper bound oM, (s) is available for alls € [0, +o0),k > 2 andn >
2. Unfortunately, it seems fiicult to provide optimal couplings in general
dimensions.

(iii) 1t seems dificult to find m,(s) for the sum of more than two rvs even under
the uniform-marginal assumption. A lower bound on the tattdue will be
computed using Theorem 5.2 below.

(iv) Note that the optimal coupling defined in the proof of ®hem 4.1 is simply
the product of the optimal univariate couplings given irsBliendorf (1982,
(210)). Unfortunately, the same technique does not workied-dimensional
(i.e n = 3) multivariate (i.ek > 2) vectors.

5. Non-negative, identically distributed risks

Whenn > 2 and the fixed marginal dfs are not uniform, it idhdiult to find
m, (s) andM..(s). In Section 3, we used piecewise-constant functions asssibte
choices to produce so-called standard bounds. If we retdrthe case of the sum
of non-negative identically distributed risks, it is pdasito findpiecewise-linear
choices yielding improved bounds. Recall from Corollaryhattif f, 5 are dual
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choices for (2.5) and (2.6), respectively, then we have
m.(s) > nf fdF, (5.1)
Rk
M. (9) < nf gdF. (5.2)
Rk

Theorem 5.1.Let X1,...,X,, n > 1, be rvs onR¥ identically distributed as F, a
non-negative, continuous df. Then, for every[0, +), we have

m,(S) = n sup f; () dF(x), (5.3)
y€[0,2s) V[0, +0)

where

[X —*
f,(x):=1/n- mm{max ,1},

sl —nyl
for fixedy = (y%,...,9¥) € [0, 19).

Proof. By (5.1) and considerations above, we have to show thaFtheegrable
function f; is admissible for problem (2.5), i.e. that for everyg &[0, +o0) we
have thatZ, 1 () < Lo, 9(ZiL1 xi). SinceX, f, < n(1/n) = 1, we fixx such
thaty', x; « sand show thaf ', f;(x;) < 0.If f; (xA) = 1/n—- 1for soms € N,
then, f(xi) = £,06) + Zis £, 06) < 1/n— 1+ (n— 1)/n = 0. Hence we can

restrict tox; € njzl[o, sl — (n-1)yl),i € N with 37, xl‘ > d for somej € K.
Define the setb :={i e N : X/ <), j € K}andl := N\ | and note that

ixj=2x§+2x§zsi

i=1 iel iel

Sincexij < yi wheni € I, we have that
S'X > o -y,
i€l

Finally, we can write

X =yl
Zf (i) = n(d/n) - Zmﬁxsl—nyl <1- Z S

i€l

(Sier X = #170) 1 (s — #lyl — #1y))

=1- = =
Sl—nyl sl —ny!

=0.

The theorem follows from arbitrariness ok &, [0, +). O

Remark 5.1There are several points worth noting regarding this theore
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(i) For ¥ tending to%s, and for the dfs of actuaridinancial interest used in
Section 6,f; converges in the sup-norm to an admissible choice yieldiag t
standard bound (3.3). Consequently, the dual bound (5aB\isys betterx)
than (3.3). In Section 6 we will show that for such dfs it isuadly strictly
better &).

(i) If F = min{G,...,G} for a univariate, continuous, non-negativeGlf the
support ofF is the setix € R : x! = ... = xX}; see (27) in Dhaene et al.
(2002). In this special case, fef = ° > 0, j € K, (5.3) reduces to

+00
m.(s) > n sup f0(X)dG(x), (5.4)
7°e[0.£) VO

where

Dl
f*o()(): 1/n—w |fX€[O.,so—(n—1)’)/0),
L4 1/n-1 otherwise.
It is easy to check that (5.4) corresponds to (4.4) in Emtiseghd Puccetti

(2004). In fact, under the df = min{G, ..., G} we have thaP[X! = X1, j €
K] =1,i € N, implying

P{anxi <(s°,...,s°)} =P{anxil<s°},
i1

i=1

which is a univariate problem. Of course, it is also possiblénd (5.4) by
settingk = 1 ands! = <°. To this extent, Theorem 5.1 extends Embrechts and
Puccetti (2004, Th. 4.2).

Theorem 5.1 can be used to compute a lower bounthds) in the case of
uniform marginals. The results of the optimizations arensh Figure 5.1, left.
Our next theorem gives an upper bound\dgy(s).

