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Abstract. Li, Scarsini, and Shaked (1996a) provide bounds on the distribution and the
tail for functions of dependent random vectors having fixed multivariate marginals. In this
paper, we correct a result stated in the above article and we give improved bounds in the case
of the sum of identically distributed random vectors. Moreover, we provide the dependence
structures meeting the bounds when the fixed marginals are uniformly distributed on the
k-dimensional hypercube. Finally, a definition of a multivariate risk measure is given along
with actuarial/financial applications.
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1. Introduction

In this paper we provide bounds on the distribution and on thetail for functions of
dependent risks having fixed multivariate marginals. Givena measurable function
ψ : (Rk)n → Rk andk-variate random vectors (rvs)X1, . . . ,Xn on some proba-
bility space (Ω,A, P), with associated distribution functions (dfs)F1, . . . , Fn, we
investigate:

mψ(s) := inf{P[ψ(X1, . . . ,Xn) < s] : X i v Fi , 1 ≤ i ≤ n}, s ∈ Rk, (1.1)

Mψ(s) := sup{P[ψ(X1, . . . ,Xn) ≥ s] : X i v Fi , 1 ≤ i ≤ n}, s ∈ Rk. (1.2)

In the univariate case (k = 1) the above problems are equivalent and have received
a considerable interest in the literature, see Embrechts and Puccetti (2004) and
references therein. On the contrary, the multivariate-marginal set-up (k > 1), which
constitutes a natural framework for risk management, has not been given much
attention.

In fact, dealing with multivariate marginals causes extra problems. As shown
in Scarsini (1989), the concept ofcopula(see Nelsen (1999, Def. 2.10.6)) as a tool
to generate dfs from a set of marginals, becomes inadequate when dealing with the
product of multivariate spaces. Compared to the univariate-marginal situation, this
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is a great disadvantage. Indeed, ifk = 1 andF1, . . . , Fn are continuous, then the
set ofn-dimensional copulas is isomorphic to the Fréchet classF(F1, . . . , Fn) of
dfs on (Rk)n having such marginals. Moreover, Genest et al. (1995, Prop.A) state
that in the multivariate case the only copula generating a dfin F(F1, . . . , Fn) for all
possible choices of theFi ’s is the independence measureΠn

i=1Fi . This fact guar-
antees that the above problems at least make sense. The construction of different
elements inF(F1, . . . , Fn) has been treated in Cohen (1984); Rüschendorf (1985);
Sánchez Algarra (1986); Marco and Ruiz-Rivas (1992), while an effort to create a
copula-like tool in multivariate spaces has been made by Li et al. (1996b).

To our knowledge, Li et al. (1996a) seems to be the only paper where bounds
on (1.1) and (1.2) are given. In the following, we correct a result given in the latter
paper and give improved bounds onmψ(s) and Mψ(s) for identically distributed
risks. While sharpness of the bounds holds for general sets of marginals only in
the case of the sum of two rvs, we derive an explicit solution for multidimensional
uniform portfolios.

Concerning applications in insurance and finance, we give a definition ofmul-
tivariate Value-at-Risk.

2. Preliminaries and fundamental duality results

2.1. Notation

Given n (row) vectorsx1, . . . , xn ∈ R
k, x j

i indicates thej-th component of thei-
th vector, fori ∈ N := {1, . . . , n} and j ∈ K := {1, . . . , k}. Operations on and
relations between vectors are defined componentwise, e.g.x1 ≤ (<) x2 iff x j

1 ≤

(<) x j
2, for all j ∈ K. On the contrary, we writex1 � (≮) x2 when x j′

1 > (≥) x j′

2
for some j′ ∈ K. Analogously, ak-valued real functionf is non-decreasingif
for all x1, x2 ∈ R

k with x1 ≤ x2, we havef (x1) ≤ f (x2). Given a dfF, L1(F)
denotes the class of all functionsf : Rk → R which areF-integrable. For a vector
s = (s1, . . . , sk) ∈ Rk, we use also the notation (−∞, s) :=

∏k
j=1(−∞, sj) and

[s,+∞) :=
∏k

j=1[sj ,+∞). Finally, I stands for the unit interval on the real line and
the indicator function of the setB ⊂ Rk is the function 1B : Rk → {0, 1},

1B(b) :=















1 if b ∈ B,

0 otherwise.

For reason of notational simplicity, throughout the paper,we use the notationx
both for vectors inRk as well in (Rk)n; the appropriate meaning should always be
clear from the context.

2.2. The Main Duality Theorem

On some probability space (Ω,A, P), let X1, . . . ,Xn beRk-valued rvs having given
dfs Fi(xi) = P[X

j
i ≤ x j

i , j ∈ K], i ∈ N. Givenk measurable functionsψ j : Rn →

R, j ∈ K, we define the functionψ : (Rk)n→ Rk as follows:

ψ(x) = ψ(x1, . . . , xn) := (ψ1(x1
1, . . . , x

1
n), . . . , ψk(xk

1, . . . , x
k
n)).
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It will be useful to think aboutX := (X1, . . . ,Xn) as a portfolio of one-period
multivariate insurance or financial risks. In this view, thefunctionψ makes sense
if the risks are componentwise homogeneous.

Problems (1.1) and (1.2) have a dual counterpart, as stated in Ramachandran
and Rüschendorf (1995).

Theorem 2.1 (Main Duality Theorem).Let X1, . . . ,Xn, with n> 1, be rvs onRk

having marginal dfs F1, . . . , Fn. Then

mψ(s) = sup
{

n
∑

i=1

∫

Rk
fidFi : fi ∈ L1(Fi), i ∈ N with

n
∑

i=1

fi(xi) ≤ 1(−∞,s)(ψ(x)) for all x ∈ (Rk)n
}

,

(2.1)

Mψ(s) = inf
{

n
∑

i=1

∫

Rk
fidFi : fi ∈ L1(Fi), i ∈ N with

n
∑

i=1

fi(xi) ≥ 1[s,+∞)(ψ(x)) for all x ∈ (Rk)n
}

.

