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Abstract

This paper introduces the Hawkes skeleton and the Hawkes graph. These objects summa-
rize the branching structure of a multivariate Hawkes point process in a compact, yet mean-
ingful way. We demonstrate how graph-theoretic vocabulary (‘ancestor sets’, ‘parent sets’,
‘connectivity’, ‘walks’, ‘walk weights’, . . . ) is very convenient for the discussion of multivari-
ate Hawkes processes. For example, we reformulate the classic eigenvalue-based subcriticality
criterion of multitype branching processes in graph terms. Next to these more terminological
contributions, we show how the graph view may be used for the specification and estimation
of Hawkes models from large, multitype event streams. Based on earlier work, we give a
nonparametric statistical procedure to estimate the Hawkes skeleton and the Hawkes graph
from data. We show how the graph estimation may then be used for specifying and fitting
parametric Hawkes models. Our estimation method avoids the a priori assumptions on the
model from a straighforward MLE-approach and is numerically more flexible than the latter.
Our method has two tuning parameters: one controlling numerical complexity, the other one
controlling the sparseness of the estimated graph. A simulation study confirms that the pre-
sented procedure works as desired. We pay special attention to computational issues in the
implementation. This makes our results applicable to high-dimensional event-stream data,
such as dozens of event streams and thousands of events per component.

1 Introduction

This paper discusses the specification and estimation of multivariate Hawkes point process models
from large, multitype event-stream datasets such as neural spike-trains, internet search-queries,
or limit-order-book data in high-frequency finance. Our approach uses the notion of a Hawkes
skeleton and a Hawkes graph1. We demonstrate how these concepts are fertile beyond statistical
estimation.

The Hawkes process was introduced in Hawkes (1971a,b) as a stationary point process on R
whose points are assigned to a finite number of types. The (stochastic) intensity of a Hawkes pro-
cess depends on the past of the process itself: given the occurrence of an event, the intensities—the
expected mean number of events per time unit and event type—typically jump upwards and then
decay. This structure can alternatively be represented as a multitype branching-process with im-
migration; see Hawkes (1974). The crucial parameters of a Hawkes model are the excitement
functions or, emphasizing the branching interpretation, the reproduction intensities that govern
these self- and crosseffects. For a textbook reference that covers many aspects of the Hawkes
process, see Daley and Vere-Jones (2003). Maximum likelihood estimation of Hawkes processes
has been treated in Ogata (1988) covering calibration issues and introducing a computationally
beneficial recursive method for the exponential decay case. Liniger (2009) deals especially with the
construction of the multivariate and marked case.

∗This work was supported by RiskLab Zurich and the Swiss Finance Institute.
†Corresponding author: matthias.kirchner@math.ethz.ch
1Note that the term ‘Hawkes graph’ has already been introduced for the graph representation of a specific finite

group; see Hawkes (1968). Neither the author of the latter paper, T. Hawkes, nor its content has anything to do
with our notion of a Hawkes graph.
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In the present paper, we formally introduce the Hawkes graph. The Hawkes graph summarizes
the branching structure of a multitype Hawkes point process as a directed graph with weighted
vertices and edges. The vertices represent the possible event-types of the corresponding Hawkes
process; an edge (i, j) denotes nonzero excitement from event-type i to event-type j. The vertex
weights are the corresponding immigration intensities; the weight of an edge (i, j) is the expected
number of type-j children events that an type-i event generates. The Hawkes skeleton is the Hawkes
graph disregarding the weights. The network view on Hawkes processes has been considered in
Song et al. (2013), Delattre et al. (2015), Bacry et al. (2015), and Hall and Willett (2016). The
graph terminology is convenient to describe many relevant aspects of multivariate Hawkes processes
such as ‘ancestor and parent sets’, ‘paths’, ‘path weights’, ‘feedback’, ‘cascades’, or ‘connectivity’.
The graph representation of a Hawkes process also provides additional theoretical insight. For
example, in Theorem 1, we give a graph-based criterion for subcriticality which is equivalent to the
usual spectral-radius based criterion on the branching matrix. Furthermore, the graph approach
turns out to be helpful for the estimation of multivariate Hawkes processes.

Concerning Hawkes process estimation, we see three main problems with the standard para-
metric likelihood approach. First of all, it uses many unjustified assumptions on the shape of
the reproduction intensities. Secondly, the distribution of the MLE-estimator is (in general) not
known. In particular, the likelihood approach does not provide tests to decide whether excitement
from one event type to another exists at all. Finally, there are numerical issues that make it difficult
to apply MLE in a straightforward way with large, high-dimensional event-stream datasets.

Our approach leaves the choice of the excitement functions open to the very last. We apply
an estimation procedure developed in Kirchner (2016a). This procedure is based on a limit-
representation of the Hawkes process studied in Kirchner (2016b): we discretize the original process
and interpret it as an autoregressive model of bin-counts. The latter is statistically estimated using
conditional least-squares. In this setup, the asymptotic distribution of the resulting estimators can
be obtained. This opens the door to testing. Our procedure is numerically more robust than the
standard MLE approach. However, for high-dimensional data our procedure cannot be applied
in a straightforward manner either. This is why, in combination with the concept of a Hawkes
skeleton and graph, we tackle the numerical difficulties by the following three-step algorithm:

1. Given a large multitype event-stream dataset, we first apply a specific testing scheme to
decide whether there is any effect from a specific event type to any other event type. The
test result yields the Hawkes-skeleton estimate. In this first step, we use a parameter allowing
us to tune for a very coarse discretization; this keeps the computational complexity under
control. Despite the resulting discretization error, this approach typically yields a superset
of the true edge set. Under the paradigm that the graph of the true underlying multivariate
Hawkes model is typically sparse, this estimated superset is still sparse.

2. In a second step, we estimate the Hawkes graph given the skeleton estimate. The Hawkes
graph quantifies the remaining excitement effects. The sparseness of the estimated Hawkes-
skeleton from (i) reduces the complexity of the estimation problem considerably: there are
only few excitements left to estimate and there are fewer ‘explanatory types’ per event type,
namely the estimated parent sets. Consequently, we may now choose a much finer discretiza-
tion parameter and thus retrieve more precise edge and vertex weight estimates—including
confidence intervals for all estimated values.

3. As a by-product, the calculations in (ii) yield estimates for the values of the nonzero excitement-
functions on a finite equidistant grid. We exploit these estimation results graphically to
choose appropriate parametric function-families. Finally, we fit the chosen parametric func-
tions to the corresponding estimates by a non-linear least-squares method. This yields pa-
rameter estimates for parametric Hawkes models.

The multistep-procedure described above also works in a high-dimensional setting (such as dozens
of event streams and thousands of events per component); the approach can be implemented in a
straightforward way.

The paper is organized as follows: In Section 2, we give definitions and discuss graph attributes
that are relevant for the description of multivariate Hawkes processes. In particular, we give results
that clarify what kind of information on the Hawkes process a Hawkes graph encodes. In Section 3,
we cite earlier results that allow for nonparametric estimation of Hawkes processes. We apply these
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methods to estimate the Hawkes skeleton and the Hawkes graph. Finally, we show how parametric
families for the remaining nonzero reproduction intensities may be specified and calibrated. For an
illustration of the new concepts introduced, we present a simulation study in Section 4. In Section
5, we conclude with directions for further research.

2 Definitions

In this section, we recall the branching construction of a multivariate Hawkes process as well as
basic graph terminology. After this, we introduce the Hawkes skeleton as well as the Hawkes graph.
The graph representation summarizes the branching structure of a Hawkes process in a compact
and insightful manner.

2.1 Multivariate Hawkes processes

Throughout the paper, let (Ω,P,F) be a complete probability space rich enough to carry all random
variables involved. We give a constructive definition of the Hawkes process that emphasizes the
branching structure. For a similar construction; see Hawkes (1974) or Chapter 4 in Liniger (2009).
The building blocks are Poisson random-measures on R endowed with the Borel σ-algebra B(R).

Definition 1. Let λ : R → R≥0 be a locally integrable function. We say that M is a Poisson
random-measure on (R,B(R)) with intensity function λ whenever the following two conditions
hold:

1. M(B) ∼ Pois
(∫
B
λ(s)ds

)
, B ∈ B(R).

2. If B1, B2, . . . , Bn ∈ B(R) with Bi ∩ Bj = ∅, i 6= j, then M(B1),M(B2), . . . ,M(Bn) are
mutually independent.

We write M ∼ PRM(λds).

In the definition above we use the convention that X ∼ Pois (0) :⇔ X ≡ 0, a.s. and
X ∼ Pois (∞) :⇔ X ≡ ∞, a.s.

A multitype Hawkes process is a model for the occurrence of events on R, where the events
are assigned to a finite number of types. The different event-types are represented as (in general
dependent) random counting measures. For each event type, there is an immigration process. Each
immigrant event independently generates a family. These families consist of cascades of Poisson
random measures. A Hawkes process is the superposition of all such families. We formalize this
construction in the definitions below. To emphasize the intuition behind the names of immigrants,
generations, and families, we use the somewhat unusual letters I, G, and F for the corresponding
processes.

Definition 2. Let d ∈ N and [d] := {1, 2, . . . , d}.

1. For (i, j) ∈ [d]2, define branching coefficients ai,j ≥ 0, displacement densities wi,j supported

on R≥0, reproduction intensities hi,j := ai,jwi,j, and reproduction processes ξ
(i,j)
t (·) :=

ξ(i,j)(· − t) ∼ PRM(hi,jds), t ∈ R, mutually independent over (i, j, t) ∈ [d]2 × R.

