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Abstract

We introduce a new algorithm for numerically computing the distribution
of an increasing function of d dependent, non-negative random variables with
given joint distribution. We prove convergence of the algorithm and give con-
vergence rates under regularity conditions.
Key words: Distribution functions; dependent random variables.
AMS Subject Classfication: 62E17; 65C20; 65C50.

1 Introduction

In this paper, we introduce the GAEP algorithm in order to compute P[ϕ(X) ≤ s],
where X is a random vector in (0,∞)d and ϕ is a continuous function, strictly in-
creasing in each coordinate. The algorithm is based on the decomposition of the
set {x ∈ (0,∞)d : ϕ(x) ≤ s} into a countable family of disjoint hypercubes. The cor-
responding probability P[ϕ(X) ≤ s] is then approximated by the measure over these
hypercubes.

The GAEP (Generalized AEP) algorithm is similar in spirit to the AEP algorithm
introduced by the same authors in Arbenz et al. (2010) for the case ϕ(x) = ∑d

k=1 xk .
As the two algorithms are based on different geometrical decompositions, GAEP is
not a proper extension of AEP.

The paper is organized as follows. After some preliminaries in Section 2, we il-
lustrate GAEP in dimension two (d = 2) in Section 3. Section 4 extends GAEP to
arbitrary dimensions, its convergence being discussed in Section 5, 6 and 7. In Sec-
tion 8, we test GAEP on some examples, and, in Section 9, we compare and contrast
it to its main competitors. Section 10 illustrates the differences between GAEP and
AEP, while, in Section 11, we provide a method to improve convergence rates in di-
mension three. Section 12 concludes the paper.
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2 Notation and preliminaries

Fix d ∈N, d ≥ 2, and define N = 2d . We set R+ = [0,+∞) and R− = (−∞,0]. Through-
out the paper, (row) vectors are denoted in boldface, for example, ek ∈ Rd is the kth
standard unit vector, for k ∈ D = {1, . . . ,d}. We write i1, . . . , iN for all the 2d vectors
in {0,1}d , that is, i1 = 0 = (0, . . . ,0), ik+1 = ek ,k ∈ D , and so on, iN = 1 = (1, . . . ,1). By
#i = ∑d

k=1 ik , we denote the number of 1’s in the vector i, for example, #i1 = 0,#iN =
d . We define the componentwise product between two vectors x = (x1, . . . , xd ),y =
(y1, . . . , yd ) ∈Rd as

x◦y = (x1 y1, . . . , xd yd ) ∈Rd .

For instance, x ◦ ek = xk ek = (0, . . . ,0, xk ,0, . . . ,0). Let ≥ denote the componentwise
order between vectors, that is, x ≥ y if and only if xk ≥ yk for all k ∈ D . The orders ≤,
< and > are defined analogously.

On some probability space (Ω,A,P), assume that the random vector X = (X1, . . . , Xd )
has joint distribution H . Throughout the paper, we assume the marginal compo-
nents Xk to be non-negative, i.e. P[Xk ≤ 0] = 0 for all k ∈ D . The extension to ran-
dom vectors bounded from below is straightforward and will be illustrated in the
following. The joint distribution H induces the probability measure VH on Rd via

VH

[{
y ∈Rd : y ≤ x

}]= H (x) , for all x ∈Rd .

For b ∈Rd and h ∈Rd−∪Rd+, we define the hypercube Q(b,h) ⊂Rd as

Q(b,h) =
{{

x ∈Rd : b < x ≤ b+h
}
, if h ∈Rd+,{

x ∈Rd : b+h < x ≤ b
}
, if h ∈Rd−.

(1)

For h ∈Rd+, the VH -measure of Q(b,h) can be calculated easily as

VH [Q(b,h)] =P [X ∈Q(b,h)] =
N∑

j=1
(−1)d+#i j H

(
b+h◦ i j

)
. (2)

The case h ∈ Rd− is analogous. As a special case of (2) for d = 2, the probability mea-
sure of a rectangle Q(b,h) = (b1,b1 +h1]× (b2,b2 +h2] can be written as

VH [Q(b,h)] = H(b1,b2)−H(b1 +h1,b2)−H(b1,b2 +h2)+H(b1 +h1,b2 +h2).

Let N be the set of continuous functionsϕ :Rd →R, which are strictly increasing
in each coordinate, and such that

lim
t→+∞ϕ(b+ tek ) =+∞, and lim

t→−∞ϕ(b+ tek ) =−∞, for all b ∈Rd and k ∈ D.

