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Abstract

In various stochastic models the random equation S L YoS of implicit renewal theory
appears where the real random variable S and the stochastic process ¥ with index space
and state space R are independent. By use of stochastic approximation the distribution
function of S is recursively estimated on the basis of independent or ergodic copies of W.
Under integrability assumptions a.s. Li-convergence is proved. The choice of gains in the
recursion is discussed. Applications are given to insurance mathematics (perpetuities)

and queueing theory (stationary waiting and queueing times).
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1. Introduction

Within so-called “implicit renewal theory”, investigated by Goldie (1991), the following
random equation is crucial:

SLUos, (1)

where the real-valued random variable S is defined on a probability space (2,4, P) and
¥ : R xQ — Ris BQA-B-measurable such that S and ¥ are independent. Here ¥ =
{U(t,-); t € R} can be considered as a stochastic process with state space R or as a
random variable with values in M(R,R), the space of B-B-measurable functions from R

to R; the right-hand side of (1) is given by
(Vo S)w)=Y(S(w),w), weN.

A distribution of S solving (1) is a fix-point of W. Under suitable conditions a unique
distributional fix-point exists (see the literature in Goldie (1991), especially Letac (1986)).
Goldie (1991) investigated the asymptotic behaviour of the corresponding distribution
function and gave numerous examples, together with other references, especially Kesten
(1973). Further examples and references can be found in Aebi, Embrechts and Mikosch
(1994) and in Embrechts and Goldie (1994). For an application of equations of the type
(1) to stochastic volatility models in mathematical finance, see Embrechts, Klueppelberg

and Mikosch (1997, Section 8.4).

In the present paper a stochastic approximation method for recursive estimation of the
distribution function of S is proposed. It is assumed that an independent or a stationary
ergodic sequence of copies Wy, Wy, ... of U can be observed or at least obtained by the

observation of another sequence. Under regularity assumptions, mainly an integrability



assumption of contraction type on W, one obtains almost sure L;-convergence of a recur-
sively defined estimation sequence to the distribution function of S (Theorem 2). The
proof is based on a general result on linear recursions in a Banach space for the ergodic
case and for more general recursions in the independence case (Theorem 1 (Walk and
Zsid6 (1989)) together with Corollary 1). Applications of Theorem 2 concern so-called
perpetuities. These are a.s. limits of stochastically discounted sums, encountered in insur-
ance mathematics and finance (see Aebi, Embrechts and Mikosch (1994), Embrechts and
Goldie (1994), Goldie and Griibel (1996)). Another application concerns the stationary
waiting and queueing times for a G/G/1 queue (as to the context with (1) see section 5
in Goldie (1991)). The application in queueing theory allows to estimate the stationary
waiting or queueing time distribution sequentially on the basis of observed independent
interarrival times and service times under sharpened integrability assumptions. Also in
the case that the distribution of ¥ is known or, on the basis of a finite sample observa-
tion, approximately known, one can estimate the distribution function of S by the rather
simple recursion using an i.i.d. simulation sequence with the same or approximately the
same distribution as W. While this bootstrap method is based on (1), the bootstrap
method of Aebi, Embrechts and Mikosch (1994) in the context of perpetuities is based on
their definition by sums or series. The recursive procedure is of stochastic approximation
type. When applying these results, one has a large freedom in the choice of the gain
sequence (a,) and the starting estimate. The choice «,, = ¢/n with ¢ not too small yields
an optimal order of Ly-convergence under slightly sharpened regularity assumptions. In
order to obtain also an optimal limit covariance structure the averaging concept of Polyak

(1990) and Ruppert (1991) with slower decreasing (a,) and subsequent averaging of the



estimates is used (Corollary 2).
2. Results on convergence

We first formulate a deterministic result on stochastic approximation procedures for
linear problems in a Banach space (see Walk and Zsid6 (1989), Theorem 1 and Corollary
1, and the literature cited there). It will be used later. In the procedure a so-called gain
sequence (a,) with a,, € [0,1), &, = 0 (n — 00), 3" @, = oo appears which can be freely

chosen, e.g. a, = 1/(n+1) (n € N). Let
Boi=[1—ay)...(1 —a)]™", ¥n = B, (n €N).
Thus B, =14y + ...+ 79 T .