(2.2)

According to Lindvall (1992, (1.1)), we call every rvXC = (XC
1 , . . . ,X

C
n ) with

df in F(F1, . . . , Fn) a coupling. Given a couplingXC and two sets of functions
f̂ = ( f̂1, . . . , f̂n) andĝ = (ĝ1, . . . , ĝn) which are admissible for (2.1), respectively
for (2.2), we obviously have that

P[ψ(XC) < s)] ≥ mψ(s) ≥
n

∑

i=1

∫

Rk
f̂idFi , (2.3)

P[ψ(XC) ≥ s)] ≤ Mψ(s) ≤
n

∑

i=1

∫

Rk
ĝidFi . (2.4)

In this case we call̂f andĝ dual choicesfor (2.1), respectively for (2.2). A coupling
and a dual choice which satisfy (2.3) ((2.4)) with two equalities will be called an
optimal couplingand adual solution, respectively, since they solve problem (1.1)
((1.2)).

In the case of identically distributed rvs, Remark 2 in Gaffke and Rüschendorf
(1981) can be easily adapted to give the following corollary.

Corollary 1 (Reduced Duality). Under the assumptions of Theorem 2.1, let Fi =

F, i ∈ N andψ j , j ∈ K be symmetric, i.e.ψ j(x1, . . . , xn) = ψ j(xσ(1), . . . , xσ(n)) for
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all permutationsσ : N→ N. Then

mψ(s) = sup
{

n
∫

Rk
f dF : f ∈ L1(F) with

n
∑

i=1

f (xi) ≤ 1(−∞,s)(ψ(x)) for all x ∈ ⊗n
i=1supp(F)

}

,

(2.5)

Mψ(s) = inf
{

n
∫

Rk
f dF : f ∈ L1(F) with

n
∑

i=1

f (xi) ≥ 1[s,+∞)(ψ(x)) for all x ∈ ⊗n
i=1supp(F)

}

.

(2.6)

The dual formulations (2.1) and (2.2) are very difficult to solve. For non-
decreasing functionalsψ, solutions under general marginal dfs are known only
whenk = 1 andn = 2; see Embrechts and Puccetti (2004). Forψ = +, the sum op-
erator, Li et al. (1996a) givemψ(s) for n = 2 and arbitraryk. Finally, whenn > 2,
the only explicit solution known is given in Rüschendorf (1982) for the sum of
risks uniformly distributed on the unit interval.

3. Standard bounds

In line with Embrechts and Puccetti (2004), we callstandard boundsthose bounds
obtained by choosingpiecewise-constantdual choices in (2.1) and (2.2).

Theorem 3.1.Let X1, . . . ,Xn, n > 1, be rvs onRk having marginals F1, . . . , Fn.
Letψ1, . . . , ψk : Rn → R be non-decreasing in each coordinate and increasing in
the last. Then, for everys ∈ Rk, we have

mψ(s) ≥ sup
u∈(Rk)n,
ψ(u)≤s

















n−1
∑

i=1

Fi(ui) + F−n (un) − n+ 1

















+

, (3.1)

where F−n (un) := P[X j
n < u j

n, j ∈ K].

Proof. Fix u ∈ (Rk)n with ψ(u) ≤ sand define the functionŝf u
1 , . . . , f̂ u

n ,

f̂ u
i (x) : =















1/n if x ≤ ui ,

1/n− 1 otherwise
, i = 1, . . . , n− 1,

f̂ u
n (x) : =















1/n if x < un,

1/n− 1 otherwise.

We show that̂f u := ( f̂ u
1 , . . . , f̂ u

n ) is a dual choice for (2.1). Since
∑n

i=1 f̂ u
i ≤

∑n
i=1 1/n = 1, for admissibility it is sufficient to show that

∑n
i=1 f̂ u

i (xi) ≤ 0 for every
x ∈ (Rk)n such thatψ(x) ≮ s. For this, suppose that for somex̃,

∑n
i=1 f̂ u

i (x̃i) > 0.



Bounds for Functions of Multivariate Risks 5

By definition of the f̂ u
i ’s, this implies thatf̂ u

i (x̃i) = 1/n for every i ∈ N, yield-
ing x̃i ≤ ui , i = 1, . . .n − 1 andx̃n < un. Since theψi ’s are non-decreasing and
increasing in the last coordinate, we have

ψ(x̃) = (ψ1(x̃1
1, . . . , x̃

1
n), . . . , ψk(x̃

k
1, . . . , x̃

k
n))

< (ψ1(u1
1, . . . , u

1
n), . . . , ψk(uk

1, . . . , u
k
n))

= ψ(u) ≤ s,

which proves admissibility of̂f u. Substituting thef̂ u
i ’s in (2.1) we find

mψ(s) ≥ 1/n

[ n−1
∑

i=1

(Fi(ui) + (1− n)(1− Fi(ui)))

+ F−n (un) + (1− n)(1− F−n (un))

]

=

n−1
∑

i=1

Fi(ui) + F−n (un) − n+ 1.

Noting thatmψ(s) is non-negative and taking the supremum over allu ∈ (Rk)n such
thatψ(u) ≤ s, we get (3.1). �

We give an analogous bound forMψ(s).

Theorem 3.2.Let X1, . . . ,Xn, n > 1, be rvs onRk having continuous marginals
F1, . . . , Fn. Letψ1, . . . , ψk : Rn → R be increasing in each coordinate. Then, for
everys ∈ Rk, we have

Mψ(s) ≤ inf
u∈(Rk)n,
ψ(u)≤s

min















1/2















n+
n

∑

i=1

(F i(ui) − Fi(ui))















, 1















, (3.2)

whereF i(ui) := P[X j
i ≥ u j

i , j ∈ K], i ∈ N.