TN
: \\\\\\ |

B \\\s\ TN \\
™ RERRN \

2 21 22 23 24 25 26 27 28 29 3 2 21 22 23 24 25 26 27 28 29 3
B

Fig. 5.1. Level sets for the dual bound (5.3) an.(s!,s?) (left) and for the function
M, (st, &) (right) for three rvs uniformly distributed on the unit sae.
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Theorem 5.2.Let Xy,...,X,, n > 1, be rvs onR¥ identically distributed as F, a
non-negative, continuous df. Then, for evegy[0, +x), we have

M,(s) <n |nf f, (X)dF(x), (5.5)
y€l0, 5) [0,+00)
where
¥ oy . _
b= | EEE eI, 5
5+ 21, 100(X) Otherwise,
for fixedy = (y%,...,%*) € [0, 9), withy := ¥yl and s:= 3%, & .

Proof. By (5.2) and considerations above, we have to show thaFtheegrable
function f; is admissible for (2.6), i.e. that for evexye ®, [0, +o0) we have that
ity £(%) = Lsie0)(ZiLy Xi). Sincef is non-negative, we fix with ¥, x; > s
and show thaf! fy(x) > 1. Itwill be useful to divide the proof in two steps.

Step 1: Suppose that; € [T%_; [O, Sr’]‘{ ) i € N and define the seis:=
fi: 2 X <y}h1:=N\T. Then, we have

z”: fr(xi) = Zn: [Zhax - 7]+ _ Ziel K - #ly

S—ny S—ny
S s—#ly-—#ly _
S—ny

Step 2: Suppose that! > Sj’yj > vl for somei € N andj € K. Assume
also thatx‘ < vl for somej’ # j. In this casef(x;) = 1/2. If x;, does not lie
in 15,0, g 1') for somei’ # i, thenX, f(x;) > 1/2 + 1/2 = 1. If, instead,
Xi € ﬂ, 1[0, = 1)foralll # i, we have

. gl — 4l . .,
S =S e <5 et

i"#i i"#i

which is contrary to our assumpt|on Finally, consider theecwhere there exists

i € N such thalxi > n‘y for somej € K with x' >y forall | # j. In this
particular casg'; f;(xi) > f;(xi) =
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Admissibility of 7 follows from the arbitrariness of € ®_ [0, +c0). O
Remark 5.2Remark 5.1, (i) and (ii) hold analogously for this theorem.

In the univariate-marginal case there isaural choice of the linear function
yielding the so-calledual bound see Embrechts and Puccetti (2004, Th. 4.2). In
the multivariate setting, instead, that choice is not gtréiorward. Of course, if
f andg are two dual choices for (2.5) (resp. (2.6)) with> (<) g, then f will
provide a better lower (upper) boundimm(s) (M.(s)) for all possible sets of fixed
marginals and non-negative vecter€On the contrary, iff andg are not ordered
in such a way, then it is possible to find a@for which eitherg provides a better
bound thanf or viceversa. For instance, consider the following functio

K oxi—qy]f
g,(x) = min{%, 1}. (5.6)

It follows easily from Step 1, thap, is a dual choice for (2.6). Sineg, does not
include any standard dual choice as a particular case, itfaibio improve the
corresponding bound (3.4). However, it turns out #igyields a bound which is
better than (5.5) in many cases of interest. When severattoaes are available,
an overall better bound is produced by taking the pointwiggmunymaximum
among the corresponding bounds. We will follow this metHodg in Section 6.
An end-user working with some particular fixed marginal dfsynfind it useful

to construct arad-hocadmissible choice yielding a very good bound within the
specific context.

6. Applications

In this section, we illustrate the bounds provided by Thew®.1 and 5.2 within

a financialinsurance risk management context. Random vectors wittfagned to

as portfolios, the individual random sub-vectors as ri$ks.consider portfolios
of identically distributed, non-negative risks. As fixedngiaals, we consider two
bivariate dfs of actuarial and financial interest. The firg ¢s thebivariate Pareto
whose tail functiorFg, 8 > 0 is defined in Nelsen (1999, Ex. 2.14). The second
one, which we calbivariate Log-Normalis the product of two univariate Log-
Normal dfs with parameterg{(c?). In the following, except as stated otherwise,
we takef) = 0.9, u = —0.2 ando? = 1.