2. For i0 ∈ [d] and g ∈ N0, define the g-th generation process (generated by a type-i0 event at

time zero) as the d-tuple of random counting measures G(i0,g) :=
(
G

(i0,g)
1 , . . . , G

(i0,g)
d

)
by

G
(i0,0)
j (B) := 1{j=i0}δ0(B), B ∈ B(R), j ∈ [d],

G
(i0,g)
j (B) :=

d∑
i=1

∫
R
ξ

(i,j)
t (B)G

(i0,g−1)
i (dt), B ∈ B(R), j ∈ [d], g ∈ N . (1)

3. For i0 ∈ [d], define the Hawkes family (generated by a type-i0 event at time zero) as the
d-tuple of random counting measures

F(i0) =
∑
g≥0

G(i0,g) .
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The branching structure of a Hawkes family is encoded in recursion (1). Note that the points of
a Hawkes family actually form a multitype branching random walk ; see Shi (2015). The following
definition clarifies how the Hawkes family process is related to the prototypic branching process,
the Galton–Watson process:

Definition 3. For i0 ∈ [d], let F(i0) be a Hawkes family and let {G(i0,g)}g∈N0
be the corresponding

generation processes constructed in Definition 2 above. For g ∈ N0, define

Y(i0)
g :=

(
Y

(i0)
g,1 , Y

(i0)
g,2 , . . . , Y

(i0)
g,d

)
, where, for j ∈ [d], Y

(i0)
g,j := G

(i0,g)
j (R).

We call (Y(i0)
g )g∈N0 the embedded generation process of the Hawkes family F(i0).

The embedded generation process (Y(i0)
g ) of a Hawkes family is a multitype Galton–Watson

process. A multitype Galton–Watson process models the size of a population with individuals of d
types, where each individual is alive during exactly one time unit; see Section 2.3 in Haccou et al.
(2005). The embedded generation process starts with a single type-i0 individual in generation 0
and, for g ∈ N, each type-i individual in generation g−1 gives offspring to Pois(ai,j) ai,j =

∫
hi,jdt)

type-j individuals of type j in generation g. This is why ai,j , (i, j) ∈ [d]2, are called branching
coefficients and why the matrix A := (ai,j) ∈ R≥0 is called branching matrix.

Proposition 1. Let A be the branching matrix of Hawkes families F(i0), i0 ∈ [d], respectively, of

the corresponding embedded generation processes (Y(i0)
g ), i0 ∈ [d]. Then we have that

EF (i0)
j (R) =

∑
g≥0

EY (i0)
g,j <∞, (i0, j) ∈ [d]2, (2)

if and only if the spectral radius of A is strictly less than 1. In this case, (1d×d − A) is invertible

and (EF (i0)
j (R))(i0,j)∈[d]2 = (1d×d −A)−1.

Proof. Using

EY
(i0)
0 = Y

(i0)
0 = (0, . . . , 0, 1︸︷︷︸

i0-th entry

, 0, . . . , 0) and EY(i0)
g = EY

(i0)
g−1A, g ∈ N, i0 ∈ [d],

it follows by induction that (EY (i0)
j,g )(i0,j)∈[d]2 = Ag, g ∈ N0. By Fubini’s theorem, we then get

that (EF (i0)
j (R))(i0,j)∈[d] =

∑
g≥0(EY (i0)

g,j )(i0,j)∈[d] =
∑
g≥0A

g. Given its entries are finite, the
limit matrix

∑
g≥0A

g is calculated like the limit of a real-valued converging geometric series. The
equivalence in Proposition 1 follows from the fact that

∞∑
g=0

Ag converges ⇔ max
{
|λ| : λ eigenvalue of A

}
< 1, for A ∈ Rd×d. (3)

A detailed proof for (3) can be found in Watson (2015).

In particular, we get from Proposition 1 that a Hawkes family whose branching matrix satisfies
(3) consists of an almost surely finite number of points.

Definition 4. Let I = (I1, I2, . . . , Id) be a Hawkes immigration process with Ii0 ∼ PRM(ηi0ds),
i0 ∈ [d], independent, where ηi0 ≥ 0, i0 ∈ [d], are (constant) immigration intensities. Furthermore,

let F
(i0)
t (·) := F(i0,t)(·−t), t ∈ R, where F(i0,t), t ∈ R, i0 ∈ [d], are independent copies of the generic

Hawkes family processes F(i0) from Definition 2 above—also independent from the immigration
process I. Set

N(B) :=
(
N1(B), . . . , Nd(B)

)
:=

d∑
i0=1

∫
R

F
(i0)
t (B) Ii0(dt), B ∈ B(R).

The d-tuple of random counting measures N is a d-type Hawkes process. If Ni({T}) = 1, for some
i ∈ [d], we say that T is a type-i event or, synonymously, an event in component i. The Hawkes
process N is subcritical if the corresponding embedded generation processes are subcritical, i.e., if
the spectral radius of their branching matrix is strictly smaller than 1.
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From Hawkes (1974) we have that, in the subcritical case, a Hawkes process N, constructed as
in Definitions 2 and 4, is a stationary solution to the system of implicit equations

Λj(t) := lim
δ↓0

1

δ
E
[
Nj
(
(t, t+ δ]

)∣∣∣σ(N
(
(a, b]

)
, a < b ≤ t

)]

= ηj +

d∑
i=1

t∫
−∞

hi,j(t− s)Ni (ds) , t ∈ R, j ∈ [d]. (4)

We call Λ(t) := (Λ1(t),Λ2(t), . . . ,Λd(t)) the conditional intensity of N. In terms of intensities, the
value of a reproduction intensity at time t, hi,j(t), denotes the effect of an event T (i) in component
i on the intensity of component j at time T (i) + t.

Remark 1. In most work on Hawkes processes, including the original introductions (Hawkes,
1971a,b) and also including (Kirchner, 2016a), the function hi,j models the excitement from com-
ponent j on component i. This somewhat counter-intuitive notation stems from the linear algebra
used when writing (4) with matrix multiplication. In the present graph-driven work, ‘ai,j’, ‘wi,j’,
‘hi,j’, and ‘(i, j) ∈ E’ all refer to the effect from component i on component j.

2.2 Hawkes skeleton and Hawkes graph

We interpret the branching structure of the Hawkes process in terms of ‘causality’. The overall
goal of causality research is to describe dependencies in a directed manner—rather than applying
commutative concepts such as correlation; see Pearl (2009) for a recent overview. The notion of
causality is subtle. For Hawkes processes, however, the use of the term seems justified. Indeed,
in the context of event streams, things cannot become much more ‘causal’ than in the recurrent
parent/children relation of a branching process: if we delete an event in the branching construction
from the definitions in Section 2.1 above, its offspring vanishes. So—without discussing causality
formally—we postulate that given an event in component i, it directly causes Pois(ai,j) new events
in component j. This makes the branching coefficient ai,j an obvious measure for the strength of the
causal effect from component i on component j. Such causal effects are often represented as directed
graphs. In the literature on causality, a graphical approach for modeling the interdependence of
event streams can for instance be found in Meek (2014) or Gunawardana et al. (2014)—without
any mentioning of ‘Hawkes’. This shows how natural the definition of a Hawkes graph is. First,
we introduce some general graph terminology:

Definition 5. Let d ∈ N and [d] = {1, 2, . . . , d}. A graph G is a 2-tuple (V, E), where V = [d] is a
set of vertices and E ⊂ V × V is a set of edges. Given such a graph G we introduce the following
definitions:

i) Vertex i is a parent of vertex j if (i, j) ∈ E. We write PA(j) := {i : (i, j) ∈ E}. Vertex i is
a source vertex if PA(i) \ {i} = ∅.Vertex i is a sink vertex if {j : (i, j) ∈ E} \ {i} = ∅.

ii) For g ∈ N, (k0, k1, . . . , kg) ∈ Vg+1 is a walk in G of length g from vertex i to vertex j if
k0 = i, kg = j and (kl−1, kl) ∈ E , l ∈ [g]; (k0, k1, . . . , kg) ∈ Vg+1 is a closed walk if it is a

walk with k0 = kg. We denote the set of walks in G from i to j with length g ∈ N by W(i,j)
g .

Furthermore, we set W(i,j)
0 := ∅ if i 6= j, W(i,j)

0 := {(i)} if i = j, W(i,j) := ∪g≥0W(i,j)
g , and

W := ∪(i,j)∈[d]2W(i,j).

iii) Vertex i is an ancestor of j if there exists a walk of length g ∈ N from i to j. We denote the
ancestor set of a vertex i in G by AN(i).

iv) The vertices i and j are weakly connected if i = j or if there exists a set {(kl−1, kl), l =
1, . . . , g : k0 = i, kg = j, (kl, kl−1) ∈ E or (kl−1, kl) ∈ E} for some g ∈ N. The vertices i
and j are strongly connected if the sets Wi,j and Wj,i are nonempty. A graph is weakly
(strongly) connected if all pairs of its vertices are weakly (strongly) connected. A graph is
fully connected if (i, j) ∈ E , (i, j) ∈ [d]2.

Note that in our definition, a graph allows cycles and, in particular, self-loops. A vertex may
or may not be an ancestor and, in particular, a parent of itself. Also note that any vertex i is
always strongly connected to itself because {(i)} ⊂ W(i,i), i ∈ [d]—no matter if i is contained in a
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closed walk or not. Consequently, the singleton graph is always strongly connected. However, it is
only fully connected if is a self-loop. Next, we apply the graph terminology from Definition 5 to
the Hawkes process:

Definition 6. Let N be a d-type Hawkes process with immigration intensities η1, η2, . . . , ηd and
branching coefficients ai,j(=

∫
hi,j(t)dt), (i, j) ∈ [d]2; see Definitions 2 and 4. The Hawkes graph

skeleton G∗N = (V∗N, E∗N) of N consists of a set of vertices V∗N = [d] and a set of edges

E∗N :=
{

(i, j) ∈ V∗N × V∗N : ai,j > 0
}
.