Proof. The proof is analogous to that of Theorem (3.1), with the dualchoicef̂ u

replaced by

f̂ u
i (x) : =



























0 if x ≤ ui , x , ui ,

1 if x ≥ ui ,

1/2 otherwise.

, i ∈ N.

�

Remark 3.1.The bound given by this theorem can be adapted to non-continuous
marginals by adding (1/2)

∑n
i=1 P[Xi = ui ] to the first argument of the min operator

in (3.2).

For generalψi ’s, (3.1) and (3.2) are difficult to calculate. In the case of the sum
of risks they reduce to easier expressions, as the followingexample shows.
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Example 3.1.In case ofψ j = +, j ∈ K, we obtain

m+(s) ≥ sup
u1,...,un−1∈R

k

[ n−1
∑

i=1

Fi(ui) + F−n

















s−
n−1
∑

i=1

ui

















− n+ 1

]+

, (3.3)

M+(s) ≤ sup
u1,...,un−1∈R

k

min

{

1/2

[

n+
n−1
∑

i=1

(F i(ui) − Fi(ui))

+ Fn

















s−
n−1
∑

i=1

ui

















− Fn

















s−
n−1
∑

i=1

ui

















]

, 1

}

.

(3.4)

Whenn = 2, (3.3) improves the rhs of Bound (2.5) in Li et al. (1996a). Note
that in that paper dfs are defined to be continuous from below.Moreover, (3.4)
is the correct version of the rhs of (2.14) in the above reference. In fact, as the
following counterexample shows, the latter is not correct.

Example 3.2.Let X1,X2 be bivariate rvs uniformly distributed on the unit square,
i.e.X i v U(I2), i = 1, 2. Fors= (1, 1), (2.14) in Li et al. (1996a) gives

sup
F(U(I2),U(I2))

P[X1 + X2 ≥ (1, 1)] = inf
u+v=(1,1)

min{P[X1 ≥ u] + P[X2 ≥ v], 1}

≤ P[X1 ≥ (1, 0)] + P[X2 ≥ (0, 1)] = 0.

This is wrong since it is possible to setXC
2 = (1, 1)− X1 to obtainP[X1 + XC

2 ≥

(1, 1)] = 1. It is not difficult to show that (3.4) provides the correct value in this
case.

In the univariate case, the bounds stated in Theorems 3.1 and3.2 are equivalent
and pointwise best-possible whenn = 2; see Rüschendorf (1982). The correspond-
ing optimal coupling is given in Frank et al. (1987).

In the multivariate set-up, the situation is different. Theorem 3.3 in Li et al.
(1996a) states sharpness of (3.3) for the sum of twok-variate risks. In the proof
of this theorem, which is based on Strassen (1965, Th. 11), the authors do not
actually use any continuity assumptions on the df of (X1 + X2) and their result
holds for general sets of marginals. Note that in equation (3.3) in the above paper
the last component inside the supremum should beP1((−∞, t − a]c); see also (5)
in Rüschendorf (1982). The bound (3.4), though being the best-possible standard
bound, behaves differently. We show in Section 6 that the latter is not sharp even
whenn = k = 2. We also remark that Theorem 11 in Strassen (1965) cannot be
applied in this case.

4. Uniform multivariate marginals

In this section, we provide optimal couplings solving problems (1.1) and (1.2)
in the case of the sum of rvs uniformly distributed onIk. The following theorem
explores the two-dimensional case.
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Theorem 4.1.Let X1 andX2 be rvs uniformly distributed onIk ands ∈ [0,+∞).
Then

m+(s) =
k

∏

j=1

ŝj , (4.1)

M+(s) =
k

∏

j=1

(1− ŝj), (4.2)

whereŝj := min{[sj − 1]+, 1}, j ∈ K.

Proof. First, note that the coupling defined in Example 3.2 yieldsm+(1) = 0,
where1 := (1, 1). Since we trivially havem+(21) = 1, it suffices to consider
s ∈ [1, 2]k.

With respect to (4.1), takeXC
1 v U(Ik) and letXC

2 = F(XC
1 ), where the function

F : Ik → Ik is defined as follows:

F(x) :=















x if x < ŝ,
1+ ŝ− x otherwise.

Note thatXC
2 has univariate marginals uniformly distributed onI. Moreover, for

j1 , j2, the random variablesXC j1
2 andXC j2

2 depend only onXC j1
1 andXC j2

1 , re-
spectively. Since the latter are independent, the vectorXC

2 is uniformly distributed
on Ik. For everyj ∈ K, we have that

XC j
1 + XC j

2 =















2XC j
1 < 2ŝj ≤ sj if XC j

1 < ŝj ,

1+ ŝj = sj otherwise.

Hencem+(s) ≤ P[XC
1 + XC

2 < s] =
∏n

i=1 ŝj . To prove the converse inequality, we
show that the functionf : Rk → R; f (x) := (1/2)1(−∞,ŝ)(x) is an admissible choice
for (2.5). Since 2f ≤ 1, it is sufficient to fix arbitrary vectorsx1, x2 ∈ R

k and check
that f (x1)+ f (x2) > 0 impliesx1+x2 < s. Under such an hypothesis, it is necessary
that at leastf (x1) = 1/2, say. It follows thatx1 < ŝ, implying x1 + x2 < ŝ+ 1 = s.
Hence, f is admissible in (2.5) andm+(s) ≥ 2

∫

Ik
f dU(Ik) =

∏k
j=1 ŝj . The proof

for (4.2) follows analogously by choosing the same couplingand the dual choice
f : Rk → R, f (x) := (1/2)1[ŝ,+∞)(x). �

Remark 4.1.The first part of the above proof is not necessary since (4.1) is im-
plied by Li et al. (1996a, Th. 3.3). However, ourcoupling-dualapproach avoids
complicated multivariate optimizations.

The following theorem, which we prove in Appendix A, provides an optimal
coupling of more than two risks, hence extending Rüschendorf (1982, Th. 1) to the
multivariate set-up.