Theorem 1. Let B be a real Banach space, L(B) the Banach space of bounded linear

operators on B into B and A € L(B) such thal
spec A C{) € C; re A > 0}. (2)

Let further A, € L(B) and b,b, € B (n € N).

12
a) Assume lim - > AL < oo, (3)
k=1
1 n
I=>" Ax = Al — 0, (4)
n k=1
1 n
= > bx — bl — 0, (5)
n k=1

and let (x,)nen in B be defined by
._ Pn
Tpy1 =2, — —(Anz, — by) (6)
n
with arbitrary x1 € B where 0 < p,/n <1, pp — p € (0,00), pr — pnt1 = O(1/n). Then

|z, — A7'b|| — 0. (7)
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b) Let o, € [0,1) (n € N) with o, — 0, 3 v, = 00. Assume

— 1
T 3" A < o, @)
/Bn k=1
1 & ,
== > wAr — Al — 0, (4')
n k=1
1 & ,
== > by —b| — 0 (5")
n k=1

with B, ¥, as above, and let (x,,) be defined by
Tpy1 = Ty — ap(Anx, — by) (6")
with arbitrary x; € B. Then (7) holds.

The spectral condition, which guarantees existence of a unique solution of the equation
Az — b = 0in B, is fulfilled if ||/ — A|| < 1 ([ identity operator on B). Because, by an
index transformation, the condition p,/n < 1 can be reduced to p,/n < 1, the recursion

(6") is more general than (6).
We state a supplementary result.

Corollary 1. Assume that B is a real separable Banach space and that (A, )nen is a
sequence of independent identically distributed (i.i.d.) L(B)-valued r.v.’s and (b,)nen is
a sequence of i.i.d. B-valued r.v.’s on a probability space (2, A, P) with E||A,|* < oo,
E|b,||* < oo. Let A:= EA, (€ L(B)), b:= Eb, (€ B) and assume (2). Let (X,)nen be

a sequence of B-valued r.v.’s on (2, A, P) with
Xn+1 - Xn - an(Aan - bn); n e N7
where a,, € [0,1), Y a? < o0, S a, = co. Then

| X, — A7 — 0 as.
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Proof. According to Theorem 1b it suffices to verify that for P-almost all w € €,
relations (3'), (4), (5') hold. This is possible by the following Lemma applied to the case

of Banach spaces R, £(B), B. O

Lemma 1. Let B be a real separable Banach space, () a sequence in [0,1) with
Ya? < oo, Ya, = oo, (B,) and (v,) defined as above and (V,) a sequence of i.i.d.

B-valued r.v.’s with E|V,||* < oo, V := EV,. Then

1 n
| = Z’ykvk —V||—0 as.

n k=1

Proof. Without loss of generality let V' = 0. Choose an arbitrary ¢ > 0. Below we use
some arguments from Beck (1963) and Gyorfi and Masry (1990, Appendix A). For the
identically distributed square integrable r.v.’s V,, one has a measurable function ¢ on B
with values in a finite subset of B such that, with Y, := F(V},), Z, :=V, — (Y, — FY,,),
the relation

E|Z.? <, neN,

holds. Further one notes that

1 & 1 & 1
== 20 Vel <1 5= 22 w1 Zell = Bl Zel) | +VE + [l 2= 22w (Ye = EYR)Il,

E|Y, = EY,|I* < 2B| Z,|I* + 2E| V. |I* < 2e + 2E|| VA,

Because of Kolmogorov’s a.s. convergence theorem for series of independent square in-
tegrable real r.v.’s, which also applies to the case of random variables with values in a
finite-dimensional Banach space, and since Y. a2 F||Z,]|*> < oo and Y. a2 E||Y,]|* < oo, we

have a.s. convergence of Y. o, (|| Z,|| — E||Z,||) and of 3, (Y, — EY,,). The Kronecker



lemma now yields

I
hmHﬁ—Z’ykvkﬂg\/g a.s.
n k=1

and thus the assertion. O

Theorem 1 and Corollary 1 allow to prove an almost sure convergence result (Theorem

2) for recursive estimation in the following situation of implicit renewal theory.