For j ∈ [d], we denote the parent, respectively, ancestor set of j with respect to the Hawkes skeleton
G∗N by PAN(j) and ANN(j). For the Hawkes graph GN = (VN, EN) of N, each vertex, respectively,
edge of the corresponding Hawkes skeleton is supplied with a vertex, respectively, an edge weight:

VN :=
{

(j; ηj) : j ∈ V∗N and ηj is the j-th immigration intensity of N
}
,

EN :=

{
(i, j; ai,j) : (i, j) ∈ E∗N and (ai,j)(i,j)∈[d]2 is the branching matrix of N

}
.

We call the branching matrix A = (ai,j) ∈ Rd×d≥0 of N the adjacency matrix of GN.

i) A Hawkes graph GN is weakly, strongly, respectively, fully connected if the corresponding
skeleton G∗N is weakly, strongly, respectively, fully connected; see Definition 5.

ii) Vertex (j; ηj) of a Hawkes graph GN is a source, respectively, sink vertex, if it is a source,
respectively, sink vertex in the corresponding skeleton G∗N. Furthermore, (j; ηj) is a redundant
vertex if ηj = 0 and, in addition, ηi = 0 for all i ∈ ANN(j).

iii) For any walk w ∈ WGN (:=WG∗
N

) in a Hawkes graph GN, we define the walk weights

|w| = |(i0, i1, . . . , ig)| :=

{
1, g = 0, and∏g
l=1 ail−1,il , g > 0,

where ail−1,il , l = 1, 2, . . . , g, are the edge weights from EN.

iv) A Hawkes graph is subcritical if∑
w∈W(i0,i0)

|w| <∞, i0 ∈ [d], or, equivalently,
∑
w:

w closed walk in GN

|w| <∞. (5)

Note that if a Hawkes graph vertex is redundant, then all its ancestors are also redundant. The
notion of a subcritical Hawkes graph in Definition 6 iv) might ask for further explanation. The
following theorem clarifies things:

Theorem 1. Let N be a Hawkes process and let GN be the corresponding Hawkes graph. Then N
is a subcritical Hawkes process (see Definition 4) if and only if GN is a subcritical Hawkes graph
(see Definition 6).

Proof. First, we prove that∑
w∈W(i0,i0)

|w| <∞, i0 ∈ [d] ⇔
∑

w∈W(i0,j)

|w| <∞, (i0, j) ∈ [d]2. (6)

‘⇐’ is trivial. We show ‘⇒’ by induction over the graph size d: for d = 1, the implication is true.
For d > 1, consider a graph with d vertices and assume that the left-hand side of (6) holds. Pick

any (i0, j) ∈ [d]2. We split the possible paths from i0 to j, W(i0,j), into paths excluding d, W(i0,j)
excl.d,

and paths including d, W(i0,j)
incl.d :∑

w∈W(i0,j)

|w| =
∑

w∈W(i0,j)

excl.d

|w|+
∑

w∈W(i0,j)

incl.d

|w|. (7)
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The first sum is finite by the induction hypothesis. Now, assume the case that i0 6= d and j 6= d.
Every walk in the second sum of (7) may be (uniquely) split into the following five subwalks: a
d-avoiding walk w1 from i0 to some i1 ∈ PA(d), a one-step walk (i1, d), a walk w2 ∈ W(d,d), another
one-step walk (d, j1), with d ∈ PA(j1), and finally some d-avoiding walk w3 from j1 to j. This
yields ∑

w∈W(i0,j)

incl.d

|w|

=
∑

i1∈PA(d)

∑
w1∈W

(i0,i1)

excl.d

∑
w2∈W(d,d)

∑
j1:d∈PA(j1)

∑
w3∈W

(j1,j)

excl.d

|w1| ai1,d |w2| ad,j1 |w3|

≤
∑

i1∈PA(d)

∑
j1:d∈PA(j1)

max
(i,j)∈[d]2

a2
i,j

∑
w1∈W

(i0,i1)

excl.d

|w1|

︸ ︷︷ ︸
<∞ by ind. hyp.

∑
w2∈W(d,d)

|w2|︸ ︷︷ ︸
<∞ by assumption

∑
w3∈W

(j1,j)

excl.d

|w3|

︸ ︷︷ ︸
<∞ by ind. hyp.

<∞.

Note that, by definition, (i) ∈ W(i,i) and |(i)| = 1, i ∈ [d], so that the calculation above also covers
the cases PA(d) = {i0} and PA(j) = {d} as well as d-including walks from i to j that touch d
exactly once. If i0 = d or j = d, the splitting argument becomes even simpler; we do not give the
details. We have proven the finiteness of the second sum in (7) and therefore (6).

Next, note that∑
w∈W(i0,j)

|w| =
∑
g≥0

∑
w∈W(i0,j)

g

|w| =
∑
g≥0

EY (i0)
g,j = EF (i0)

j (R), (i0, j) ∈ [d]2, (8)

where (Y(i0)
g ) = (Y

(i0)
g,1 , Y

(i0)
g,2 , . . . , Y

(i0)
g,d ) are the embedded generation processes of the generic

family processes F(i0) = (F
(i0)
1 , . . . , F

(i0)
d ) of N; see Definition 3. Thus, (5) is a complicated way of

saying that, for all (i0, j) ∈ [d]2, the expected total number of type-j offspring events of a type-i0
event is finite, i.e., that EF (i0)

j (R) <∞, (i0, j) ∈ [d]2. By Proposition 1, this in turn is equivalent
to the spectral radius of the branching matrix being strictly less than 1—which is the original
Hawkes-process subcriticality condition from Definition 4

Obviously, the Hawkes graph does not fully specify the corresponding Hawkes process; it only
captures the structure of the embedded generation processes from Definition 3 together with the
immigration intensities. Despite this simplification, the Hawkes graph gives relevant insight into
the underlying Hawkes process—especially in the highdimensional case. For example, connectivity
and redundancy of vertices are two graph-based concepts that become increasingly important the
higher the dimension of the model considered is. If a Hawkes graph is not weakly connected, we may
consider the weakly connected subgraphs separately and correspondingly split the original model
into separate, lower-dimensional Hawkes processes. The notion of redundant vertices is important
because, typically, we only want to consider ‘accessible’ event types. Sink (source) vertices of
a Hawkes graph correspond to Hawkes process components that only receive (give) excitement
from (to) the system. The notion of parent sets is also helpful: e.g., for the marginal conditional
intensity in (4), it is actually enough to sum over i ∈ PA(j) instead of i ∈ [d] which may be
computationally beneficial. The ancestor sets may be applied if we are only interested in modeling
events of a particular type j. In this situation, it suffices to consider a Hawkes model for the event
types in {j}∪AN(j). Finally, we find the formulation of Hawkes graph subcriticality in (5) useful.
It provides a more concrete meaning to the somewhat abstract eigenvalue-based criterion for the
Hawkes process. E.g., (5) can be used when constructing subcritical Hawkes graphs, respectively,
models. And—if a given graph is sparse and the closed walks are not too numerous—one can
check subcriticality without even calculating any eigenvalue; see Section 4.1. Furthermore, in some
cases, the path weights |w| themselves might be worth calculating—even apart from criticality
conditions; see the discussion in the proof of Theorem 1. Last but not least, the graph structure
obviously allows for attractive self-explaining illustrations; see Figures 1 and 2. In the following
proposition, we collect some specific graphical and statistical information that may be calculated
from the adjacency matrix of a Hawkes graph:

7



Proposition 2. For some d ≥ 2, let N be a d-type subcritical Hawkes process. Furthermore, let
GN = (VN, EN) be the corresponding Hawkes graph with adjacancy matrix A = (ai,j) ∈ Rd×d≥0 . Then
we have that

i) ai,j > 0 ⇔ i ∈ PAN(j);

ii) ai,j = 0, j ∈ [d] \ {i} ⇔ vertex i is a sink vertex;

iii) ai,j = 0, i ∈ [d] \ {j} ⇔ vertex j is a source vertex;

iv) (Ag)i,j > 0 ⇔ there is a walk of length g from i to j;

v) (Ag)i,j > 0 for some g ∈ [d] ⇔ i ∈ AN(j);

vi) for all (i, j) ∈ [d]2, ((A+ A>)g)i,j > 0 for some g ∈ {0} ∪ [d− 1] ⇔ the Hawkes graph
GN is weakly connected;

vii) for all (i, j) ∈ [d]2, ((A)g)i,j > 0 for some g ∈ {0} ∪ [d− 1] ⇔ the Hawkes graph GN is
strongly connected;

viii) ai,j > 0, (i, j) ∈ [d]2 ⇔ the Hawkes graph GN is fully connected;

The properties above can easily be checked. They may help to describe the relationships
between Hawkes process components, respectively, Hawkes graph vertices. Two specific Rd≥0-
vectors might be particularly meaningful statistical summaries of a Hawkes graph, respectively,
Hawkes process:

Definition 7. Let N be a subcritical d-type Hawkes process and let A be the adjacency matrix of
the corresponding Hawkes graph GN. Consider the limit matrix Rd×d≥0 3 (ei,j) := (1d×d − A)−1 =∑
g≥0A

g (= (EF (i0)
j (R))(i0,j)∈[d]2) from Proposition 1 and define

ci0 :=
ηi0
∑d
j=1 ei0,j∑d

i=1 ηi
∑d
j=1 ei,j

, i0 ∈ [d], and fj :=
ηjej,j∑d
i=1 ηiei,j

, j ∈ [d].