Throughout the paper, we assume that ϕ ∈ N and fix s ∈ R such that ϕ(0) < s.
Note that if, on the contrary, ϕ(0) ≥ s, then for non-negative vectors X we trivially
have that P[ϕ(X) ≤ s] = 0.

2



For b ∈Rd and p ∈Rd−∪Rd+ we also define the quasisimplex S (b,p) as

S (b,p) =
{{

x ∈Rd : b < x ≤ b+p,ϕ(x) ≤ s
}
, if p ∈Rd+,{

x ∈Rd : b+p < x ≤ b,ϕ(x) > s
}
, if p ∈Rd−.

(3)

Note that, if one or more of the components of h and p are equal to zero, then Q(b,h)
and S (b,p) are empty.

Since ϕ ∈N , there exists a unique vector p1
1 ∈Rd+ such that

ϕ(p1
1 ◦ek ) = s, for all k ∈ D. (4)

Figure 1 illustrates (3) and (1) as well as (4) for d = 2. Defining S 1
1 = S (0,p1

1) and
recalling that X is non-negative, (4) implies that

P
[
ϕ(X) ≤ s

]=VH
[
S 1

1

]
.

b1

S (b2,p2)
b2

b1 +p1

S 1
1

x2

b2 +p2

0

{x ∈R2+ :ϕ(x) = s}

x1

b4 +p4

b3

b3 +p3

p1
1

Q(b4,p4)

Q(b3,p3)
S (b1,p1)

b4

Figure 1: Three quasisimplexes S 1
1 = S (0,p1

1), S (b1,p1), S (b2,p2) ⊂ R2 and two
hypercubes Q(b3,p3), Q(b4,p4) ⊂ R2 with p1

1,p1,p4 ∈ R2+ and p2,p3 ∈ R2−. Thick and
dashed lines indicate closed and, respectively, open boundaries of the sets.

3 Description of the GAEP algorithm in dimension d =
2

We first illustrate the GAEP algorithm in the case d = 2. In Section 4, we will gen-
eralize it to arbitrary dimensions d . In order to calculate P[ϕ(X) ≤ s] = VH [S 1

1 ], we
decompose S 1

1 into a family of disjoint hypercubes, whose probability measures
can be easily calculated via (2).
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Let h ∈R2+ such that h ≤ p1
1. For ease of notation, we write p = p1

1 throughout this
section. As illustrated in Figure 2, the rectangle Q(0,p) ⊂ R2 can be split into four
disjoint rectangles along the components of h, as

Q(0,p) =Q (0,h)∪Q
(
(h1,0), (p1 −h1,h2)

)∪Q
(
(0,h2), (h1, p2 −h2)

)∪Q
(
h,p−h

)
.

(5)

A similar decomposition holds for the quasisimplex S (0,p), for which we have

S (0,p) =S (0,h)∪S ((h1,0), (p1 −h1,h2))∪S ((0,h2), (h1, p2 −h2))∪S (h,p−h).
(6)

Note that S (0,h) = Q(0,h) \ S (h,−h). By setting S 1
1 = S (0,p), Q1

1 = Q(0,h),

px2

0 x1

px2

0 x1

Q(0,p)
h

Figure 2: An illustration of (5), where the rectangle Q(0,p) ⊂ R2 is decomposed into
four disjoint rectangles.

S 1
2 =S (h,−h), S 2

2 =S ((h1,0), (p1−h1,h2)), S 3
2 =S ((0,h2), (h1, p2−h2)) and S 4

2 =
S (h,p−h), we can reformulate (6) as

S 1
1 = (

Q1
1 \S 1

2

)∪S 2
2 ∪S 3

2 ∪S 4
2 , (7)

as illustrated in Figure 3. Note that either S 1
2 =; (ifϕ(h) > s) or S 4

2 =; (ifϕ(h) ≤ s).

Since the S t
2 ’s are disjoint and S 1

2 ⊂Q1
1 , (7) translates into the decomposition

VH
[
S 1

1

]=VH
[
Q1

1

]−VH
[
S 1

2

]+VH
[
S 2

2

]+VH
[
S 3

2

]+VH
[
S 4

2

]
. (8)

As a first approximation of VH [S 1
1 ] we take the value P1 =VH [Q1

1 ]. Thus, the differ-
ence between P1 and VH [S 1

1 ] is given by

VH
[
S 1

1

]−P1 =
4∑

t=1
τt

2VH
[
S t

2

]
,

where τt
2 ∈ {−1,1} indicates whether the measure VH [S t

2 ] has to be added (τ2
2 = τ3

2 =
τ4

2 = 1) or subtracted (τ1
2 =−1).