Let (2, A, P) be a probability space and let U : R x  — R be B® A-B-measurable. As-
sume that the paths U(-,w), w € , are nondecreasing and Lipschitz continuous. Further
assume that F | ¥(0,-) |[< oo and KL < 1, where L(w) is the minimal Lipschitz constant
of ¥U(-,w). In the proof of Theorem 2, the application of Theorem la and Corollary 1
yields that boundedness of the operators A, and the contraction condition |[I — Al < 1
are implied by Lipschitz continuity of ¥(-,w) and KL < 1, respectively. The argument
following (15) in the proof of Theorem 2 yields existence of a unique distribution function
Fs on R satisfying (1), where the real random variable S with distribution function Fs
and the M(R,R)-valued random variable ¥ on the suitably enlarged probability space
(Q, A, P) are independent. In this case £ | S |< co. The contraction condition KL < 1 is
also important for almost sure convergence of the stochastic approximation algorithm in
Theorem 2. Goldie (1991, p. 127 and Corollary 2.4) considers random functions ¥ with
U(t), for | t | large, approximately equal to Mt. Here the random variable M satisfies
Flog|M| < 0 and the “Cramér-condition” £ | M |*= 1, for some £ > 0. The latter
condition is important for the tail behavior of the distribution function Fs of S in (1)
(Goldie (1991, Corollary 2.4)). In both applications below, see (13) and (14), the first
condition of Goldie is sharpened to the contraction condition KM < 1 for nonnegative
M. i.e. here EL < 1, where the second condition is not needed.
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Let Fo(t) = 1 for t > 0, Fo(t) = 0 for t < 0, and let T'y be the set of distribution

functions F' on R satisfying
[ 1H1FQ) (= di(Fo, 7)) < o0,
with metric d; given by

dl(F,G):/|F(t)—G(t)|dt, F,GeT,.

Note that d; is also the L;-minimal metric in I'; defined by

d(F,G)=inf{E| X -Y|; Fx=F,Fy =G}, F,GeTy,

where Fy is the distribution function of the real random variable X (see Aebi, Embrechts

and Mikosch (1994)).

Theorem 2. Let on a probability space (2, A, P) a stationary ergodic sequence (U,,) ey

of copies of U be given. Choose an arbitrary Ry € I'y (e.q. Ry = Fy) and p, € Ry with

pufn <1 (n € N), pp — p € (0,00), pn — put1 = O(1/n) (e.g. pn =1 ). Let the

sequence (Ry,)nen of I'1-valued random variables recursively be defined by

Rosa(w) = (1= B RA(0) + BERL(U71 (- 0)0), w e @,

n

where

Wl (t,) == sup{s € R; U, (s,:) < t}, tER,

n

sup 0 :=—o00, R,(oc0,:):=1, R,(—o0,):=0.

Then

di(R,, Fs) — 0, i.e. /|B s(t) | dt — 0 a.s.

(10)

(11)



If additionally the sequence (V,,) of copies of V is independent, E | ¥(0) |* < oo and

EL? < oo, then (11) also holds for (R,) defined by the general recursion
R (hw) = (1 —ap)Ru(-,w) + a, R, (V1 (- w),w), we R, (12)
with a gain sequence (o) chosen arbitrarily in [0,1) with Y~ a? < 00, 3 a, = oco.

Before we give the proof of this result (Section 3) we discuss two applications, one in

insurance mathematics and one in queueing theory.

First application. Let the real random variables M, U be independent, where
Elog|M| < 0, Elog® |U| < co . Let (My,U;), (Ma,Us),... be an independent sequence

of copies of (M, U). Then the real-valued limit
0 {

of stochastically discounted sums, where the M;’s and U,’s are considered as observable
discount factors and payments, respectively, exists a.s. (see Vervaat (1979)) and is known

as a “perpetuity” in life insurance and finance. See also Embrechts, Klueppelberg and

Mikosch (1997, Section 8.4). Set
U(t)=MU+1t), teR. (13)

Then (1) is fulfilled for independent (M,U), S with uniqueness of the distribution of S
(see Goldie (1991), Section 4, Aebi, Embrechts and Mikosch (1994), Embrechts and Goldie

(1994), and the literature cited there). Set
U, (t)=M,(U,+1t), teR,

with n € N and choose p,/n € [0, 1] with p, — p € (0,00), pr — pny1 = O(1/n). Under
the sharpened assumptions M > 0, EM < 1, E | U |< oo the conditions of Theorem 2
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(first part) with recursion

—(q_P Pop b

where

Bn(Min _ 1) = Fy(t) for M, =0,

are fulfilled. Thus

/ | Ro(t) — P[S < 1] | dt — 0 ass.
This also holds for the general recursion with p,/n replaced by «a, € [0,1) satisfying
Ya? < oo, Y a, = oo, if additionally EM? < co, EU? < oo hold.