In Figure 6.1, we give standard and dual boundsPpH;, X; < (s, 9)] for
two- and three-dimensional portfolios of bivariate riské& stress that the standard
bound (3.3) cannot be improved whes: 2. On the contrary, whem= 3, the dual
bound provided in (5.3) is strictly better than the standadnd (3.3) for all non-
negative thresholds Figure 6.2 illustrates the analogous boundsFgr., X;i >
(s 9)]. We refer to thedual bound on M(s) as the pointwise minimum between
the two bounds provided by (5.5) and by the admissible chgii@n in (5.6). Note
that the bound (3.4) is improved also for two-dimensionatfptios.

In the plots to follow, thecomonotonic scenari@s the case in whicl?[X; =
X1,i € N] = 1.
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Fig. 6.1.Range forP[}Y[; X; < (s, 9)] for two and three risks identically distributed as a
bivariate Pareto or Log-Normal df. Together with the contoni situation, we represent
the standard bound (3.3) and the dual bound (5.3).

6.1. Multivariate Value-at-Risk

An important issue for a risk manager concerning a riskytposiX is to deter-
mine the maximum aggregate loss which can occur with sormengivobability
a. For portfolios of univariate risks, Value-at-Risk, e.getr-quantile of the loss
df, serves this purpose.

Definition 6.1. For a € [0, 1], the Value-at-Riskat probability levela for a ran-
dom variable Y is ite-quantile, defined as

VaR,(Y) ;= inf{x e R : G(X) > a},
where G is the df of Y.

If G is increasing, VaR(Y) is the unique thresholtat whichG(t) = a. With
univariate marginalsn;l(a) is the largest VaRy /(X)) overF(Fy, ..., Fp).

With multivariate marginals, Definition 6.1 does not makassesince, even
for a continuous df, there are possibly infinitely many vectars R* at which
G(s) = a. Moreover, we may ask which events regardiri) should be relevant
for risk management.

Once the multivariate marginals of a portfolio are fixedpfra risk manage-
ment viewpoint, one should be interested in bounding fromvakithe probabil-
ity that the aggregate loss amount will exceed some givesstiaid in all pol-
icy subgroups, i.eP[y(X)} > sl, j € K]. Moreover, the probability that none of
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Fig. 6.2.Range forP[Y[; X; > (s, 9)] for two and three risks identically distributed as a
bivariate Pareto or Log-Normal df. Together with the contoni situation, we represent
the standard bound (3.4) and the dual bound/is).

the aggregate loss position for each subgroup will exceeisiean ghreshold, i.e.
Ply(X)! < g, j € K], should be bounded from below. Problems (1.1) and (1.2) are
exactly the mathematical reformulation of these two tasks.

An intuitive and immediate measure of the risk involved in altidariate loss
df G is represented by itg-level sets. Considering also thelevel sets of the tail
G leads to the following definition.

Definition 6.2. For « € [0, 1], the multivariate lower-orthant (LO-) Value-at-Risk
at probability levekr for a non-decreasing function GRK — R is the boundary
of its a-level set, defined as

VaR (G) : = d{x € R : G(x) = a}.

Analogously, themultivariate upper-orthant (UO-) Value-at-Risk at prottigb
level @ for a non-increasing functio® : R — R is defined as

VaR,(G) : = d{x e R*: G(X) < 1 - a}.

If G is a df, orG is a tail function, we speak aboulue-at-Risls for the associated
rvs.
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Thea-VaRs form, andM, provide conservative estimates of the/aRs for

the aggregate logg(X). In fact, if x; € VaR (m,) andx, € VaR,(M.), we have
that

P[y(X) < 9] > «a for everys > Xy,
P[y(X) > 5] < 1- a for everys > x,.

We refer to VaR(m,) andVaR,(M,) as theworst-possible/alue-at-Risks for the
risky positiony/(X). When it is not possible to computs, and M,, exactly, the
a-VaRs for the corresponding dual bounds still provide corative estimates, as
stated in (2.3) and (2.4).

In Figure 6.3, we show worst-possible LO-VaRs for the sunwaf Pareto and
Log-Normal bivariate risks, while, in Figure 6.4, we progidO-VaRs for the dual
bound onM,, in case of three-dimensional portfolios.

An advantage of our approach is that every dual bound candilg eamputed
for large values oh; see Figure 6.5.

T
° o,
® %

T
1
:
wl g g o8 - \
a =]
25 ©
8
5
2

90—

160
140

120

o
H
% 100 S o, % 15
H s\o
80
10
60 —

5 7\07‘07
09 08
2 09

<60

0 20 40 60 80 100 120 140 160 180 200 0 5 10 15 20 25 30
¢

¢

Fig. 6.3.Worst-possible LO-VaRs for the sum of two bivariate Paréte (L.2 for the dotted
line) (left) and Log-Normal (right) distributed risks.