At this point, each of the S t
2 can be further decomposed via (8) into a square and

four smaller quasisimplexes, for a total of four squares and sixteen quasisimplexes.

4



Q1
1

Q1
1

S 3
2

S 3
2

S 1
2

h

0 0

h

x2 x2

x1x1

S 2
2

S 4
2

S 2
2

{x ∈R2+ :ϕ(x) = s}

{x ∈R2+ :ϕ(x) = s}

pp

Figure 3: An illustration of the decomposition (7) for two different choices of h ∈
Rd−∪Rd+. In the left picture, we have ϕ(h) > s and S 4

2 =;, while, in the right picture,
we have ϕ(h) < s and S 1

2 =;.

The measure of the four squares so obtained is to be added or subtracted to P1 in
order to define a second estimate P2 of VH [S 1

1 ], so that the difference between P2

and VH [S 1
1 ] will be given by the measure of the remaining sixteen quasisimplexes.

The latter are then decomposed again in the following step of the algorithm. By
iterating this procedure, we obtain a sequence Pn of estimates which we will prove
to converge to VH [S 1

1 ] under the regularity conditions given in Section 5. In the
general case, at each iteration of the algorithm, we restrict to quasisimplexes which
turn out to be nonempty.

4 Description of the GAEP algorithm in arbitrary dimen-
sions

In this section, we state the two main results of the paper. First, we will extend the
measure decomposition (8) to arbitrary dimensions, by showing that the measure
of an arbitrary quasisimplex can be decomposed into the measures of a hypercube
and N = 2d smaller quasisimplexes. Then, we define a sequence Pn which will be
proved to converge to VH [S 1

1 ].
For p ∈Rd−∪Rd+, fix h ∈H (p), where

H (p) =
{{

x ∈Rd : 0 ≤ x ≤ p
}

, if p ∈Rd+,{
x ∈Rd : p ≤ x ≤ 0

}
, if p ∈Rd−.

Analogously to the case d = 2 (see Figure 2), a hypercube Q(b,p) ⊂ Rd can be de-
composed into N hypercubes along the components bk +hk ,k ∈ D .
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Lemma 1. For an arbitrary hypercube Q(b,p) ⊂Rd , we have

Q(b,p) =
N⋃

j=1
Q

(
b+ i j ◦h, i j ◦p+ (1−2i j )◦h

)
, (9)

with the hypercubes on the right-hand side of (9) being disjoint.

Proof. For j = 1, . . . , N , let the sets C j be defined as

C j = {x ∈Rd : xk ≤ bk +hk for all k with (i j )k = 0, xk > bk +hk for all k with (i j )k = 1}.

Since
⋃N

j=1 i j = {0,1}d , we have that the family {C j , j = 1, . . . , N } is a partition of Rd ,

that is, Ci ∩C j =; and
⋃N

j=1 C j =Rd . Hence, we can write

Q(b,p) =
N⋃

j=1

(
Q(b,p)∩C j

)
.

If p ∈ Rd+ (the case p ∈ Rd− is analogous), note that for all j = 1, . . . , N and k ∈ D , we
have

(
b+ i j ◦h

)
k =

{
bk , if (i j )k = 0,

bk +hk , if (i j )k = 1,
(10)

(
i j ◦p+ (1−2i j )◦h

)
k =

{
hk , if (i j )k = 0,

pk −hk , if (i j )k = 1.
(11)

Thus, the result follows by observing that

Q(b,p)∩C j =
{

x ∈Rd : bk < xk ≤ bk +hk for all k with (i j )k = 0,

bk +hk < xk ≤ pk for all k with (i j )k = 1
}

=Q
(
b+ i j ◦h, i j ◦p+ (1−2i j )◦h

)
.

The set decomposition (9) translates into the measure decomposition given by
the following theorem.