Second application. Let the integrable nonnegative-real random variables A, B be inde-
pendent with F(B — A) < 0. Let (By, A1) (B, Az2),... be independent copies of (B, A),
where the A;’s and B;’s are observable interarrival times and service times, respectively,

in a G/G/1 queueing system. As is well-known, the stationary waiting time W satisfies

d m
W = 13335( ,iE:l(Bi_l —A))
(the right-hand side exists a.s.) and

WL(B—A+W),

for independent (A, B), W. Following Goldie (1991) one sets

and obtains that for independent (A, B), S equation (1) is fulfilled with

U(t) = max{U, Mt}, teR,
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and uniqueness of the distribution of S. Now set
U, (1) = max{U,, M,t}, t € R, (14)
with
U,=1, M, = ePr-174n (n € N),

and choose p,,/n € [0,1] with p, = p € (0,00), pp — put1 = O(1/n). Under the sharpened
assumptions

EeP~4 <1, ie. EM <1,

the conditions of Theorem 2 with recursion

Roa(1) = (1= ") R(1) 4 T2 R

n

m)a t>1, neN,
are fulfilled. Thus, setting ¢t = €*, one obtains

/ | R,(e") — PIW <u]|e"du — 0 as. .
0

Analogously the stationary queueing time @ (waiting time plus service time) can be

treated. One has
QELB+(Q—A);.

In the above consideration, again following Goldie (1991), one replaces W by @ and sets
U:=éP.
Now, under the sharpened assumptions
EeP < 00, EeP4 <1

one uses the recursion

11



and obtains

/|R PlQ<u]|e"du —0 as..

This result also follows for the general recursion with p, /n replaced by «,, as before, if

additionally Fe*F-4) < oo holds.
3. Proof of Theorem 2.

Let B:= L1(R)and K := {Fo—r; r€I'1}. Then K C B, because [ | Fo(s) —r(s) | ds
R
=[]s|r(ds) <ooforrel;. IfveBandifty =V(,w),l = L(w) are realizations of
R

U and L, respectively, then v o ¢)~! € B, because

[ 1@ s) [ds = [ ot d<l|\ | < oo.

If v € K, then trivially Fy —v € I'y. Also (Fo —v)o ¢~ € Ty, because with r.v.’s U, v

having distribution functions Fo —v (€ T'y) and (Fy — v) o™, respectively, one has that

[ 1 Fols) = (Fo = )(7(s)) | ds = B | V|
= E|volU|<[v(0)|+E ol —(0)|
< 190 | +E [T | =] 4(0) | +||o]| < co.
For v € Blet vo¥~! denote the B-valued r.v. w — v(¥V~!(-,w)), forv € K let (Fy—v)oW¥~!
denote the T'y-valued r.v. w — (Fo — v)(¥7!(-,w)). The B-valued r.v.’'s vo ¥~ v e B,
and the K-valued r.v.’s Fy — (Fo —v) o U™! v € K, are integrable. This follows because
Ellvo U < EL-||v]| < oo for v € B,

E|Fo— (Fo—v)o U < E|W(0,)) | +EL - ||v]| < 0o for v € K.
One defines the operator A € L£(B) by

Av:=v—FEvoU™' veB,

12



further

b:= E(F() — F() 0 ql_l).