We call (ci0)i∈[d] the cascade coefficients and (fj)j∈[d] the feedback coefficients.

One way of tuning a specific Hawkes graph may be achieved by ‘switching-off’ a selected
vertex by forcing the corresponding immigration intensity to zero. The coefficients defined above
summarize the effect of such a manipulation. In view of Proposition 1, we have the following
interpretations. First of all, the cascade coefficients (ci) are important from a systemic point of
view. The cascade coefficient ci measures the fraction of events in the system stemming from
families with immigrated type-i ancestor. If ci > 1/d, this indicates a relatively large impact of
type-i events on the system. Secondly, the feedback coefficients (fj) are more important from an
individual point of view. They indicate how much of the total intensity that a vertex j experiences
is due to its own immigration activity including the feedback it experiences by closed walks. We
illustrate both concepts in Section 4.1.

3 Estimation

In this section, we give a summary of earlier work, where we introduced a nonparametric estimation
procedure for the multivariate Hawkes process. Based on this approach, we introduce an estimation
procedure for the Hawkes skeleton and the Hawkes graph. In particular, we clarify how one can
bypass numerical problems in high-dimensional settings. Finally, we explain how one can use the
results for completely specifying and estimating a parametric Hawkes model.

3.1 Earlier results

In (Kirchner, 2016b), we showed that the distributions of the bin-count sequences of a Hawkes
process can be approximated by the distribution of so called integer-valued autoregressive time
series INAR(p). This approximation yields an estimation method for the Hawkes process: we fit
the approximating model on observed bin-counts of point process data. The resulting estimates
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can be used as estimates of the Hawkes reproduction intensities on a finite and equidistant grid;
see Kirchner (2016a). For illustration, consider a univariate Hawkes process N with reproduction
intensity h and immigration intensity η. Given data from N in a time window (0, T ], ∆ > 0,

small, bin counts X
(∆)
n := N

(
((n − 1)∆, n∆]

)
, k = 1, 2, . . . , n := bT/∆c, and some p ∈ N, large,

we calculate(
α̂

(∆)
0 , α̂

(∆)
1 , . . . , α̂(∆)

p

)
:= argmin

(α
(∆)
0 ,α

(∆)
1 ,...,α

(∆)
p )

n∑
k=p+1

(
X

(∆)
k − α(∆)

0 −
p∑
l=1

α
(∆)
l X

(∆)
k−l

)2

. (9)

Given (9), we estimate the reproduction-intensity values h(k∆), k = 1, 2, . . . , p, of N by ĥk :=

α̂
(∆)
k /∆ and the immigration intensity η by η̂ := α̂

(∆)
0 /∆. The multivariate case is conceptually

equivalent but somewhat cumbersome notationwise. Furthermore—due to the special distribution
of the errors—the covariance matrix of the estimates is nonstandard. This is why we give all
formulas in some detail. The following definitions and properties are taken from Kirchner (2016a)—
modulo transposition as stated in Remark 1.

Definition 8. Let N = (N1, N2, . . . , Nd) be a subcritical d-type Hawkes process with immigration
intensity η ∈ Rd≥0 \{0d} and reproduction intensities hi,j : R≥0 → R≥0, (i, j) ∈ [d]2. Let T > 0
and consider a sample of the process on the time interval (0, T ]. For some ∆ > 0, construct the
Nd0-valued bin-count sequence from this sample:

X
(∆)
k := N

((
(k − 1)∆, k∆

])>
∈ Nd×1

0 , k = 1, 2, . . . , n := bT/∆c . (10)

Define the multivariate Hawkes estimator with respect to some support s, ∆ < s < T ,

Ĥ(∆,s) :=
1

∆

(
Z> Z

)−1

Z>Y ∈ R(dp+1)×d . (11)

Here,

Z
(
X

(∆)
1 , . . . ,X(∆)

n

)
:=


(X

(∆)
p )> (X

(∆)
p−1)> . . . (X

(∆)
1 )> 1

(X
(∆)
p+1)> (X

(∆)
p )> . . . (X

(∆)
2 )> 1

. . . . . . . . . . . . . . .

(X
(∆)
n−1)> (X

(∆)
n−2)> . . . (X

(∆)
n−p)

> 1

 ∈ R(n−p)×(dp+1) (12)

is the design matrix and Y
(
X

(∆)
1 , . . . ,X

(∆)
n

)
:=
(
X

(∆)
p+1,X

(∆)
p+2, . . . ,X

(∆)
n

)>
∈ R(n−p)×d with p :=

ds/∆e.
For the following considerations, we drop the ‘(∆, s)’ superscript. Note that also the matrices

Z and Y depend on ∆. Additional notation clarifies what the entries of the matrix Ĥ in (11)
actually estimate:

Ĥ1

. . .

Ĥp

η̂

 := Ĥ ∈ R(dp+1)×d, where Ĥk :=


ĥ1,1(k∆) ĥ1,2(k∆) . . . ĥ1,d(k∆)

ĥ2,1(k∆) ĥ2,2(k∆) . . . ĥ2,d(k∆)
. . . . . . . . . . . .

ĥd,1(k∆) ĥd,2(k∆) . . . ĥd,d(k∆)

 . (13)

In Kirchner (2016a), we find that, for large T , small ∆ and large p, the entries of Ĥ are approxi-
mately jointly normally distributed around the true values. Furthermore, the covariance matrix of

vec
(
Ĥ>
)
∈ Rd(dp+1) (vec(·) stacks the columns of its argument) can be consistently estimated by

Ŝ2 :=
1

∆2

((
Z> Z

)−1

⊗ 1d×d

)
W

((
Z> Z

)−1

⊗ 1d×d

)
∈ Rd(dp+1)×d(dp+1) . (14)

Here, ⊗ denotes the Kronecker product, Z is the design matrix from (12) and W :=
∑n
k=p+1 wk w>k ∈

Rd(dp+1)×d(dp+1), where, for k = p+ 1, p+ 2, . . . , n,

wk :=

(((
X

(∆)
k−1

)>
,
(
X

(∆)
k−2

)>
, . . . ,

(
X

(∆)
k−p

)>
, 1

)>
⊗ 1d×d

)
(15)

·

(
X

(∆)
k −∆η̂ −

p∑
l=1

∆Ĥ>l X
(∆)
k−l

)
∈ Rd(dp+1)×1 .
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In Definition 8, we consider vec(H>) instead of vec(H) in order to apply the results from
Kirchner (2016b) more directly; see Remark 1. We will discuss below how one retrieves specific
values from the covariance matrix estimation in (14). The estimator from Definition 8 above
depends on a support s, 0 < s << T, and on a bin size ∆, 0 < ∆ ≤ s. Automatic methods for
the choice of these estimation parameters are discussed in Kirchner (2016b). In the present paper,
we assume s given. Often, an upper bound for the support of the reproduction intensities can
be guessed from the data context. The choice of ∆, however, will be crucial in high-dimensional
settings. We will use it as a tuning parameter for controlling numerical complexity.

3.2 Estimation of the Hawkes skeleton

Our first goal is to identify the edges of the Hawkes skeleton from data; see Definition 6. The idea is
simple: for (i, j) ∈ [d]2, we estimate the edge weight ai,j =

∫
hi,j(t)dt by âi,j := ∆

∑p
k=1 ĥi,j(k∆);

see (13) for the notation. Calculating the covariance estimate (14), we can check whether âi,j is

significantly larger than zero. If this is the case, we set (i, j) ∈ Ê∗. In order to ease implementation,
we explicitly give the necessary transformations for the estimates from Definition 8 and discuss
numerical issues.

Definition 9. Given d-type event-stream data on (0, T ], calculate the Hawkes estimator H(∆skel,s)

from Definition 8 with respect to some s, 0 < s < T, and some ∆skel, 0 < ∆skel ≤ s. For j ∈ [d],
let bj ∈ {0, 1}(dp+1)×1 be column vectors with all entries zero but 1s at entries (k − 1)d + j, k =
1, 2, . . . , p = ds/∆skele. Let B := (b1, b2, . . . , bd)

>, and calculate

(âi,j)1≤i,j≤d = ∆skelBH(∆skel,s) . (16)

Fix αskel ∈ (0, 1) and define the Hawkes-skeleton estimator as a graph Ĝ∗ := ([d], Ê∗), with

Ê∗ :=
{

(i, j) ∈ [d]2 : âi,j > σ̂i,jz
−1
1−αskel

}
. (17)

Here, for β ∈ (0, 1), z−1
β denotes the β-quantile of a standard normal distribution. Efficient

calculation of (σ̂i,j)1≤i,j≤d will be given in Algorithm 1 below.

The main point of this first estimation step is that we hope that the edge set |E∗| and, con-

sequently |Ê∗| are typically much smaller than d2, respectively, that PAN(j), j ∈ [d], and, conse-

quently, P̂AN(j), j ∈ [d], are typically much smaller than d. If this is the case, the knowledge of
the skeleton simplifies the estimation of the Hawkes graph considerably.