Theorem 2. Let v1, . . . ,vN ∈ {0,1}d be defined as v1 = 1 and vk = ik for k = 2, . . . , N . Let
b ∈Rd , p ∈Rd−∪Rd+ and h ∈H (p). Then

VH
[
S (b,p)

]=VH [Q(b,h)]+
N∑

j=1
m j VH

[
S

(
b+v j ◦h, i j ◦p+ (1−2v j )◦h

)]
, (12)

where m1 =−1 and m j =+1 for j = 2, . . . , N .
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Proof. First assume that ϕ(b) ≤ s and p ∈Rd+. Defining the set Λ= {x ∈Rd :ϕ(x) ≤ s},
and using (9), we can write

Λ∩Q(b,p) =S (b,p) =⋃N
j=1

{
Λ∩Q

(
b+ i j ◦h, i j ◦p+ (1−2i j )◦h

)}
=⋃N

j=1 S
(
b+ i j ◦h, i j ◦p+ (1−2i j )◦h

)
. (13)

Since the hypercubes on the right-hand side of (9) are disjoint, the quasisimplexes
on the right-hand side of (13) are disjoint, too. Thus, from (13), we get

VH
[
S (b,p)

]= N∑
j=1

VH
[
S

(
b+ i j ◦h, i j ◦p+ (1−2i j )◦h

)]
. (14)

Since i1 = 0, we have

VH [S (b+ i1 ◦h, i1 ◦p+ (1−2i1)◦h)] =VH [S (b,h)],

and we can write (14) as

VH
[
S (b,p)

]=VH [S (b,h)]+
N∑

j=2
VH

[
S

(
b+ i j ◦h, i j ◦p+ (1−2i j )◦h

)]
. (15)

Noting that S (b,h) =Λ∩Q(b,h), and using the fact that Q(b,h) = Q(b+h,−h),we
obtain

VH [S (b,h)] =VH [Λ∩Q(b,h)] =VH [Q(b,h)]−VH [Q(b+h,−h)∩ΛC ]

=VH [Q(b,h)]−VH [S (b+1◦h,0◦p+ (1−2 ·1)◦h)]. (16)

Substituting (16) in (15), and recalling the definition of the v j ’s, we finally get (12).
The case ϕ(b) > s, p ∈ Rd− is analogous. The cases ϕ(b) ≤ s, p ∈ Rd−, and ϕ(b) > s,

p ∈ Rd+, are trivial, since they imply VH [S (b,p)] = 0 and VH [Q(b,h)] = VH [S (b+
h,−h)].

Note that Theorem 2 holds for all measurable functions ϕ :Rd →R.
The idea behind the GAEP algorithm is to apply the decomposition (12) recur-

sively to the nonempty quasisimplexes on the right side, starting with S 1
1 =S (0,p1

1),
p1

1 being the unique vector satisfying (4). Note that, by changing the conditions (4)
and the vector b1

1, the algorithm can be applied to the case in which the random vec-
tor X also takes negative values but it is still bounded from below, as, for example,
P[X ≥ b1

1] = 1.
At the beginning of the nth iteration (n ∈ N), the algorithm receives, as input, a

family
S t

n =S (bt
n ,pt

n), t ∈ In ⊂ {1, . . . , N n−1}

of nonempty quasisimplexes. As already remarked, for n = 1 we have I1 = {1} and
S 1

1 = S (0,p1
1). Given a sequence of splitting points ht

n ∈ H (pt
n), t ∈ In , each qua-
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sisimplex S t
n is then decomposed into one hypercube and N quasisimplexes via (12):

VH
[
S (bt

n ,pt
n)

]=VH
[
Q(bt

n ,ht
n)

]+ N∑
j=1

m j VH
[
S

(
bt

n +v j ◦ht
n , i j ◦pt

n + (1−2v j )◦ht
n

)]
=VH

[
Q(bt

n ,ht
n)

]+ N∑
j=1

m j VH

[
S

(
bN t−N+ j

n+1 ,pN t−N+ j
n+1

)]
, t ∈ In ,

(17)

where the sequences bt
n and pt

n are defined by their initial values b1
1 = 0 and p1

1, and
by

bN t−N+ j
n+1 = bt

n +v j ◦ht
n , (18)

pN t−N+ j
n+1 = i j ◦pt

n + (1−2v j )◦ht
n , (19)

for all j = 1, . . . , N and t ∈ In . Recall from Theorem 2 that m1 = −1 and m j = 1 for
j = 2, . . . , N . At this point, the family of nonempty quasisimplexes obtained on the
right-hand side of (17),