One then has

I1— Al < EL<1,

thus A satisfies condition (2) in Theorem 1. The unique solution A~'b of the equation

Az — b =0 in B lies in the closed convex subset K of B. In fact, for v € K one has
v—(Av—b) = E[Fy — (Fp —v)o V™' € K;

therefore the sequence (z,) defined by z,41 := (I — A)z, + b with z; € K lies in K and
converges to A~'b according to Banach’s fixed point theorem. The equation Az —b = 0

in K with unique solution A='b is equivalent to the equation
w(t) = Ew(¥7'(t,-), teR (15)

for w € I';, whose unique solution is Fy—A~'b. Let S be a real-valued r.v. with distribution

function Fg such that S and ¥ are independent. Because of
PWoS<t]=P[S<U'(t,)] = EFs(V7'(t,")), t €R,

equation (1) is equivalent to (15), and its unique solution has the distribution function

Fs = Fy— A™'b.
First recursion (10) is considered. One sets
X, :=Fy— Ry, n€N,
and from (10) one obtains

Xos1 = Xo — 22(A.X, — b,), nEN,
mn

13



where A, is a random bounded linear operator on B into B with
Aw=v—voVU ' veB,
and where
bn:FO—F()O\I/,r_Ll

is a B-valued r.v. This recursion corresponds to recursion (6) in Theorem 1. One verifies
conditions (3), (4), (5) of Theorem la for P-almost all realizations. With L, (w) as minimal

Lipschitz constant of ¥, (-,w), w € £, one obtains as above that
o= Auoll < Laoll, v € B.
Thus
|4l <1+ Loy Bl AL <14 FL < o0,

further

1Bnll =[ Wa(0) [, Ellba]l = £ [ W(0) |< oo

The a.s. ergodic theorem for R yields (3) because of the stationarity assumption. Because
of the stationarity and ergodicity assumptions and FA,v = Av for all v € B, KA, =
A, FEb, = b, an a.s. ergodic theorem for separable Banach spaces (Tempel’'man (1972),
Landers and Rogge (1978), Gyorfi and Masry (1990); compare Krengel (1985), §4.2), here

for £(B) and for B, yields (4) and (5). Theorem la now yields
| X, — A7'|| — 0 a.s.,
and thus (11).

Finally recursion (12) is considered. With

X, =Fy—R,, n €N,

14



from (12) one obtains
Xn+1 - Xn - an(Aan - bn)7 n e N7

which corresponds to (6'), with A,, b, as before. By the additional assumptions of
independence of (V,) and of square integrability of W(0) and L one obtains (11) via

Corollary 1. a
4. Choice of the gain sequence

Below, the assumptions in the second part of Theorem 2 are used, namely independence

of the sequence (¥,,) of copies of ¥ together with F|¥(0)]* < co and FL* < occ.

The simplest choice of the gains p,/n in Theorem 2 is ¢/n with 0 < ¢ < 1, especially

1/n. Let in I'y a further metric d be given by

a(F,G) = ( [(F) - Gyar)"”

R

Apparently convergence with respect to the metric d; yields convergence with respect to
the metric d. Remark b) below yields convergence of nEd(R,, Fs)* for ¢ so large that
FEL <1—1/(2¢). The limit would be minimized if one would replace the factor ¢ by a
certain linear transformation depending on the unknown stochastic behaviour of ¥. In
fact, in one-dimensional and finite-dimensional problems of stochastic approximation this
concept is used via consistent estimation of (a matrix of) derivatives (see Venter (1967),
Fabian (1968), Polyak and Tsypkin (1979), Wei (1987), Remarks 5.10 and 5.16 in part
I of Ljung, Pflug and Walk (1992) with further references). In finite-dimensional linear
estimation, the choice of the coefficients optimal in an Ly-sense can be done recursively by

use of matrix transformations (for linear regression by a recursive least squares method,
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see e.g. Ljung and Soderstrom (1983); compare also Polyak (1990), equation (11); for
non-linear time series models see Thavaneswaran and Abraham (1988)). The averaging
concept in stochastic approximation due to Polyak (1990) and Ruppert (1991) avoids
matrix transformations and leads to the same optimal limit. Corresponding to this, in our
infinite-dimensional context for the recursion sequence (R,) we take a slowly decreasing

gain sequence (o) with
a, — 0, Zan =00, /oy =1+ o(ay), (16)
e.g. o, = (n+1)"* with 0 < @ < 1 and then use

Roi= YR,

=1
as an estimate of Fs. Considering Fo — R, =: X,,, Fo — Fs =: 9, Fs — R, = X,, — 7,
Fs—R, = X, —1 as random elements in the Hilbert space Ly(IR) one obtains d(R,,, Fis) —
0 a.s. by Theorem 2 and convergence (in the operator norm, even in a trace norm) of the
operators nE((Yn -9 @ (X, — 19)) to a covariance operator (S-operator) with minimal
trace, which is the limit of Fd(R,, Fs)?. This follows directly from Corollary 2 below,

which is formulated in a general Hilbert space setting.