Theorem 4.2.Let X1, . . . ,Xk+1 be rvs uniformly distributed onIk ands ∈ [k, k +
1]k. Then

M+(s) =

∏k
j=1(k+ 1− sj)

k!
. (4.3)
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Fig. 4.1.Optimal coupling in Theorem 4.2 whenk = 2.

Remark 4.2.Figure 5.1, right, illustrates (4.3). It is important to point out the fol-
lowing remarks.

(i) The optimal coupling in the three-dimensional case, which is illustrated in
Figure 4.1, is defined by

XC
1 = X1,XC

2 = F(XC
1 ) andXC

3 = F ◦ F(XC
1 ),

whereF : I2→ I2,

F(x) :=















(−x1 − s1

s2 x2 + s1, s2

s1 x1) if x ∈ A2,

x otherwise,

with A2 := {x ∈ I2 :
∑2

j=1
x j

sj ≤ 1}.
(ii) In the proof of this theorem, which we give in Appendix A,we show that

an upper bound onM+(s) is available for alls ∈ [0,+∞), k ≥ 2 andn ≥
2. Unfortunately, it seems difficult to provide optimal couplings in general
dimensions.

(iii) It seems difficult to findm+(s) for the sum of more than two rvs even under
the uniform-marginal assumption. A lower bound on the latter value will be
computed using Theorem 5.2 below.

(iv) Note that the optimal coupling defined in the proof of Theorem 4.1 is simply
the product of the optimal univariate couplings given in Rüschendorf (1982,
(10)). Unfortunately, the same technique does not work for three-dimensional
(i.e n = 3) multivariate (i.ek ≥ 2) vectors.

5. Non-negative, identically distributed risks

When n > 2 and the fixed marginal dfs are not uniform, it is difficult to find
m+(s) andM+(s). In Section 3, we used piecewise-constant functions as admissible
choices to produce so-called standard bounds. If we restrict to the case of the sum
of non-negative identically distributed risks, it is possible to findpiecewise-linear
choices yielding improved bounds. Recall from Corollary 1 that if f̂ , ĝ are dual
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choices for (2.5) and (2.6), respectively, then we have

m+(s) ≥ n
∫

Rk
f̂ dF, (5.1)

M+(s) ≤ n
∫

Rk
ĝdF. (5.2)

Theorem 5.1.Let X1, . . . ,Xn, n > 1, be rvs onRk identically distributed as F, a
non-negative, continuous df. Then, for everys ∈ [0,+∞), we have

m+(s) ≥ n sup
γ∈[0, 1

n s)

∫

[0,+∞)
f ∗
γ
(x)dF(x), (5.3)

where

f ∗
γ
(x) : = 1/n−min

{

max
j∈K

[x j − γ j ]+

sj − nγ j
, 1

}

,

for fixedγ = (γ1, . . . , γk) ∈ [0, 1
ns).

Proof. By (5.1) and considerations above, we have to show that theF-integrable
function f ∗

γ
is admissible for problem (2.5), i.e. that for everyx ∈ ⊗n

i=1[0,+∞) we
have that

∑n
i=1 f ∗

γ
(xi) ≤ 1(−∞,s)(

∑n
i=1 xi). Since

∑n
i=1 f ∗

γ
≤ n(1/n) = 1, we fixx such

that
∑n

i=1 xi ≮ sand show that
∑n

i=1 f ∗
γ
(xi) ≤ 0. If f ∗

γ
(xî) = 1/n− 1 for somêi ∈ N,

then
∑n

i=1 f ∗
γ
(xi) = f ∗

γ
(xî) +

∑

i,î f ∗
γ
(xi) ≤ 1/n− 1+ (n− 1)/n = 0. Hence we can

restrict toxi ∈
∏k

j=1[0, sj − (n − 1)γ j), i ∈ N with
∑n

i=1 x ĵ
i ≥ sĵ for some ĵ ∈ K.

Define the setsI := {i ∈ N : x j
i ≤ γ

j , j ∈ K} andI := N \ I and note that

n
∑

i=1

x ĵ
i =

∑

i∈I

x ĵ
i +

∑

i∈I

x ĵ
i ≥ sĵ .

Sincex ĵ
i ≤ γ

ĵ wheni ∈ I , we have that

∑

i∈I

x ĵ
i ≥ sĵ − #Iγ ĵ .

Finally, we can write

n
∑

i=1

f ∗
γ
(xi) = n(1/n) −

∑

i∈I

max
j∈K

x j
i − γ

j

sj − nγ j
≤ 1−

∑

i∈I

x ĵ
i − γ

ĵ

sĵ − nγ ĵ

= 1−
(
∑

i∈I x ĵ
i − #Iγ ĵ)

sĵ − nγ ĵ
= 1−

(sĵ − #Iγ ĵ − #Iγ ĵ)

sĵ − nγ ĵ
= 0.

The theorem follows from arbitrariness ofx ∈ ⊗n
i=1[0,+∞). �

Remark 5.1.There are several points worth noting regarding this theorem.
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(i) For γ tending to 1
ns, and for the dfs of actuarial/financial interest used in

Section 6,f ∗
γ

converges in the sup-norm to an admissible choice yielding the
standard bound (3.3). Consequently, the dual bound (5.3) isalways better (≥)
than (3.3). In Section 6 we will show that for such dfs it is actually strictly
better (>).

(ii) If F = min{G, . . . ,G} for a univariate, continuous, non-negative dfG, the
support ofF is the set{x ∈ Rk : x1 = · · · = xk}; see (27) in Dhaene et al.
(2002). In this special case, forsj = so ≥ 0, j ∈ K, (5.3) reduces to

m+(s) ≥ n sup
γo∈[0, so

n )

∫ +∞

0
f ∗γo(x)dG(x), (5.4)

where

f ∗γo(x) =















1/n− [x−γo]+

so−nγo if x ∈ [0, so − (n− 1)γo),

1/n− 1 otherwise.