7. Conclusions

Embrechts and Puccetti (2004) propose a dual approachdqrtblem of deter-
mining bounds for functions of dependent risks having fixedariate marginals.
In this paper we give an extension of all results containetthénlatter article to
multivariate marginals. Correcting a result in Li et al. 968), we state so-called
standard bounds for general functions of the underlyingarvd give improved
dual bounds for the sum of non-negative, identically distied risks. We also de-
rive an optimal coupling in the case of marginals which ariéaumly distributed
on thek-dimensional hypercube. Finally, we provide some actlarid financial
applications, including a new definition of multivariatelva-at-Risk.
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Fig. 6.4.UO-VaRs for the dual bound o, for the sum of three bivariate Pareto£ 1.2
for the dotted line) (left) and Log-Normal (right) distrited risks.

Fig. 6.5.Range forP[Y>, X; < (s 9)] (left) andP[Y2, X;i = (s, 9)] (right) for a bivariate
Log-Normal portfolio.
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A. Proof of Theorem 4.2

Recall from Example 3.2 that X is uniformly distributed ori so is (L—X). Then,
for se [k k + 1]¥it is possible to write:

[ k+1

M..(9) = sup{P D Xizs| X - U(JI")}
Li=1

[ k+1
= sup{P Z(l— Xi)<(k+11-s|: X~ U(}I")}

Li=1

k+1
= sup{P qu <(k+1)1-s|: X~ U(]Ik)}.

Li=1
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Hence, to prove the theorem, itfues to show that, fos € (0, 1],

k+1

K g
in <s|i X - U(]Ik)} = H’;l.
- ki

sup{P

Define the set#y = {x € I¥ : Z‘j‘zlgi < 1}, Ac = I\ A and the function
Filk>IK

F(x) = XT+b ifxe A
o otherwise,

whereb := (s!,0,...,0) and

—;gg.. 0
050
-5 00... 0
T:= .§.
~&00... &
£ 00...0

We further denot&©@(x) := x, FO(x) := F o F(-1(x),r > 1. There are several
facts abouf that we will need in the following.

Fact 1: |det(T)| = 1.
Adding to the first column oT thei-th column, 2< i < k, multiplied by%l— and
exchanging the first and the last column of the matrix so abthiwe obtain the

matrix
¢ s S sl)
$FFE)
which satisfiesdet(T)| = | det(T’)| = 1.

Fact 2: F(A) = Ax.
For everyx € A we have that

T = diag(

=1 s st r=1 r=2 g -
k X
l frd f— —
F(x)! = 51[1 D sr]zo,
r=1
Ll
F(x) = W12 502« j <Kk

implying thatF(Ac) c Ax. Moreover, for anyy € Ay, there is a unique vector
Xy := (y — b)T 1 with coordinates

. gl . . J
xglzwy“lZO,J =1,...k—1,x‘;=sk[1—zy—.]20,
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which satisfied=(xy) = y and

implying also that(Ax) D Ax.
Fact3: YK FO(x) = s, for everyx € A
First, note that fok € Ay,

j i gi-1
()i = S pl-Dyi- = S5~ £(i-2)y)i-2
F (X) - Sj’lF (X) - Sj,l Sj,zl: (X)
K or (A.1)
. 1_
= ZFl=¢ [1— D g)
r=1
IfO <i < j <k, we have instead
. C i
FOx)i = 2 Fi-Dgi-t = 3 S -2y
si-1 si-1gi-2 (A.2)
sl NPPRE- B '
=0 = Sj—i+lF(X)J I+l _ 5)(] I'
We prove now by induction that for every 2, ...,k we have that
) 1 xk-i+2 o
FOx)?! = slskfj+2,2§ j<i. (A.3)

Equation (A.3) is true for = 2. In fact,

Then, assume that (A.3) holds witk: j < k. Note that

2 2 -1 2
F(')(X)r — ép(l—l)(x)r—l _ %%F(I—Z)(X)r—z
s

F(i—r+1)(x)1’

:g

whenr = 1,...,j—1. Since 2< j—r +1 < |, and using the induction hypothesis,
we conclude that

g Xk—i+r—1+2 Xk—i+r+1

§ _ =2 foralll<r<j-1
S K J+r=1+2 K-+l

FOx) =
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Now we can prove (A.3) by showing that