Let H denote a separable real Hilbert space (with scalar product <,> and norm || ||)
and L£(H) the Banach space of bounded linear operators on H into H. [ : H — H denotes
the identity operator. As to the following notations, see Reed and Simon (1980). For A €
L(H) let tr A denote its trace, spec A its spectrum, A* the adjoint operator, further VA
its square root if A is symmetric positive-semidefinite. Under the norm || A||; := tr v/ AA*
(> ||A||) the space £4(H) C L£(H) of nuclear operators on H is a separable Banach space. It
contains the space of all symmetric positive-semidefinite nuclear operators (S-operators).

16



T ®y:=<z,- >y denotes the tensor product of z and y (z,y € H), which is considered
as an element of L(H). The covariance operator of an H-valued random variable X with
E||X]|> < oo and EX =0 is an S-operator defined by S := E(X @ X) with || S|y = tr S

= B X7

The following corollary, under an independence assumption, extends Theorem 3 of
Polyak (on parameter estimation) to a more general linear recursion and to the Hilbert

Space Ccase€.

Corollary 2. Let ((An,bn))nen be an independent sequence of identically distributed
L(H) x H-valued random variables with E||A,]|*> < oo, E|b,||* < co. For A := EA,
assume (2). Let 9 = A™'b denote the unique solution of the equation Ax —b = 0 in H,
where b := Kb,. Choose o, in (0,1) such that (16) is fulfilled and let Xy be an H-valued
random variable with E||X,||* < co. Lel the sequences (X,,), (X,) of (square integrable)

H-valued random variables be defined by

X1 := Xy — (AR X, — by), (17)

— 12
=1

Then

InE(Xn —9) @ (X, — 9)) = K]ly =0

with S-operator K = A~'S(A™Y* where S := FE((b, — A,0) ® (b, — A,0)), thus
nk| X, -9 = tr K.
Remarks concerning Corollary 2.a) By Corollary 1, almost sure convergence || X,, — || —

0, || X, — 9]| = 0 hold without the assumption a,/a,41 =1+ o(ay,).
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b) If one replaces in (17) the factor o, by the operator +T' (special case £I with ¢ > 0)

and assumes

1
spec (I'A — 5) C{A e C; re X > 0},

then

InE((Xn = 9) @ (X0 =) = K|y = 0,
where the S-operator K is uniquely determined by
I~ = 1
(T'A— 5)[& + K((T'A)" — 5) = IST™.

tr K is minimized by I' = A™'; in this case K equals K in Corollary 2. The convergence
result can be obtained from Lemma 2b below (compare also Walk (1988), where functional

central limit theorems are derived).

The proof of Corollary 2 is based on Lemma 2 which will be proved first. Both proofs

follow the lines in Polyak (1990), but also use functional analytic tools.

Lemma 2 (compare lemmas 1, 5, 3, 4 in Polyak (1990)). Let A € L(H) satisfy (2).
Let 0 < o, < 1 with oty = 0 (n — 00), Y, =00 and let Z,, M, Q,, Jo, L, D,,, F,,

G, H, € Li(H) (n€N).
a) If
Zn—l—l — Zn - anAZn - Of'rzZnA* + anMn + anHZnHlQn (18)

or

Zn+1 - Zn - anAZn + anMn + anHZnHlQ'rn (19)
with | M, ||y = 0, ||@Qx]l1 — 0, then

| 7]l — 0.
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Let further S € L£i(H) and then K € L£4(H) be the unique solution of

AK + KA* = S.

b) If

I 1 I

1 1 1
n 2 n 2 n?

1

n

with || u]li = 0, || Ln|ly — 0, then

\nZ, — K|l — 0.
Let additionally o, /oy = 1+ o(aw,) (thus (o) satisfies (16)).

c) If

Zn+1 = Zn - anAZn - anZnA* + O[ELS + aZDTL + QELHZHHan

with | Dully = 0, || Fulls — 0, then

oz Z, — K|l — 0.

o, o, o

U+ G +

Dpal = Ly — an AZ, -
+ @ +n—|—1 n+1 n+1

12l H

with |Gylli — 0, || Hy|ls — 0, then

(n +1)Z, — A'K]|, — 0.