S (bt
n+1,pt

n+1), t ∈ In+1, with In+1 = {t ∈ {1, . . . , N n} : S (bt
n+1,pt

n+1) 6= ;},

is passed to the (n +1)th iteration of the algorithm.
As an example, we illustrate the first iteration of the algorithm in the case d = 3,

where we denote p1
1 = p with 0 ≤ h ≤ p. For the simplex S 1

1 = S (0,p), the measure
decomposition (12) gives

VH [S (0,p)] =VH [Q(0,h)]−VH [S (h,−h)]+VH [S ((h1,0,0), (p1 −h1,h2,h3))]

+VH [S ((0,h2,0), (h1, p2 −h2,h3))]+VH [S ((0,0,h3), (h1,h2, p3 −h3))]

+VH [S ((h1,h2,0), (p1 −h1, p2 −h2,h3))]+VH [S ((h1,0,h3), (p1 −h1,h2, p3 −h3))]

+VH [S ((0,h1,h2), (h1, p2 −h2, p3 −h3))]+VH [S (h,p−h)].

In Figure 4, we illustrate the case in which ϕ(p ◦ ek ) = s,k ∈ D (see conditions (4)),
ϕ(h1,h2,0) ≤ s, ϕ(h1,0,h3) ≤ s and ϕ(0,h2,h3) > s, leading to S 7

2 = S 8
2 = ;. There-

fore, we have I1 = {1} and I2 = {1,2,3,4,5,6}. Note also that, in the two-dimensional
cases described in Figure 3, we had I2 = {1,2,3} (left) and I2 = {2,3,4} (right).

In general, the set of indexes In+1, which identifies the quasisimplexes S t
n+1 6= ;,

depends on the vectors ht
n , t ∈ In and on the function ϕ, at each iteration of the

algorithm. Nevertheless, for a fixed n, the quasisimplexes S t
n+1, t ∈ In+1, are always

disjoint (this follows from the proof of Theorem 2).
Now, define the family Qt

n =Q(bt
n ,ht

n), t ∈ In , and the sequence Pn as the sum of
the VH -measures of all the Qt

n ’s multiplied by the corresponding τt
n , as

Pn = Pn−1 +
∑

t∈In

τt
nVH

[
Qt

n

]= n∑
i=1

∑
t∈Ii

τt
i VH

[
Qt

i

]
, n ∈N, (20)

where P0 = 0 and the sequence τt
n is defined by its initial value τ1

1 = 1 and by

τ
N t−N+ j
n+1 = τt

n m j , for all j = 1, . . . N and t ∈ In . (21)
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{x ∈R3+ :ϕ(x) = s}

S 3
2

S 4
2

S 1
2

h2

h3

h1

S 6
2

S 2
2

p3

p2p1

0
h

S 5
2

Figure 4: An illustration of the decomposition (12) of S (0,p) ⊂ R3 for some vector
h ∈Rd+.

The value τt
n ∈ {−1,1} indicates whether the measure of the quasisimplex S t

n has to
be added (τt

n = 1) or subtracted (τt
n =−1) in order to compute an approximation of

VH [S 1
1 ].

We now show that, at each iteration of the algorithm, the error committed by
taking Pn as an approximation of VH

[
S 1

1

]
can be expressed in terms of the measures

of the nonempty quasisimplexes S t
n+1, t ∈ In+1 passed to the (n+1)th iteration of the

algorithm.

Theorem 3. With the notation introduced above, we have that

VH
[
S 1

1

]−Pn = ∑
t∈In+1

τt
n+1VH

[
S t

n+1

]
. (22)

Proof. We proceed by induction on n. Recalling that τ1
1 = 1 and P0 = 0, (22) corre-

sponds, for n = 0, to the trivial equality VH
[
S 1

1

]=VH
[
S 1

1

]
. Hence, suppose that (22)

holds for some n ∈N. Substituting (17) in (22), and using (20), yields

VH
[
S 1

1

]= Pn + ∑
t∈In+1

τt
n+1VH

[
Qt

n+1

]+ ∑
t∈In+1

τt
n+1

(
N∑

j=1
m j VH

[
S

N t−N+ j
n+2

])

= Pn+1 +
∑

t∈In+1

N∑
j=1

τt
n+1m j VH

[
S

N t−N+ j
n+2

]
.