The role of ∆skel

On the one hand, the smaller we choose the bin size ∆, the better the discrete approximation
described in Section 3.1 works. On the other hand, the matrices involved in the calculation of the
Hawkes estimator from Definition 8 become increasingly large when ∆ decreases. More specifically,
(11) involves the construction and multiplication of matrices with about ds/∆ rows and about
T/∆ columns, where T > 0 denotes the sample window size, d ∈ N the number of event-types, and
s, ∆ ≤ s << T , the support parameter from Definition 8. Furthermore, we have to invert matrices
of size dds/∆e × dds/∆e. The crucial observation is that in the Hawkes-skeleton estimation, we
may choose ∆skel quite large for two reasons:

i) The test involved in (17) does not depend on ∆skel too heavily. The false positive rate
(that is, the probability of including a false edge) is well controlled by αskel, because, under
H0 : hi,j ≡ 0, discretizations as in (9) stay ‘correct’ even for very coarse ∆skel; see (18) below.
The false negative rate (probability of missing a true edge) naturally depends strongly on the
true underlying edge weights. However, if there is truly considerable direct excitement from
one component to another, then typically the effect from some bin to future bins will also
be of some significance—which is exactly what our skeleton estimator tests. Our simulation
study in Section 4.2 confirms these arguments.

ii) The actual quantitative estimation of the interactions between different event types will be
performed in a second step when we consider the Hawkes graph. In this second step, due to
the (hoped-for) sparseness of the Hawkes skeleton, we are typically able to choose a much finer
bin size ∆graph. So we may ignore the bias stemming from a somewhat rough discretization
in the first (skeleton-estimation) step.
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By choosing ∆skel = s/k for some small k ∈ N in the calculations of Definition 9 above, even
Hawkes-skeleton estimates of very high-dimensional models (such as d > 20) become computation-
ally tractable.

The role of αskel

Note that under H0 : ai,j ≡ 0, we have that

PH0
[âi,j > σ̂2

i,jz
−1
1−αskel

] ≈ αskel. (18)

Still, the parameter αskel ∈ (0, 1) should not so much be thought of as an actual significance
level—due to the multiple testing setup over (i, j) ∈ [d]2, and because of the dependence between
the different edge tests. Despite this warning, note that in the simulation study from Section 4.2,
the corresponding empirical false positive rates are very close to our (varying) choices of αskel. In
any case, αskel is a flexible tuning parameter that allows for controlling the degree of sparseness
in the estimated graph. A value of αskel = 1 will yield a fully connected estimated graph as
Hawkes skeleton. When αskel decreases, the skeleton estimate becomes sparser and sparser. For
αskel ≥ 0.01, we typically still overestimate the true edge set. In other words, for j ∈ [d], we

typically have that PAN(j) ⊂ P̂AN(j) with high probability.

Variance estimate calculation

The most elaborate step from a computational point of view in Definition 8 is the calculation
of the covariance estimator in (14). Here, we deal with matrices of size dd2s/∆e × dd2s/∆e.
Furthermore, we have to calculate approximately T/∆ vectors of size d2s/∆ and calculate and
sum their crossproducts wk w>k . This is the numerical bottleneck of the procedure—in particular
for high-dimensional setups. For the Hawkes-skeleton estimator from Definition 9, we simplify the
calculation. First of all, we note that in the matrix Ŝ2 from (14), we estimate many more covariance
values than we actually need for the (marginal) distribution of the edge-weight estimates. After
some linear algebra, we find that one can avoid the tedious computation of the W matrix from
(14) by the following matrix manipulations.

Algorithm 1. Let E ∈ {0, 1}d2×(d2p+d) be a matrix with all entries zero but, for (i, j) = [d]2, in
row (i−1)d+j we have 1s at entries (k−1)d2 +(i−1)d+j, k = 1, 2, . . . , p. Let El,· denote the l-th

row of E. With Ŝ2 from (14) and for (i, j) ∈ [d]2, we have that σ̂2
i,j := ∆2 E>(i−1)d+j,· Ŝ

2 E(i−1)d+j,·
are the variance estimates for the âi,j from (16). These estimates can be computed in the following
way:

i) Compute E
(
Z> Z)−1 Z>⊗1d×d ∈ Rd

2×d(n−p) and stack the rows of the result in a vector.
Fill this vector row-wise in a d2(n− p)× d matrix C.

ii) Set U = (Y−∆ Z Ĥ) ∈ R(n−p)×d. Denoting (Up+1, Up+2, . . . , Un)> := U, we now have that

Uk =

(
X

(∆)
k −∆η̂ −

p∑
l=1

∆Ĥ>l X
(∆)
k−l

)
, k = p+ 1, p+ 2, . . . , n.

Furthermore, let U(rep) ∈ Rd
2(n−p)×d be a matrix consisting of d2 repetitions of the U matrix

stacked on top of each other.

iii) Multiply C from (i) pointwise with U(rep) from (ii) and square the row sums of the resulting
matrix. Row-wise fill the resulting vector into a d2 × (n − p) matrix and compute the row
sums of this matrix.

iv) Row-wise fill the result from (iii) into a d× d matrix. This yields
(
σ̂2
i,j

)
1≤i,j≤d .

3.3 Estimation of the Hawkes graph

Given an estimate Ĝ∗N of the Hawkes skeleton G∗N from Definition 9, we consider the estimation of
the Hawkes graph GN; see Definition 6. We aim to estimate vertex as well as edge weights, and
to calculate corresponding confidence bounds for both. That is, after the more structural Hawkes-
skeleton estimation from Section 3.2, we now quantify the various interactions between the observed
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event streams. Typically, after the skeleton estimation, we can reduce the effective dimensionality
of the model considerably: in a first obvious step, we divide the skeleton Ĝ∗N into its weakly-

connected subgraphs and treat them separately. In a second step, we identify P̂AN(j) := {i ∈ VN :

(i, j) ∈ Ê∗N} for all j ∈ VN. From the branching construction of a Hawkes process, respectively,
of Hawkes families in Definitions 2 and 4, we have that any event in component j is either an
immigrant stemming from a Poisson random measure with constant intensity ηj or has a direct
explanation through an event in one of its parent components PAN(j). That is, in a multivariate
version of (9), it suffices to regress the bin-counts of component j on the bin-counts in PAN(j). The
constant term in this regression will represent the j-th immigration intensity. Considering only
the parents instead of all of the d other components in the conditional-least-squares regression
increases numerical efficiency and decreases estimation variance. In applications, however, we do
not know the true parent set PAN(j). So, we have to substitute PAN with the estimate P̂AN.

As long as PAN(j) ⊂ P̂AN(j) this is not an issue: from the branching construction, we have that
the intensity at time t of component j, conditional on σ(Ni(A) : A ∈ B((−∞, t]), i ∈ PAN(j)),
is independent of the past of all other components σ(Ni(A) : A ∈ B((−∞, t]), i /∈ PAN(j)).
Consequently, additional vertices in the estimated parent sets do not introduce additional bias in
this graph estimation. Apart from this restriction of the regression variables on (estimated) parent
types, we apply the conditional-least-squares approach as in Definition 8. This time however,
due to reduction of dimensionality, we will typically be able to choose a much smaller bin size
∆graph than for the skeleton estimation before. To ease implementation, below we give convenient
notations and the necessary calculations.

First, we drop the N subscript for the parent sets PA(j). Also, we write PA(j) instead

of P̂A(j)—keeping in mind that the first has to be substituted by the latter in most applica-

tions. For k = 1, 2, . . . , n, j ∈ [d] and some 0 < ∆graph << ∆skel, let X
(∆graph)
k,j := Nj

(
((k −

1)∆graph, k∆graph]
)
, dj := |PA(j)|, and

X
(∆graph)

k,PA(j) :=
(
X

(∆graph)
k,i1

,X
(∆graph)
k,i2

, . . . ,X
(∆graph)
k,idj

)>
. (19)

In (19) and in what follows, we denote {i1, i2, . . . , idj} := PA(j) such that i1 < i2 < · · · < idj . The
idea is to regress all the bin counts of all d event types separately on the past of their parents with
Ansatz

E
[
X

(∆graph)
n,j

∣∣∣X(∆graph)

n−k,PA(j), k = 1, 2, . . . , p
]

= α
(∆graph)
0,j +

∑
i∈PA(j)

p∑
k=1

α
(∆graph)
k,i,j X

(∆graph)
n−k,i , j ∈ [d].

(20)

Ansatz (20) should be compared with (9). Note that j itself may or may not be an element of
PA(j).

Definition 10. Let G∗N be a Hawkes skeleton (estimate) with respect to some d-type Hawkes process
(data) N. Given dj := |PA(j)|, j ∈ [d], a bin size ∆graph > 0, a support s with 0 < ∆graph ≤ s < T ,
and p := ds/∆graphe, calculate the conditional-least-squares estimates

Ĥ
(∆graph,s)
j :=

1

∆graph

(
Z>j Zj

)−1

Z>j Yj ∈ R(pdj+1)×1, j ∈ [dj ], (21)

with design matrices

Zj :=



(X
(∆graph)

p,PA(j))
> (X

(∆graph)

p−1,PA(j))
> . . . (X

(∆graph)

1,PA(j))
> 1

(X
(∆graph)

p+1,PA(j))
> (X

(∆graph)

p,PA(j))
> . . . (X

(∆graph)

2,PA(j))
> 1

. . . . . . . . . . . . . . .