Proof. a) Let By, By, B be bounded linear operators on £;(H) defined by

BlZ = AZ, BQZ = /A" for 7 € El(H), B = Bl + BQ.

19
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Relation (2), i.e. |le™*4|| = 0 (u — o), implies
le™ P = [le™"= ] = 0 (u— o0)
and, by commutativity of By and B,
le™ || = [le™Fre™ 2| < [le™ > = 0 (u — o0).

Thus

spec BC{A e C; re A > 0}. (21)

In the following let I denote the identity operator on £4(H) and notice that for a bounded
linear operator D on £q(H) into £4(H) and £ € £,(H) also DE € £,(H) with |DFE||; <

ID|II|E|lx (see Reed and Simon (1980), Ch. VI, Problem 28(a)). (18) can be written in

the form
Zngr = (I — anB)Zy + an M, + || Z,]1Qn
and yields
T = 3 e Bus(Me + IZ411Q0) + o2y
=1
with

By = (I—a,B)...(I —axB)fork=1,... ,n,

Bn,n—}—l = 1
according to Walk and Zsidé (1989) (first part of Lemma la). Thus

1 Zonalle < 3 arll Buil (Ml + 1 Zell 1 Qxlly) + 1 Baa [l Zall1-

k=1

Note that || M,]l; — 0, ||@x][1 — 0, further

1Basll < cBe/Ba) (k=1,....n; neN)
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for some constants ¢ < oo, ¢ > 0 by (21) (see Walk and Zsid6 (1989), Lemma 3b). One

hence obtains an inequality of the form

| Znllt < D2 tagll Zells +7a
k=1

with ¢, € Ry, r, € Ry satisfying r, = 0, t, = 0 (n — oo) for each £ € N and
Ztn,k — 0 (n — OO)
k=1

Thus ||Z.]|1 — 0 (compare Walk and Zsidé (1989), Lemma 2b). Recursion (17) can be

treated in the same way.

b,c,d). Because of (21), (20) has a unique solution. One establishes recursions for
nZ,—K,a;'Z,— K, (n+1)Z, — A7'K (here noticing 1/n = o(a,,) according to Polyak

(1990)) and uses each time part a). O

Proof of Corollary 2. Without loss of generality b = 9 = 0 may be assumed. From (2),

(17) and the independence assumption one obtains
|EX,| — 0. (22)

Let U, = E(X,®X,), T, = E(X,®X,), R, := E(X,® X,y1). By (17), (22) and the
independence assumption one obtains
Up1 = U, —a, AU, — a, U, A* + o2 E(AULAL) — 2 E((AL(EX,)) @ b,)
a2 B(b, ® (Au(FX,))) + a2
= U, —a,AU, — o, U, A" + afLS + aiTn + aiHUnHﬂ/n

with ||T,|[x — 0, |[V.]l1 — 0, noticing

1E((Au(EX0)) @ ba)lly < [ EXa (B A (E][6a)*)* — 0
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and

AU ALl < |1 Unll1

Thus, by Lemma 2c,

U, =a, K+ a,W,, (23)

with ||W,]|l1 — 0. One uses the recursion for X, 2, the recursion

- 1
)X+ —— X (24)

yn-'_l:(l_ n-+1

n+1
and once more the independence assumption and obtains

1

n -+

1
Roy1 = (1 - 1)([ —a, AR, + m([ — on A)Unsr -

Then, because of na,, — oo and (23),

an Qn

Rn+1 - (] - anA)Rn + U +

o
— G, + —||R,|:H,
n+1 n+1 —I_n—l—lH Hl

with ||G,|l1 = 0, ||H,]l1 — 0 and thus, by Lemma 2d,
|(n+1)R, — A7'K||; — 0.

This together with (24) and ||U,||; — 0 yields

2 [ . 1
T = (1 g)Tn—|— —(A 'K+ (AT'K)") + —Int ATl Ln

with |[J.|li = 0, || Lnlls — 0, where AP K 4+ (A7 K)* = A71S(A™1)* because of (20). The

assertion then follows by Lemma 2b. O
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