Recalling (21), we get

VH
[
S 1

1

]= Pn+1 +
∑

t∈In+1

N∑
j=1

τ
N t−N+ j
n+2 VH

[
S

N t−N+ j
n+2

]
= Pn+1 +

∑
t∈In+2

τt
n+2VH

[
S t

n+2

]
,

where the last equality follows from the fact that the simplexes S t
n+2, t ∉ In+2, are

empty.
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5 Convergence of the algorithm

In this section, we give sufficient conditions for the convergence of the sequence
Pn , defined above, to the value VH

[
S 1

1

]
. First, in Lemma 4, we give a simple set rep-

resentation of Pn . Recall that the set In+1 identifies the non empty quasisimplexes
S t

n+1, t ∈ In+1, which are passed to the (n +1)th iteration of the algorithm. We parti-
tion the set In+1 into the families

I+n+1 = {t ∈ In : τt
n+1 =+1} and I−n+1 = {t ∈ In : τt

n+1 =−1}.

Lemma 4. For any n ∈N, we have that Pn =VH [Bn], where

Bn =
(
S 1

1

⋃
t∈I−n+1

S t
n+1

)
\

⋃
t∈I+n+1

S t
n+1. (23)

Proof. Using induction, we prove that, for a fixed n and all t ∈ In , we have

S t
n ⊂

{
S 1

1 , if τt
n =+1,

Q(0,p1
1) \S 1

1 , if τt
n =−1.

Then, the result easily follows from (22) and the fact that, for a fixed n, the S t
n+1’s are

disjoint.
From its definition (3), a quasisimplex S (b,p) lies in S 1

1 if and only if p ∈ R+
d . It

lies instead in Q(0,p1
1) \S 1

1 if and only if p ∈ R−
d . Therefore, we equivalently have to

show that, for a fixed n and all t ∈ In ,

pt
n ∈

{
R+

d , if τt
n =+1,

R−
d , if τt

n =−1.
(24)

To this end, assume that (24) is true for a fixed n (for n = 1, it trivially holds) and
choose an arbitrary S t

n+1, t ∈ In+1 such that τt
n+1 = +1 (the case τt

n+1 = −1 is anal-

ogous). By (21), there exist t ′ ∈ In and j ∈ {1, . . . , N }, with τt
n+1 = τ

N t ′−N+ j
n+1 = τt ′

n m j .

Since τt
n+1 =+1, either (case I) τt ′

n =−1 and m j =−1 (in this case, j = 1) or (case II)

τt ′
n = 1 and m j =+1 (in this case, j 6= 1).

Case I: If j = 1, using (19) we obtain pN t ′−N+ j
n+1 = −ht ′

n . Since it also holds that τt ′
n =

−1, using the induction assumption, we obtain that pt
n ∈ R−

d and finally (recall that

ht
n ∈H (p)) pN t ′−N+ j

n+1 =−ht
n ∈R+

d .
Case II: For j 6= 1, (11) yields

(pN t ′−N+ j
n+1 )k =

{
(ht ′

n )k , if (i j )k = 0,

(pt ′
n −ht ′

n )k , if (i j )k = 1.

Since it also holds that τt ′
n = +1, using the induction assumption, we obtain that

pt ′
n ∈R+

d and finally pN t ′−N+ j
n+1 ∈R+

d .

10



A simple illustration of (23) in dimension d = 2 is given by (7) and by the corre-
sponding Figure 3. Now, we use Lemma 4 to obtain bounds on Pn .

Theorem 5. If ϕ ∈N then, for all n ∈N, we have

P
[
ϕ(X) ≤ ln

]≤ Pn ≤P[
ϕ(X) ≤ un

]
, (25)

where

ln = min
{

s , min
t∈I+n+1

ϕ(bt
n+1)

}
and un = max

{
s , max

t∈I−n+1

ϕ(bt
n+1)

}
.

Proof. Suppose that, for a quasisimplex S t
n+1, we have τt

n+1 = −1. Then (see (24))
pt

n+1 ≤ 0. Therefore, over the quasisimplex S t
n+1, the function ϕ ∈ N attains its

maximum at bt
n+1, i.e.

max
x∈S t

n+1

ϕ(x) =ϕ(bt
n+1).

Using the above result and (23), we can write

Bn ⊂S 1
1

⋃
t∈I−n+1

S t
n+1 ⊂

{
x ∈Rd

+ :ϕ(x) ≤ max
{

s , max
t∈I−n+1

ϕ(bt
n+1)

}}
,

which yields Bn ⊂ {
x ∈Rd+ :ϕ(x) ≤ un

}
. Recalling from Lemma 4 that Pn = VH [Bn],

the right-hand side of (25) follows. Analogously, if τt
n+1 =+1, we have that pt

n+1 ≥ 0
and

inf
x∈S t

n+1

ϕ(x) =ϕ(bt
n+1).