(X
(∆graph)

n−1,PA(j))
> (X

(∆graph)

n−2,PA(j))
> . . . (X

(∆graph)

n−p,PA(j))
> 1


∈ N(n−p)×(pdj+1)

0 , j ∈ [d],

(22)

and vectors of responses

Yj :=
(
X

(∆graph)
p+1,j ,X

(∆graph)
p+2,j , . . . ,X

(∆graph)
n,j

)>
∈ N(n−p)×1

0 , j ∈ [d].
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Given Ĥ
(∆graph,s)
j , j ∈ [d], we define the Hawkes-graph estimator ĜN := (V̂N, ÊN) with V̂N :=

{(j; η̂j) : j ∈ [d]} and

ÊN :=
⋃

j=1,...,d

{
(il, j; âil,j) : {i1, . . . , idj} = PA(j), âil,j = b>l,jĤ

(∆graph,s)
j

}
, (23)

where, for l ∈ [dj ], b(l, j) ∈ {0, 1}(djp+1)×1 is a column vector with 0s in all components but 1s
in components ((k − 1)dj + l), k = 1, 2, . . . , p. Furthermore, for αgraph ∈ (0, 1), we define the
confidence intervals

[
η̂j ± σ̂jz−1

1−αgraph

)
, j ∈ [d], and, for il ∈ PAN(j),

[
âil,j ± σ̂il,jz−1(1− αgraph)

)
.

We give the calculation of σ̂il,j and σ̂j in Algorithm 2, below.

As before, additional notation clarifies what the entries of the matrices Ĥ
(∆graph,s)
j , j ∈ [d],

actually estimate:
ĤPA(j),j(∆graph)

ĤPA(j),j(2∆graph)
. . .

ĤPA(j),j(p∆graph)
η̂j

 := Ĥj , with (24)

ĤPA(j),j(k∆graph) =
(
ĥi1,j(k∆graph), ĥi2,j(k∆graph), . . . , ĥidj ,j(k∆graph)

)>
,

k = 1, 2, . . . , p and {i1, i2, . . . , idj} = PA(j). Finally, we provide efficient computations for the
covariance estimates that are necessary for the confidence intervals around the estimated edge and
vertex weights.

Algorithm 2. Let j ∈ [d] such that |PA(j)| > 0 and let {i1, i2, . . . , idj} = PA(j) with i1 < i2 <

. . . , < idj . For (il, j), l ∈ [dj ], let e(il, j) ∈ {0, 1}(djp+1)×1 be a column vector with all entries 0,
but 1s at components (k − 1)dj + (l − 1), k = 1, 2, . . . , p. We compute σ̂il,j in the following way:

i) Compute Cl,j := e(il, j)
>
(

(Z>j Zj)
−1 Z>j

)
∈ R1×(n−p).

ii) Set Uj = (Yj −∆graph Zj Ĥj) ∈ R(n−p)×1. Denoting (Up+1,j , Up+2,j , . . . , Un,j)
> := Uj, we

have that

Uk,j =

(
X

(∆graph)
k,j −∆graphη̂ −

p∑
m=1

∆graphĤ
>
PA(j),j(m∆graph) X

(∆graph)

k−m,PA(j)

)
,

for k = p+ 1, p+ 2, . . . , n.

iii) Pointwise multiply Cl,j and Uj. The sum of the squares of the result yields σ̂2
il,j
∈ R≥0.

For the variance estimates corresponding to the j-th vertex weight, consider the last row of
(

(Z>j Zj)
−1 Zj

)
∈

R(djp+1)×(n−p), multiply it pointwise with Uj from above, take the sum of squares of the results
and multiply the result with ∆−2

graph; this yields σ̂2
j .

Remark 2. The bin size ∆graph for the graph estimation in Definition 10 will typically be much
smaller than the bin size ∆skel for the skeleton estimation in Definition 9. After the graph esti-
mation, one might again want to delete edges with edge-weight estimates non-significantly different
from zero, or treat vertex-weight estimates, respectively, immigration intensities, that are not sig-
nificantly different from zero as zero; see Figure 2. Also note that the latter could possibly be tested
with a different significance parameter αvertex than the significance parameter αgraph from the edge
weight estimation. In any case, the resulting Hawkes-graph estimations ought to be checked for re-
dundant vertices; see Definition 5. If the estimate has redundant vertices, the results are typically
inconsistent with the data—as we typically observe data in all components. Therefore, if a fitted
model has redundant vertices, we ought to increase αskel, αgraph, and/or αvertex. Thus, we obtain
more estimated nonzero immigration intensities and/or larger estimated edge sets. We proceed
with increasing the significance parameters until there are no redundancies left.

Given a Hawkes-graph estimate as in Definition 10, one may examine connectivity issues, path
weights, graph distances, feedback and cascade coefficients, exploit graphical representations, etc.;
see the example in Section 4.
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3.4 Estimation of the reproduction intensities

For many applications, the results discussed above may already suffice. In other applications
however, the graph estimation will only be a preliminary step and one would like to examine how
the various excitements are distributed over time. In other words, one would like to explicitly
estimate the displacement intensities, respectively, the reproduction intensities from Definition 2.

Parametric estimation

Given the Hawkes estimator from Definition 8, the Hawkes model is not yet completely specified.
In particular, (21) only yields estimates of the reproduction intensities on a grid:{(

k∆
)
, ĥi,j(k∆)

}
k=1,2,...,p

, i ∈ P̂A(j), j ∈ [d]. (25)

One obvious possibility to complete the model specification would be the application of any kind
of smoothing method on (25). We want to consider another approach: we exploit (25) graphically
(examine log/log-plots, id/log-plots, check for local maxima, convex/concave regions, etc.) and
identify appropriate parametric families. The parameters can then be fitted to the estimates (25)
via non-linear least-squares (e.g., function nls in R):

Definition 11. Consider a Hawkes-graph estimation as in Definition 10 with respect to some

d-type event-stream data and a bin size ∆graph > 0. For j ∈ [d] and i ∈ P̂A(j), let w
(θi,j)
i,j :

R → R≥0, w
(θi,j)
i,j (t) = 0, t ≤ 0, be density families parametrized by θi,j ∈ Θi,j ⊂ Rdi,j . With the

notation from (25), let

(âi,j , θ̂i,j) := argmin(a,θ)∈R≥0×Θi,j

p∑
k=1

(
aw

(θ)
i,j

(
k∆graph

)
− ĥi,j(k∆graph)

)2

, (i, j) ∈ Ê∗, (26)

and define the parametric reproduction-intensity estimates

ĥ
(par)
i,j (t) :=

{
âi,jw

(θ̂i,j)
i,j (t), (i, j) ∈ Ê∗, t ∈ R,

0, (i, j) /∈ Ê∗, t ∈ R,

the parametric branching-matrix estimate

Â(par) :=

(∫
ĥ
(par)
i,j (t)dt

)
1≤i,j≤d

,

and the parametric immigration-intensity estimates.

η̂(par) :=
(
η̂
(par)
1 , . . . , η̂

(par)
d

)
:= λ(emp)

(
1d×d − Â(par)

)
, (27)

where λ(emp) denotes the observed empirical intensity λ(emp) := N
(
(0, T ]

)
/T ∈ R1×d

≥0 .

We illustrate this specification and estimation of a fully parametric multivariate Hawkes process
in Figure 3. Here, we also see that the parameter estimates from (26) are symmetrically distributed
around the true values. Even though the estimator calculations in Definition 11 stand at the end of
a long chain of various discretizations and truncations, ‘log-likelihood profile’ confidence intervals
(e.g., from confint.nls in R) give remarkably good coverage rates for the parameter estimates
(not illustrated).

Remark 3. The definition of η(par) in (27) is motivated by the desirable equality

η(par)
(

1d×d − (Â(par))>
)−1

= λ(emp).

In other words, with this choice of η̂(par), the observed unconditional intensity exactly equals the
estimated unconditional intensity. This might be relevant in some applications (e.g., simulation
from a fitted model). Finally note that it might often be more efficient to consider weighted least
squares in (26).
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4 Example

We illustrate the concepts introduced in the previous sections with a ten-dimensional Hawkes
model. We perform a simulation study and apply the estimation methods from Sections 3.2, 3.3,
and 3.4 to the Hawkes skeleton, the Hawkes graph, and the reproduction-intensity parameters.

4.1 Example model

We consider a 10-type Hawkes process N as in Definition 4 with immigration intensities

ηi :=

{
1, i ∈ {1, 7, 10},
0, i ∈ {2, 3, 4, 5, 6, 8, 9},

(28)

and reproduction intensities hi,j , (i, j) ∈ [10]2, defined, for t ∈ R, by

hi,j(t) :=


1.5 γ(t), (i, j) ∈ {(1, 2), (2, 4), (8, 9)},
1t∈[1,2]0.5, (i, j) ∈ {(1, 1), (2, 3), (3, 5), (4, 3), (4, 5), (4, 6), (5, 3), (7, 8), (9, 7)},
1t∈[1,2]0.1, (i, j) = (5, 7),

0, else.

(29)

Here, γ denotes a Gamma density with shape parameter 6 and rate parameter 4, i.e., γ(t) =
1t≥0t

5 exp{−4t}(46)/(5!). In Hawkes graph terminology, we have 13 edges supplied with three
different kinds of edge weights: a heavy weight (1.5) for three edges, a light weight (0.5) for seven
edges, and one edge with a super-light weight (0.1). An illustration of the corresponding graph GN
is much more meaningful than (29); see the left graph in Figure 1. From this figure, the various
direct and indirect dependencies can be read off instantaniously; only the large nodes have nonzero
immigration intensity; a fat edge corresponds to an edge weight of 1.5; a thin edge corresponds to
an edge weight of 0.5; the dashed line corresponds to the super-light edge weight 0.1. We examine
the Hawkes-graph properties introduced in Definitions 6 and 7:

Redundancy The Hawkes graph GN has no redundant vertices: all small vertices have a large
vertex as one of their ancestors. If vertex 1 were small, the vertices 1, 2, 3, 4, 5 and 6 would be
redundant as they could not generate events.