It is easy to check that (5.4) corresponds to (4.4) in Embrechts and Puccetti
(2004). In fact, under the dfF = min{G, . . . ,G} we have thatP[X j

i = X1
i , j ∈

K] = 1, i ∈ N, implying

P















n
∑

i=1

X i < (so, . . . , so)















= P















n
∑

i=1

X1
i < so















,

which is a univariate problem. Of course, it is also possibleto find (5.4) by
settingk = 1 ands1 = so. To this extent, Theorem 5.1 extends Embrechts and
Puccetti (2004, Th. 4.2).

Theorem 5.1 can be used to compute a lower bound onm+(s) in the case of
uniform marginals. The results of the optimizations are shown in Figure 5.1, left.
Our next theorem gives an upper bound onMψ(s).
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Fig. 5.1. Level sets for the dual bound (5.3) onm+(s1, s2) (left) and for the function
M+(s1, s2) (right) for three rvs uniformly distributed on the unit square.
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Theorem 5.2.Let X1, . . . ,Xn, n > 1, be rvs onRk identically distributed as F, a
non-negative, continuous df. Then, for everys ∈ [0,+∞), we have

M+(s) ≤ n inf
γ∈[0, 1

n s)

∫

[0,+∞)
f ∗
γ
(x)dF(x), (5.5)

where

f ∗
γ
(x) :=



















[

∑k
j=1 x j−γ

]+

s−nγ if x ∈
∏k

j=1[0, sj−γ j

n−1 ),
1
2 +

1
21[γ,+∞)(x) otherwise,

for fixedγ = (γ1, . . . , γk) ∈ [0, 1
ns), with γ :=

∑k
j=1 γ

j and s:=
∑k

j=1 sj .

Proof. By (5.2) and considerations above, we have to show that theF-integrable
function f ∗

γ
is admissible for (2.6), i.e. that for everyx ∈ ⊗n

i=1[0,+∞) we have that
∑n

i=1 f ∗
γ
(xi) ≥ 1[s,+∞)(

∑n
i=1 xi). Since f ∗

γ
is non-negative, we fixx with

∑n
i=1 xi ≥ s

and show that
∑n

i=1 f ∗
γ
(xi) ≥ 1. It will be useful to divide the proof in two steps.

Step 1: Suppose thatxi ∈
∏k

j=1

[

0, sj−γ j

n−1

)

, i ∈ N and define the setsI :=

{i :
∑k

j=1 x j
i ≤ γ}, I := N \ I . Then, we have

s≤
k

∑

j=1

n
∑

i=1

x j
i =

n
∑

i=1

k
∑

j=1

x j
i =

∑

i∈I

k
∑

j=1

x j
i +

∑

i∈I

k
∑

j=1

x j
i ,

which, by definition ofI , leads to

∑

i∈I

k
∑

j=1

x j
i ≥ s−

∑

i∈I

k
∑

j=1

x j
i ≥ s− #Iγ.

Hence, we can write

n
∑

i=1

f ∗
γ
(xi) =

n
∑

i=1

[

∑k
j=1 x j

i − γ
]+

s− nγ
=

∑

i∈I
∑k

j=1 x j
i − #Iγ

s− nγ

≥
s− #Iγ − #Iγ

s− nγ
= 1.

Step 2: Suppose thatx j
i ≥

sj−γ j

n−1 ≥ γ
j for somei ∈ N and j ∈ K. Assume

also thatx j′

i < γ j′ for some j′ , j. In this casef (xi) = 1/2. If xi′ does not lie

in
∏k

j=1[0, sj−γ j

n−1 ) for somei′ , i, then
∑n

i=1 f ∗
γ
(xi) ≥ 1/2 + 1/2 = 1. If, instead,

xi′ ∈
∏k

j=1[0, sj−γ j

n−1 ) for all i′ , i, we have

n
∑

i=1

x j′

i =
∑

i′,i

x j′

i′ + x j′

i <
∑

i′,i

sj′ − γ j′

n− 1
+ γ j′ = sj′ ,

which is contrary to our assumption. Finally, consider the case where there exists
i ∈ N such thatx j

i ≥
sj−γ j

n−1 for some j ∈ K with x j′

i ≥ γ j′ for all j′ , j. In this
particular case

∑n
i=1 f ∗

γ
(xi) ≥ f ∗

γ
(xi) = 1.
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Admissibility of f ∗
γ

follows from the arbitrariness ofx ∈ ⊗n
i=1[0,+∞). �

Remark 5.2.Remark 5.1, (i) and (ii) hold analogously for this theorem.

In the univariate-marginal case there is anatural choice of the linear function
yielding the so-calleddual bound; see Embrechts and Puccetti (2004, Th. 4.2). In
the multivariate setting, instead, that choice is not straightforward. Of course, if
f andg are two dual choices for (2.5) (resp. (2.6)) withf ≥ (≤) g, then f will
provide a better lower (upper) bound onm+(s) (M+(s)) for all possible sets of fixed
marginals and non-negative vectorss. On the contrary, iff andg are not ordered
in such a way, then it is possible to find a dfG for which eitherg provides a better
bound thanf or viceversa. For instance, consider the following function:

g∗
γ
(x) := min



















[

∑k
j=1 x j − γ

]+

s− nγ
, 1



















. (5.6)

It follows easily from Step 1, thatg∗
γ

is a dual choice for (2.6). Sinceg∗
γ

does not
include any standard dual choice as a particular case, it mayfail to improve the
corresponding bound (3.4). However, it turns out thatg∗

γ
yields a bound which is

better than (5.5) in many cases of interest. When several dual choices are available,
an overall better bound is produced by taking the pointwise minimum/maximum
among the corresponding bounds. We will follow this methodology in Section 6.
An end-user working with some particular fixed marginal dfs may find it useful
to construct anad-hocadmissible choice yielding a very good bound within the
specific context.