F(+D(x)L K ED(x)
Wty 3 FO0
S — s

. = FO () ) Fd(x)! ) ko EOx)
r=1 s s r=j+1 s
=1 k-jer+l Koo ko or-j k—j+1

X X X X

=1- Sk7,+r+1_1+2§_z_7]=5k7]+1

r=1 r=1 r=j+1 g
Finally, we use (A.1), (A.2) and (A.3) to show that
Z FOx) = x + Z FOx) + FDx)l + Z FO(x)]
r=0 r=1 r=j+1
-1 i K Ko
. Cxlr ) X | )

=x + s ? +9 [1 - Z —] + Z ilF(F”l)(X)l
r=1 s r=1 s r—j+1 S
-1 K—r+j+1

. XJ r X i .
— yl - j _ J_ =
=X +r=1 sl'+s Zs +rZJJ;SSk”I+1_S’

forall j € K andx € Ax.

Now we are ready to prove the theorem using the usoapling-dualapproach.
Let X; be uniformly distributed ori* and denote withu the corresponding

measureF(X,) is still uniformly distributed. In fact, for any fixed BorektB in

I¥, and recalling thaF x and Fia are one-to-one, itis true that

pF[Bl = plx € I : F(x) € B = " [BN AJ + uF[BNA)]

_ A.4

= u[F (BN A)] +u[F (BN AY]. A
SinceF1(Bn A c A andF1(Bn A c A, (A.4) gives
4 [B] = u[F (BN AJ] + ulld(B N A

(A.5)

= ﬂ[F‘Ak(Bm Ak)] +,Ll[Bﬂ Ak]

Fia(y) is an dfine transformation of the forgT~* — bT~* with |det(T™)|
|(detT)~}| = 1. By Billingsley (1995, pp.172-173) we have tlﬂ!i{iFlAk(B N A)]
u[B N AJ and hence, from (A.5), that"[B] = u[(BN AW)] + u[B N AJ = u[B].
We conclude thaF()(X;) —~ U(I¥) for all j € K. Therefore, we can define the
following coupling:

XC:=FOD(Xy),i=1,... k+1
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Sinceyk , F"(x) = sfor everyx € A, we get, for alls € I¥,

k+1

j
Zxc<s > P[X$ € A = H, 15

We prove the opposite inequality by finding an admissibléadgielding the same
value for the corresponding dual problem:

k+1

sup{P[;Xi ss]:xi ~U@M),1<i<k+ 1}

= inf{k+ 1 f fdU(¥) : f e LL(U () with (A.6)
Tk

k+1 k+1
RIOE 1(_WS]{ZX] forallx e X, 1<i<k+ 1}

i=1 i=1

As dual choice we choose the functién I — R : f(x) = [1 - Z, 1 S,]* Since

f > 0, it is sufficient to fix an arbitrari € I¥ such thatzf““l1 x <sl,jeK, and

show thatz"*l f(xi) = 1. Define the setb:={i e N : Z] 1 2 <1,T:=N\I.As

k13 % <1, e K,we have that

k k+1 XIJ k+1 k X] k X-] k XiJ
DN EPIPI- B EPIPN
= j j j

j=1 i=1 i=1 j=1 s el j=1 s el =1

Since} 4 Z] 1 , >#I the latter yields Z, 1
write

IA

k—#l. Finally, we can

@l

k+1

D00 = > Fa) + Do) = ) ()
i=1 i i

iel iel i€l

= # - ZZ_>#| k-#)=k+1-k=1,

el j=1
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which gives admissibility of . Substitutingf in (A.6), we obtain
sup{P
1
k .
X!
<(k+1 1-> —
<(k+ )ﬁ ; ~
s pf-%) (-3t 9 Ky .
:(k+1)f f Slf T =Y S e X))
o Jo 0 = s
S )
=(k+ 1)f f
$H-2id ) s(- L) ‘sk(lfzﬁ;i =)
0 2 0
(k+ 1) fsl fsz(lib
= > A

$a-TE Ny (KT )
s _ ~ k-1 j
fo 1 Z 5| @)

k+1

inss :XimU(]Ik),lsisk+1}

i=
+

®Ij(:1 (dx)

®f1 (dx)

_ s
I
which concludes the proof. It is easy to show that the fumcfi¢x) = [1 -

nd ¥k £1* is a dual choice for (A.6) for alk € [0,+0),k > 2 andn > 2.
Hence an upper bound dW, (s) is always available; see Remark 4.2 (ii).
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