Connectivity The Hawkes graph GN is not weakly connected. The graph can be divided in two
separate weakly-connected Hawkes subgraphs with vertex sets {1, 2, 3, 4, 5, 6, 7, 8, 9}, and {10}.
Deleting edge (5, 7; 0.1) would yield three separate weakly-connected Hawkes subgraphs.

Criticality The Hawkes graph GN is subcritical : all vertices but vertex 10 are part of closed walks.
It suffices to check criterion (5) for vertices i0 ∈ {1, 2, 3, 7}. For vertex 1, we find that

W(1,1)
g = {(1, 1, . . . , 1︸ ︷︷ ︸

g+1 times

)}, g ∈ N, and |(1, 1, . . . , 1︸ ︷︷ ︸
g+1 times

)| = 0.5g, g ∈ N .

Consequently,
∑∞
g=1

∑
wg∈W(1,1)

g
|wg| =

∑∞
g=1 0.5g <∞. For vertex 2, we find that

W(2,2)
1 =W(2,2)

2 = ∅, W(2,2)
3 = {(2, 4, 6, 2)}, W(2,2)

4 =W(2,2)
5 = ∅, W(2,2)

6 = {(2, 4, 6, 2, 4, 6, 2)}, . . .

With |(2, 4, 6, 2)| = 1.5 · 0.5 · 0.5 = 0.375, |(2, 4, 6, 2, 4, 6, 2)| = 0.3752, . . . , criterion (5) again
follows. For vertices 3 and 7, one argues analogously. In other words, as long as closed walks do
not overlap, we can construct large subcritical Hawkes graphs without calculating any eigenvalues.
When closed walks overlap, the underlying combinatorics typically become too involved as to
proceed in this manner. In this case one could calculate the spectral radius of the adjacency
matrix of the involved edges only. For example, if we wanted to introduce another edge (9, 5; a9,5)
in model (29), respectively, Figure 1, we would have to calculate the spectral radius of the adjacency
matrix corresponding to the Hawkes (sub-)graph with edges{

(3, 5; 0.5), (5, 3; 0.5), (5, 7; 0.1), (7, 8; 0.5), (8, 9; 0.5), (9, 5; a9,5), (9, 7; 0.5)
}

;
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see Theorem 1.

Cascade and feedback coefficients We calculate the coefficients from Definition 7 with respect
to the example model; see Table 1. The cascade and feedback coefficients summarize the impact
of the driving vertices 1, 4 and 10 (that is, of the vertices with nonzero vertex weights) on the
process. The cascade coefficients measure the impact of each vertex on the whole system. In
our example, the immigrants in the first vertex together with the cascades that they trigger are
responsible for about 82% of all events that occur in the system. The feedback coefficients measure
the impact of the impact of each vertex on itself. In our example, for vertex 8 this means that
76% of its activity are explained by its own immigration activity and by the feedback loops that
the immigrants possibly trigger via closed walks. Vertex 1 is only excited by its own activity. For
vertex 10 the feedback coefficient is also equal 1—albeit there is no true feedback involved. Still,
its intensity would decrease by 100% if it were switched off.

Table 1: Cascade and feedback coefficients

1 2 3 4 5 6 7 8 9 10
cascade.coefficients 0.82 0.00 0.00 0.00 0.00 0.00 0.14 0.00 0.00 0.04

feedback.coefficients 1.00 0.00 0.00 0.00 0.00 0.00 0.76 0.00 0.00 1.00

4.2 Simulation study

We simulate nsim = 1000 realizations of the Hawkes process N from Section 4.1. We use the
branching construction from Definitions 2 and 4 as simulation algorithm. In each realization, we
simulate a time window of 500 time units. This typically yields between 500 and 2000 events per
component. Given each of these realized event streams, we calculate the Hawkes-skeleton estimator
from Definition 9—with respect to different values of ∆skel and αskel. Given these skeleton esti-
mates, we calculate the Hawkes-graph estimator from Definition 10—including confidence bounds
for all vertex and edge weights. Finally, we analyze the scatterplots for branching-intensity esti-
mates, choose parametric function families, and fit the parameters on the estimates by nonlinear
least squares. Figures 1 and 2 illustrate the procedure.

Hawkes-skeleton estimation

We fix s = 5 and, for each simulated event-stream, we calculate the Hawkes-skeleton estimates
from Definition 9 with respect to this support parameter s, bin sizes ∆skel ∈ {0.2, 0.5, 1, 2}, and
various sparseness parameters αskel ∈ {0.005, 0.01, 0.05, 0.1, 0.25}. We denote the estimated edge

sets by {Ê∗(k)}k=1,2,...,nsim and the true edge set by E∗. Using this notation, we summarize the
results of the simulation study in Tables 2, 3, 4, and 5 with the following statistics:

i) nedges: average size of estimated edge-sets (true number is 13), that is,
∑nsim

k=1 |E∗(k)|/nsim.

ii) total: fraction of correctly included edges, i.e, of pairs (i, j) ∈ Ê∗N(k) such that (i, j) ∈ EN:∑nsim

k=1

∑
(i,j)∈E∗ 1{(i,j)∈Ê∗(k)}

nsim|E∗|
.

Note that 1− total is the false-negative rate.

iii) heavy/light/super.light: more detailed version of ii) above; fractions of correctly estimated
edges with heavy (1.5), light (0.5) and super-light (0.1) edge weights.

Table 2: ∆skel = 0.2

alpha.skel nedges total heavy light super.light zero
0.005 12.324 0.902 1.000 0.956 0.121 0.993
0.010 13.066 0.917 1.000 0.970 0.190 0.987
0.050 17.296 0.946 1.000 0.990 0.379 0.942
0.100 21.995 0.959 1.000 0.995 0.507 0.890
0.250 35.015 0.979 1.000 0.999 0.739 0.744
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Figure 1: Hawkes process simulation, Hawkes graph, and estimated Hawkes skeleton. The left graph represents
the Hawkes graph corresponding to the Hawkes process example from Section 4.1; the graph is a summary of
the immigration and branching structure of the model: edges from one vertex to another vertex denote nonzero
reproduction intensities, respectively, excitement. Fat edges refer to heavy excitement (1.5 expected children events
in branching construction); thin edges to small excitement (0.5 expected children) and the dotted line refers to a
very small excitement (0.1 expected children); see (29). Large vertices correspond to nonzero immigration-intensities
(= 1) and small vertices to the zero-immigration vertices; see (28). The barcode plots illustrate a 30 time-units
window of a simulated realization of the model (after some burn-in): we observe events of ten types, respectively,
in ten components. One goal of our paper is to retrieve the graph on the left from such a realization. As a first step
towards this aim, we calculate the Hawkes-skeleton estimate from Definition 10 with respect to a coarse bin size
∆skel = 1 and a sparseness parameter αskel = 0.05. The right graph illustrates such an estimate. This skeleton will
be used in a second step to retrieve the Hawkes-graph estimate; see Figure 2. Comparing the skeleton with the true
graph on the right, we see that we catch twelve of the thirteen true edges. We miss edge (5, 7). Furthermore, the
estimate introduces five additional wrong edges (1, 8), (2, 5),(8, 6), (9, 5), and (10, 9). The three crucial points are:
(i) These five false-positive edges do not introduce additional bias in the graph estimation. (ii) Due to the coarse
∆skel-value, the calculation of the skeleton estimate is computationally simple. (iii) The resulting skeleton estimate
is nearly as sparse as the true skeleton. This considerably reduces the complexity of the graph estimation (with a
very fine ∆graph-parameter). See Figure 2, for the Hawkes-graph estimation with respect to the skeleton estimate
from above.
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Table 3: ∆skel = 0.5

alpha.skel nedges total heavy light super.light zero
0.005 12.353 0.902 1.000 0.957 0.120 0.993
0.010 13.118 0.917 1.000 0.971 0.179 0.986
0.050 17.255 0.945 1.000 0.990 0.375 0.943
0.100 21.952 0.959 1.000 0.995 0.514 0.891
0.250 34.805 0.980 1.000 0.999 0.745 0.746

Table 4: ∆skel = 1

alpha.skel nedges total heavy light super.light zero
0.005 12.476 0.910 1.000 0.967 0.129 0.993
0.010 13.171 0.921 1.000 0.977 0.178 0.986
0.050 17.264 0.949 1.000 0.993 0.400 0.943
0.100 21.806 0.962 1.000 0.997 0.535 0.893
0.250 34.465 0.979 1.000 0.999 0.730 0.750

iv) zero: fraction of correctly excluded edges, i.e., of pairs (i, j) /∈ Ê∗N(k) such that (i, j) /∈ EN:∑nsim

k=1

∑
(i,j)/∈E∗ 1{(i,j)/∈Ê∗(k)}

nsim

(
d2 − |E∗|

) .

Note that 1− zero is the false-positive rate.

First, we discuss the estimations with respect to bin size ∆skel = 0.2; see Table 2. We note from
the last column, zero, that the false-positive rate is indeed very close to the value of the chosen
theoretical significance level αskel. Going back to Definition 9, we see that the larger αskel, the
more edges are included in the Hawkes-skeleton estimation. This is reflected in all of the columns.
However, even for very small αskel, we detect all of the edges with a heavy edge weight and most
of the edges with light edge weight. The edge (5, 7) with the super-light weight (0.1) is obviously
a hard-to-detect alternative to the zero hypothesis. Note that Tables 3, 4, and 5 look roughly the
same as Table 2 one above—though the estimates were calculated with respect to completely dif-
ferent bin sizes ∆skel. So, in this first estimation step, we may use a very coarse bin size ∆skel. This
makes the calculations underlying the skeleton estimation feasible even for much higher dimensions.