6. Applications

In this section, we illustrate the bounds provided by Theorems 5.1 and 5.2 within
a financial/insurance risk management context. Random vectors will be referred to
as portfolios, the individual random sub-vectors as risks.We consider portfolios
of identically distributed, non-negative risks. As fixed marginals, we consider two
bivariate dfs of actuarial and financial interest. The first one is thebivariate Pareto,
whose tail functionFθ, θ > 0 is defined in Nelsen (1999, Ex. 2.14). The second
one, which we callbivariate Log-Normal, is the product of two univariate Log-
Normal dfs with parameters (µ, σ2). In the following, except as stated otherwise,
we takeθ = 0.9, µ = −0.2 andσ2 = 1.

In Figure 6.1, we give standard and dual bounds onP[
∑n

i=1 X i < (s, s)] for
two- and three-dimensional portfolios of bivariate risks.We stress that the standard
bound (3.3) cannot be improved whenn = 2. On the contrary, whenn = 3, the dual
bound provided in (5.3) is strictly better than the standardbound (3.3) for all non-
negative thresholdss. Figure 6.2 illustrates the analogous bounds forP[

∑n
i=1 X i ≥

(s, s)]. We refer to thedual bound on Mψ(s) as the pointwise minimum between
the two bounds provided by (5.5) and by the admissible choicegiven in (5.6). Note
that the bound (3.4) is improved also for two-dimensional portfolios.

In the plots to follow, thecomonotonic scenariois the case in whichP[X i =

X1, i ∈ N] = 1.
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Fig. 6.1.Range forP[
∑n

i=1 X i < (s, s)] for two and three risks identically distributed as a
bivariate Pareto or Log-Normal df. Together with the comonotonic situation, we represent
the standard bound (3.3) and the dual bound (5.3).

6.1. Multivariate Value-at-Risk

An important issue for a risk manager concerning a risky position X is to deter-
mine the maximum aggregate loss which can occur with some given probability
α. For portfolios of univariate risks, Value-at-Risk, e.g. theα-quantile of the loss
df, serves this purpose.

Definition 6.1. For α ∈ [0, 1], theValue-at-Riskat probability levelα for a ran-
dom variable Y is itsα-quantile, defined as

VaRα(Y) := inf{x ∈ R : G(x) ≥ α},

where G is the df of Y.

If G is increasing, VaRα(Y) is the unique thresholdt at whichG(t) = α. With
univariate marginals,m−1

ψ (α) is the largest VaRα(ψ(X)) overF(F1, . . . , Fn).
With multivariate marginals, Definition 6.1 does not make sense since, even

for a continuous dfG, there are possibly infinitely many vectorss ∈ Rk at which
G(s) = α. Moreover, we may ask which events regardingψ(X) should be relevant
for risk management.

Once the multivariate marginals of a portfolio are fixed, from a risk manage-
ment viewpoint, one should be interested in bounding from above the probabil-
ity that the aggregate loss amount will exceed some given threshold in all pol-
icy subgroups, i.e.P[ψ(X) j ≥ sj , j ∈ K]. Moreover, the probability that none of
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Fig. 6.2.Range forP[
∑n

i=1 X i ≥ (s, s)] for two and three risks identically distributed as a
bivariate Pareto or Log-Normal df. Together with the comonotonic situation, we represent
the standard bound (3.4) and the dual bound onM+(s).

the aggregate loss position for each subgroup will exceed a given threshold, i.e.
P[ψ(X) j < sj , j ∈ K], should be bounded from below. Problems (1.1) and (1.2) are
exactly the mathematical reformulation of these two tasks.

An intuitive and immediate measure of the risk involved in a multivariate loss
df G is represented by itsα-level sets. Considering also theα-level sets of the tail
G leads to the following definition.

Definition 6.2. For α ∈ [0, 1], themultivariate lower-orthant (LO-) Value-at-Risk
at probability levelα for a non-decreasing function G: Rk → R is the boundary
of itsα-level set, defined as

VaR
α
(G) : = ∂{x ∈ Rk : G(x) ≥ α}.

Analogously, themultivariate upper-orthant (UO-) Value-at-Risk at probability
levelα for a non-increasing functionG : Rk → R is defined as

VaRα(G) : = ∂{x ∈ Rk : G(x) ≤ 1− α}.

If G is a df, orG is a tail function, we speak aboutValue-at-Risks for the associated
rvs.
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Theα-VaRs formψ andMψ provide conservative estimates of theα-VaRs for
the aggregate lossψ(X). In fact, if x1 ∈ VaR

α
(m+) andx2 ∈ VaRα(M+), we have

that

P[ψ(X) < s] ≥ α for everys> x1,

P[ψ(X) ≥ s] ≤ 1− α for everys> x2.

We refer to VaR
α
(mψ) andVaRα(Mψ) as theworst-possibleValue-at-Risks for the

risky positionψ(X). When it is not possible to computemψ and Mψ exactly, the
α-VaRs for the corresponding dual bounds still provide conservative estimates, as
stated in (2.3) and (2.4).

In Figure 6.3, we show worst-possible LO-VaRs for the sum of two Pareto and
Log-Normal bivariate risks, while, in Figure 6.4, we provide UO-VaRs for the dual
bound onMψ in case of three-dimensional portfolios.

An advantage of our approach is that every dual bound can be easily computed
for large values ofn; see Figure 6.5.
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Fig. 6.3.Worst-possible LO-VaRs for the sum of two bivariate Pareto (θ = 1.2 for the dotted
line) (left) and Log-Normal (right) distributed risks.