Recalling that bt
n+1 ∉ S t

n+1 when pt
n+1 ≥ 0, we obtain that ϕ(bt

n+1) < ϕ(x) for all x ∈
S t

n+1. Using again (23), it follows that{
x ∈Rd

+ :ϕ(x) ≤ min
{

s , min
t∈I+n

ϕ(bt
n+1)

}}⊂S 1
1 \

⋃
t∈I+n+1

S t
n+1 ⊂Bn ,

which yields
{

x ∈Rd+ :ϕ(x) ≤ ln
} ⊂ Bn and, consequently, the left-hand side of (25).

Figure 5 illustrates Theorem 5 for the first two iterations of the algorithm in the
case d = 2. Now, we define the sequence Dn ,n ∈N, as

Dn = max{s − ln ,un − s} = max
t∈In+1

∣∣ϕ(bt
n+1)− s

∣∣ . (26)

The following lemma will turn out to be useful in the remainder of the paper.

Lemma 6. If ϕ ∈N , then, for all n ∈N, we have∣∣Pn −VH [S 1
1 ]

∣∣≤P[s −Dn <ϕ(X) ≤ s +Dn].

11



0

x2

h1
1

x1{x ∈R2+ :ϕ(x) = l1}

{x ∈R2+ :ϕ(x) = u1}
x2

h1
1

{x ∈R2+ :ϕ(x) = l2}

{x ∈R2+ :ϕ(x) = u2}

x10

{x ∈R2+ :ϕ(x) = s}
{x ∈R2+ :ϕ(x) = s}

p1
1p1

1

Figure 5: An illustration of Theorem 5 for d = 2, n = 1 (left) and n = 2 (right). The
dark grey area identifies the sets B1 = Q1

1 (left) and B2 = (Q1
1 ∪Q3

2 ∪Q3
2 ∪Q4

2 ) \ Q1
2

(right). We set h4
2 = 0, thus Q4

2 = ;. The circles indicate where ϕ attains either its
maximum or its minimum.

Proof. From (25) and (26), we have that

Pn ≤P[ϕ(X) ≤ un] ≤P[ϕ(X) ≤ s +Dn].

Since Dn ≥ 0, we obtain

Pn −VH [S 1
1 ] ≤P[ϕ(X) ≤ s +Dn]−P[ϕ(X) ≤ s]

=P[s <ϕ(X) ≤ s +Dn] ≤P[s −Dn <ϕ(X) ≤ s +Dn].

Analogously, we can write

Pn −VH [S 1
1 ] ≥P[ϕ(X) ≤ s −Dn]−P[ϕ(X) ≤ s]

=−P[s −Dn <ϕ(X) ≤ s] ≥−P[s −Dn <ϕ(X) ≤ s +Dn].

Recall the definition of Dn in (26).

Theorem 7. Assume X is absolutely continuous and limn→∞ Dn = 0. Then

lim
n→∞Pn =P[

ϕ(X) ≤ s
]=VH [S 1

1 ].

Proof. If limn→∞ Dn = 0, and ϕ(X) is continuous, then the theorem follows from
Lemma (6). Therefore, it is sufficient to show that P[ϕ(X) = s] = 0, for all s ∈ R.
Fix some s ∈ R, and let Γs = {x ∈ Rd : ϕ(x) = s}. Since ϕ ∈ N , for each y ∈ Rd−1

there exists a unique zy ∈ R such that ϕ(y1, . . . , yd−1, zy) = s. It is easy to see that
Γs = {(y1, . . . , yd−1, zy) : y ∈ Rd−1} can be written as a countable union of sets with
(Hausdorff) dimension d −1; see Mattila (1995, pag. 54–59). Hence, the Lebesgue
measure of Γs is zero. As X is absolutely continuous, VH is absolutely continuous
with respect to the Lebesgue measure. Thus, VH [Γs ] =P[ϕ(X) = s] = 0.

12



Note that, in Theorem 7, the assumption of absolutely continuity of X cannot be
dropped. As a counterexample, take d = 2 and X = (U ,1−U ), where U is a random
variable uniformly distributed on [0,1]. For the functionϕ(x) = x1+x2, we have that
X is continuous, while P[ϕ(X) = 1] = 1. In this case, and depending on the sequence
ht

n , the sequence Pn may fail to converge.