The main purpose of the skeleton estimation is to lay the ground for the graph estimation
which itself depends on a given estimated skeleton; see Definition 10. Missing edges in the skeleton
estimate will typically introduce a bias for the graph-weight estimates. We therefore want to keep
the false-negative rate (= 1 − total) in the skeleton estimation very small. As a consequence, we
need αskel large to include more edges. Note that false-positive edges do not add additional bias in
the graph estimation; see Section 3.3. So the increase of the false-positive rate (that is, the decrease
in the zero-column) does not prevent us from increasing the αskel-parameter. Note, however, that
the whole reason of the two-step estimation procedure is that in the first step we want to take
advantage of the sparseness of the underlying true Hawkes graph and reduce the complexity of
the a priori fully connected network. Too many additional false-positive edges would hamper this
advantage. In this sense, not only ∆skel but also αskel can be understood as a parameter controlling
the numerical complexity of the method: the smaller αskel, the sparser the estimated skeleton, the
less complex the computations for the Hawkes-graph estimate from Definition 10. We see in our
tables that, for all choices of ∆skel and all values of αskel, we typically catch all the true edges, i.e.,

Table 5: ∆skel = 2

alpha.skel nedges total heavy light super.light zero
0.005 12.244 0.810 1.000 0.828 0.074 0.980
0.010 13.680 0.846 1.000 0.876 0.119 0.969
0.050 19.709 0.913 1.000 0.957 0.262 0.910
0.100 25.065 0.936 1.000 0.978 0.369 0.852
0.250 38.186 0.966 1.000 0.994 0.605 0.705
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Figure 2: Hawkes-graph estimation. Given a single simulation of length T = 1000 from the example Hawkes process
in Section 4.1, we calculate the Hawkes-graph estimator from Definition 10 with respect to the Hawkes-skeleton
estimation from Figure 1; we apply a bin size ∆graph = 0.025 and a significance parameter αgraph = 0.05. This
calculation allows us to supply each vertex and each node from this estimated skeleton with confidence intervals for
their weights in the corresponding Hawkes graph. The edge widths in the illustration are chosen proportional to
the estimated edge weights. Estimated edge weights that are not significantly larger than zero are illustrated as a
dashed edge. Similarly, vertices where the confidence interval for the vertex weight contains 0 are plotted as smaller
circles—the corresponding confidence bounds are left away in this latter case. Comparing the results with the true
Hawkes graph in Figure 1, respectively, with the Hawkes process parametrization in (28) and (29), we see that for
all correct edges, the true weights are covered by the confidence intervals. And for the wrong, additional edges from
the skeleton estimation (1, 8), (2, 5),(8, 6), and (9, 5), we see that their weights are not significantly different from
zero (αgraph = 0.05). The estimated edge weight for the wrong edge (10, 9) is significantly larger than zero but still
small. All true vertex weights but the weight of vertex 7 are also covered by the confidence intervals. The weight
of vertex 7 is overestimated because we missed the (light) edge (5, 7; 0.1) in the skeleton estimation; this missing
explanatory variable for the events in component 7 is compensated by an extra large vertex weight in the graph
estimation. Deleting all insignificant (in figure dashed) edges and setting the vertex weight of the insignificant (in
figure small) vertex-weights to zero, we recover the original underlying graph almost perfectly.

the false-negative rate is really small. In the next section, we will see that the graph estimates are
not dramatically sensitive to the αskel parameter in the skeleton estimation.

Hawkes-graph estimation

In a further step, we quantify the estimated excitements. That is, given a Hawkes skeleton, we
estimate the corresponding graph as in Definition 10; see Figure 2. We do this both with respect
to the true skeleton and with respect to the estimated skeletons from the first estimation step.
For comparison, we apply skeletons that were estimated with respect to different αskel-parameters.
However, we only consider the skeletons that were estimated with respect to the (rough) bin size
∆skel = 1. As opposed to the skeleton estimation, we may now use a much smaller bin size
∆graph = 0.1 for the graph estimation. In the present example, this is approximately the lower
bin-size bound for tolerable computing time for the simulation study using a 2.3 GHz Intel Core
processor (about 10sec for each of the estimations, no parallelization). Furthermore, we apply
s = 5 and αgraph = 0.05 in the calculation. For each simulation, we also calculate the confidence
bounds for all vertex and edge weights from Definition 10. Table 6 reports the coverage rates.

The coverage rates of the graph estimations that were calculated with respect to the true
underlying skeleton correspond well with the significance parameter αgraph = 0.05. Naturally, the
coverage rates for the estimates with respect to the estimated skeleton are smaller: as soon as
the estimated skeleton misses an edge (e.g., the super-light edge (5, 7; 0.1)), the model calibration

19



Table 6: ∆graph = 0.1 and αgraph = 0.05

applied.skeleton vertex.weight.coverage edge.weight.coverage
alpha.skel = 0.005 0.859 0.907
alpha.skel = 0.01 0.867 0.904
alpha.skel = 0.05 0.896 0.893
alpha.skel = 0.1 0.907 0.900
alpha.skel = 0.25 0.915 0.932
true skeleton 0.947 0.943

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

0 1 2 3 4 5

−
0.

5
0.

0
0.

5
1.

0
1.

5

time

in
te

ns
ity

●

●

●

●

●

●

●

●

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

1.
8

1.
9

a_12.est

>

●

●

●

●

●

●

●

3
4

5
6

7
8

9
10

shape.est

>

●

●

●

●

●●

2
3

4
5

6
7

rate.est

>

Figure 3: Parametric estimation. Left: From a single realization of the example Hawkes model from Section 4.1
with length T = 1000, we calculate Hawkes-skeleton and Hawkes-graph estimates from Definitions 9 and 10; see
Figures 1 and 2. As a by-product of these calculations, we retrieve pointwise estimates (circles) for the values
of the reproduction intensity h1,2 on an equidistant grid; see (24). From these estimates, one may guess that
h1,2(t) = a1,2γ(t), where γ is a Gamma density depending on a shape and on a rate parameter. We fit the three
parameters by nonlinear least squares as described in Section 3.4. The dotted black line refers to the corresponding
estimated parametric function. It catches the true underlying function (grey solid line) quite well; see (29). Right:
We apply this parametric estimation of h1,2 on 1000 independent realizations of length T = 500. The boxplots
collect the parameter estimates for each of the 1000 estimations of the simulation study. The grey marks refer to
the corresponding true values. Eyeball-examination shows that the estimates are remarkably symmetric distributed
and unbiased. QQ-plots (not illustrated) support asymptotic normality.

balances this missing possibility of excitement by increased baseline intensities or increased edge
weights. The larger αskel, the lower the probabilty of missing an edge, the better the coverage rates.
Note, however, that at the same time, the corresponding skeleton estimate becomes increasingly
dense and with it the graph estimation becomes increasingly time-consuming.

Parametric reproduction intensity estimation

Finally, we check how the various excitements are distributed over time. As examples, we examine
the reproduction intensity h1,2. From the calculation of the Hawkes-graph estimate, we retrieve
estimates of the reproduction intensity values on an equidistant grid; see (24). Based on the
scatter plots of these estimates, we choose appropriate parametrized function families. Given such
parametric functions, the parameters are fit to the pointwise estimates via nonlinear least squares;
see Figure 3. QQ-plots (not included) support asymptotic normality for the parameter estimates.

5 Conclusion

The Hawkes graph and the Hawkes skeleton describe the immigration and branching structure of
a Hawkes process in a graph-theoretical framework. We demonstrate how graph terminology can
be very useful for multivariate Hawkes processes. Combining the new concepts with an estimation
procedure from earlier work, we develop a statistical estimation method for the Hawkes skeleton
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and the Hawkes graph. The key idea is that in a preliminary step we only test if there is at all
excitement from any vertex to another vertex. We show that this first step is relatively simple
to implement. The knowledge of the Hawkes skeleton makes the second step, the estimation of
the Hawkes graph, much more efficient—both from a computational and statistical point of view.
The simulation study shows that the procedure works as desired. As long as the true underlying
graph is sparse (e.g., if the typical number of parents of a node is not larger than 5 and does not
depend on the dimension of the process) the approach may be applied in even higher-dimensional
situations. In any case, the method may be a useful tool for preliminary analysis when examining
large multi-type event-stream data in the Hawkes framework.

It might be worthwile to study the distributional properties of the parameter estimates from
Section 3.4 in more detail. Also note that the graph representation would also apply for discrete-
time event-stream models, i.e., for multivariate time series of counts. More specifically, the present
paper could have been developed in complete analogy for multivariate integer-valued autoregressive
time series (INAR(∞)) which can be interpreted as discrete-time versions of the Hawkes process;
see Kirchner (2016b). In this latter case, all results that we apply in our paper would be valid
without taking any discretization error into account. In any case, when applied to real data, the
discretization error is not the major drawback of our method: our method does indeed solve the
important problem of how to decide whether an edge between two components exists at all. But
for the specification of a Hawkes process we need to solve another—more important—issue. We
want to be able to decide whether we observe a complete Hawkes graph or whether our data lack
some non-redundant vertices! In particular, the method presented will also yield reasonable results
for data stemming from models with no or less underlying ‘causality’. The seeming excitement can
then be explained by a confounding factor that we do not observe (and ignore). We believe, in
view of the widespread interpretation of the Hawkes model as a causal model (an interpretation we
share), it would be of utmost importance to derive tests for the presence of such hidden confounding
factors in the event-stream context.
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