7. Conclusions

Embrechts and Puccetti (2004) propose a dual approach for the problem of deter-
mining bounds for functions of dependent risks having fixed univariate marginals.
In this paper we give an extension of all results contained inthe latter article to
multivariate marginals. Correcting a result in Li et al. (1996a), we state so-called
standard bounds for general functions of the underlying rvsand give improved
dual bounds for the sum of non-negative, identically distributed risks. We also de-
rive an optimal coupling in the case of marginals which are uniformly distributed
on thek-dimensional hypercube. Finally, we provide some actuarial and financial
applications, including a new definition of multivariate Value-at-Risk.
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A. Proof of Theorem 4.2

Recall from Example 3.2 that ifX is uniformly distributed onIk so is (1−X). Then,
for s ∈ [k, k+ 1]k it is possible to write:

M+(s) = sup















P

















k+1
∑

i=1

X i ≥ s

















: Xi v U(Ik)















= sup















P

















k+1
∑

i=1

(1− X i) ≤ (k+ 1)1− s

















: X i v U(Ik)















= sup















P

















k+1
∑

i=1

X′ i ≤ (k+ 1)1− s

















: X′ i v U(Ik)















.
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Hence, to prove the theorem, it suffices to show that, fors ∈ (0, 1]k,

sup















P

















k+1
∑

i=1

X i ≤ s

















: X i v U(Ik)















=

∏k
j=1 sj

k!
.

Define the setsAk := {x ∈ Ik :
∑k

j=1
x j

sj ≤ 1}, Ak := Ik \ Ak and the function
F : Ik → Ik,

F(x) :=















xT + b if x ∈ Ak

x otherwise,

whereb := (s1, 0, . . . , 0) and

T :=































































−1 s2

s1 0 . . . 0
− s1

s2 0 s3

s2 . . . 0
− s1

s3 0 0 . . . 0
...

...
...
. . .

...

− s1

sk−1 0 0 . . . sk

sk−1

− s1

sk 0 0 . . . 0































































.

We further denoteF(0)(x) := x, F(r)(x) := F ◦ F(r−1)(x), r ≥ 1. There are several
facts aboutF that we will need in the following.

Fact 1: | det(T)| = 1.
Adding to the first column ofT the i-th column, 2≤ i ≤ k, multiplied by s1

si and
exchanging the first and the last column of the matrix so obtained, we obtain the
matrix

T′ := diag

(

s2

s1
,

s3

s2
, . . . ,

sk

sk−1
,−

s1

sk

)

,

which satisfies| det(T)| = | det(T′)| = 1.
Fact 2: F(Ak) = Ak.

For everyx ∈ Ak we have that

k
∑

j=1

F(x) j

sj
=

1
s1

















s1 −

k
∑

r=1

s1

sr
xr

















+

k
∑

r=2

1
sr

sr

sr−1
xr−1 = 1−

xk

sk
≤ 1,

F(x)1 = s1

















1−
k

∑

r=1

xr

sr

















≥ 0,

F(x) j = x j−1 sj

sj−1
≥ 0, 2 ≤ j ≤ k,

implying that F(Ak) ⊂ Ak. Moreover, for anyy ∈ Ak, there is a unique vector
xy := (y − b)T−1 with coordinates

x j
y =

sj

sj+1
y j+1 ≥ 0, j = 1, . . .k− 1, xk

y = sk

















1−
k

∑

j=1

y j

sj

















≥ 0,
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which satisfiesF(xy) = y and

k
∑

j=1

x j
y

sj
=

k−1
∑

j=1

y j+1

sj+1
+ 1−

k
∑

j=1

y j

sj
= 1−

y1

s1
≤ 1,

implying also thatF(Ak) ⊃ Ak.
Fact 3:

∑k
r=0 F(r )(x) = s, for everyx ∈ Ak.

First, note that forx ∈ Ak,

F( j)(x) j =
sj

sj−1
F( j−1)(x) j−1 =

sj

sj−1

sj−1

sj−2
F( j−2)(x) j−2

= · · · =
sj

s1
F(x)1 = sj

















1−
k

∑

r=1

xr

sr

















.

(A.1)

If 0 ≤ i < j ≤ k, we have instead

F(i)(x) j =
sj

sj−1
F(i−1)(x) j−1 =

sj

sj−1

sj−1

sj−2
F(i−2)(x) j−2

= · · · =
sj

sj−i+1
F(x) j−i+1 =

sj

sj−i
x j−i .

(A.2)

We prove now by induction that for everyi = 2, . . . , k we have that

F( j)(x)1 = s1 xk− j+2

sk− j+2
, 2 ≤ j ≤ i. (A.3)

Equation (A.3) is true fori = 2. In fact,

F(2)(x)1 = s1

















1−
k

∑

r=1

F(x)r

sr

















= s1

















1−
F(x)1

s1
−

k
∑

r=2

1
sr

sr

sr−1
xr−1

















= s1 xk

sk
.

Then, assume that (A.3) holds withi = ĵ < k. Note that

F( ĵ)(x)r =
sr

sr−1
F( ĵ−1)(x)r−1 =

sr

sr−1

sr−1

sr−2
F( ĵ−2)(x)r−2

= · · · =
sr

s1
F( ĵ−r+1)(x)1,

whenr = 1, . . . , ĵ − 1. Since 2≤ ĵ − r + 1 ≤ ĵ, and using the induction hypothesis,
we conclude that

F( ĵ)(x)r =
sr

s1
s1 xk− ĵ+r−1+2

sk− ĵ+r−1+2
= sr xk− ĵ+r+1

sk− ĵ+r+1
, for all 1 ≤ r ≤ ĵ − 1.
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Now we can prove (A.3) by showing that

F( ĵ+1)(x)1

s1
= 1−

k
∑

r=1

F( ĵ)(x)r

sr

= 1−
ĵ−1
∑

r=1

F( ĵ)(x)r

sr
−

F( ĵ)(x) ĵ

sĵ
−

k
∑

r= ĵ+1

F( ĵ)(x)r

sr

= 1−
ĵ−1
∑

r=1

xk− ĵ+r+1

sk− ĵ+r+1
− 1+

k
∑

r=1

xr

sr
−

k
∑

r= ĵ+1

xr− ĵ

sr− ĵ
=

xk− ĵ+1

sk− ĵ+1
.

Finally, we use (A.1), (A.2) and (A.3) to show that

k
∑

r=0

F(r)(x) j = x j +

j−1
∑

r=1

F(r)(x) j + F( j)(x) j +

k
∑

r= j+1

F(r)(x) j

= x j +

j−1
∑

r=1

sj x j−r

sj−r
+ sj

















1−
k

∑

r=1

xr

sr

















+

k
∑

r= j+1

sj

s1
F(r− j+1)(x)1

= x j +

j−1
∑

r=1

sj x j−r

sj−r
+ sj −

k
∑

r=1

sj xr

sr
+

k
∑

r= j+1

sj xk−r+ j+1

sk−r+ j+1
= sj ,

for all j ∈ K andx ∈ Ak.

Now we are ready to prove the theorem using the usualcoupling-dualapproach.
Let X1 be uniformly distributed onIk and denote withµ the corresponding

measure.F(X1) is still uniformly distributed. In fact, for any fixed BorelsetB in
Ik, and recalling thatF|Ak andF

|Ak are one-to-one, it is true that

µF [B] := µ[x ∈ Ik : F(x) ∈ B] = µF [B∩ Ak] + µF [B∩ Ak)]

= µ[F−1(B∩ Ak)] + µ[F−1(B∩ Ak)].
(A.4)

SinceF−1(B∩ Ak) ⊂ Ak andF−1(B∩ Ak) ⊂ Ak, (A.4) gives

µF [B] = µ[F−1
|Ak(B∩ Ak)] + µ[Id(B∩ Ak]

= µ[F−1
|Ak(B∩ Ak)] + µ[B∩ Ak].

(A.5)

F−1
|Ak

(y) is an affine transformation of the formyT−1 − bT−1 with | det (T−1)| =
|(detT)−1| = 1. By Billingsley (1995, pp.172–173) we have thatµ[F−1

|Ak(B∩ Ak)] =

µ[B∩ Ak] and hence, from (A.5), thatµF [B] = µ[(B∩ Ak)] + µ[B∩ Ak] = µ[B].
We conclude thatF( j)(X1) v U(Ik) for all j ∈ K. Therefore, we can define the
following coupling:

XC
i : = F(i−1)(X1), i = 1, . . . , k+ 1.
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Since
∑k

r=0 F(r )(x) = s for everyx ∈ Ak, we get, for alls ∈ Ik,

P

















k+1
∑

i=1

XC
i ≤ s

















≥ P[XC
1 ∈ Ak] =

∏k
j=1 sj

k!
.

We prove the opposite inequality by finding an admissible choice yielding the same
value for the corresponding dual problem:

sup
{

P

[ k+1
∑

i=1

X i ≤ s
]

: X i v U(Ik), 1 ≤ i ≤ k+ 1
}

= inf
{

k+ 1
∫

Ik
f dU(Ik) : f ∈ L1(U(Ik)) with

k+1
∑

i=1

fi(xi) ≥ 1(−∞,s]

















k+1
∑

i=1

X i

















for all xi ∈ I
k, 1 ≤ i ≤ k+ 1

}

.

(A.6)

As dual choice we choose the functionf : Ik → R : f (x) = [1 −
∑k

j=1
x j

sj ]+. Since

f ≥ 0, it is sufficient to fix an arbitraryx ∈ Ik such that
∑k+1

i=1 x j
i ≤ sj , j ∈ K, and

show that
∑k+1

i=1 f (xi) ≥ 1. Define the setsI := {i ∈ N :
∑k

j=1
x j

i

sj ≤ 1}, I := N \ I . As
∑k+1

i=1
x j

i

sj ≤ 1, j ∈ K,we have that

k ≥
k

∑

j=1

k+1
∑

i=1

x j
i

sj
=

k+1
∑

i=1

k
∑

j=1

x j
i

sj
=

∑

i∈I

k
∑

j=1

x j
i

sj
+

∑

i∈I

k
∑

j=1

x j
i

sj
.

Since
∑

i∈I

∑k
j=1

x j
i

sj > #I , the latter yields
∑

i∈I
∑k

j=1
x j

i

sj ≤ k− #I . Finally, we can
write

k+1
∑

i=1

f (xi) =
∑

i∈I

f (xi) +
∑

i∈I

f (xi) =
∑

i∈I

f (xi)

= #I −
∑

i∈I

k
∑

j=1

x j

sj
≥ #I − (k− #I) = k+ 1− k = 1,
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which gives admissibility off . Substitutingf in (A.6), we obtain

sup















P

















k+1
∑

i=1

X i ≤ s

















: X i v U(Ik), 1 ≤ i ≤ k+ 1















≤ (k+ 1)
∫

Ik

















1−
k

∑

j=1

x j

sj

















+

⊗k
j=1 (dxj)

= (k+ 1)
∫ s1

0

∫ s2(1− x1

s1
)

0
. . .

∫ sk(1−
∑k−1

j=1
xj

sj )

0

















1−
k

∑

j=1

x j

sj

















⊗k
j=1 (dxj)

= (k+ 1)
∫ s1

0

∫ s2(1− x1

s1
)

0
. . .

∫ sk−1(1−
∑k−2

j=1
xj

sj )

0
−

sk(1−
∑k

j=1
x j

sj )2

2

∣

∣

∣

∣

sk(1−
∑k−1

j=1
xj

sj )

0
⊗k−1

j=1 (dxj)

=
(k+ 1)sk

2

∫ s1

0

∫ s2(1− x1

s1
)

0
. . .

∫ sk−1(1−
∑k−2

j=1
xj

sj )

0

















1−
k−1
∑

j=1

x j

sj

















2

⊗k−1
j=1 (dxj)

= · · · =

∏k
j=1 sj

k!
,

which concludes the proof. It is easy to show that the function f (x) := [1 −
n−1

k

∑k
j=1

x j

sj ]+ is a dual choice for (A.6) for alls ∈ [0,+∞), k ≥ 2 andn ≥ 2.
Hence an upper bound onM+(s) is always available; see Remark 4.2 (ii).
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