6 The choice of the ht
n: the bisection rule

Assuming continuity of ϕ(X), convergence of the GAEP algorithm is guaranteed by
Theorem 7 whenever the sequence Dn goes to zero. Of course, the (speed of) con-
vergence of the sequence Dn depends on the choice of the vectors {ht

n , t ∈ In}, at
each iteration. The aim of this and the following section is to find good criteria for
the choice of the ht

n such that Dn converges (rapidly) to 0.
Note that, whenever S t

n = Q(bt
n ,pt

n), in (17) it is convenient to set ht
n = pt

n , so
that no simplexes are passed on to the following iteration of the algorithm. In fact,
using (19), having ht

n = pn
t implies that S N t−N+1

n+1 = S (bt
n +pt

n ,−pt
n) = Q(bt

n ,pt
n) \

S t
n = ;. Moreover, for j = 2, . . . , N , (11) implies that at least one component of

pN t−N+ j
n+1 is zero, hence S

N t−N+ j
n+1 =;.

As a first choice for ht
n , we propose the so-called bisection rule. Using this choice,

convergence of the sequence Dn is guaranteed under some extra assumptions onϕ.

Theorem 8. Assume that ϕ ∈ N ′, the set of all twice differentiable functions ϕ ∈ N

for which there exists a constant r > 0 such that ∂kϕ(x) > r for all k ∈ D and x ∈ Rd .
For all n ∈N and t ∈ In , let the sequence ht

n be defined as

ht
n =

{
pt

n , if S t
n =Qt

n ,

1/2pt
n , otherwise.

(27)

Then, Dn =O (2−n) ,n →∞.

Proof. It is immediate that ht
n ∈ H (pt

n), and hence ht
n is correctly defined. Since

ϕ is twice differentiable, it is also Lipschitz continuous on Q(0,p1
1), the closure of

Q(0,p1
1). Thus, there exists a constant L <∞ such that

∣∣ϕ(x)−ϕ(y)
∣∣ < L

∣∣∣∣x−y
∣∣∣∣ for

all x,y ∈Q(0,p1
1).

Now, consider the nonempty quasisimplex S t
n+1, t ∈ In+1, for which there exist

t ′ ∈ In and j ∈ {1, . . . , N } such that S t
n+1 = S

N t ′−N+ j
n+1 . For the quasisimplex S t ′

n , we

have that (from the definition (3)) S t ′
n = S (bt ′

n ,pt ′
n ) ⊂ Q(bt ′

n ,pt ′
n ). As S t

n+1 6= ;, (27)

implies that Q(bt ′
n ,pt ′

n ) \S t ′
n 6= ;.

It is then possible to find yt ′
n ∈ S t ′

n and zt ′
n ∈ Qt ′

n \ S t ′
n , for which we have that

either ϕ(yt ′
n ) ≤ s,ϕ(zt ′

n ) > s (when pt ′
n ≥ 0) or ϕ(yt ′

n ) > s, ϕ(zt ′
n ) ≤ s (when pt ′

n ≤ 0).
In both cases, continuity of ϕ guarantees (by the intermediate point theorem) the
existence of a vector xt ′

n on the curve c : [0,1] 7→ (1−c)yt ′
n +czt ′

n , withϕ(xt ′
n ) = s. Clearly,

xt ′
n ∈Q

t ′
n , and by (18) and (10), also bN t ′−N+ j

n+1 ∈Q
t ′
n . As a consequence, we have that
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∣∣∣∣∣∣bN t ′−N+ j
n+1 −xt ′

n

∣∣∣∣∣∣≤ ∣∣∣∣∣∣pt ′
n

∣∣∣∣∣∣. Therefore, for each t ∈ In+1, there exists t ′ ∈ In such that

∣∣ϕ(bt
n+1)− s

∣∣= ∣∣∣ϕ(bN t ′−N+ j
n+1 )− s

∣∣∣= ∣∣∣ϕ(bN t ′−N+ j
n+1 )−ϕ(xt ′

n )
∣∣∣≤ L

∣∣∣∣∣∣bN t ′−N+ j
n+1 −xt ′

n

∣∣∣∣∣∣≤ L
∣∣∣∣∣∣pt ′

n

∣∣∣∣∣∣ .

Combining the above result with the definition of Dn given in (26), it follows that

Dn = max
t∈In+1

∣∣ϕ(bt
n+1)− s

∣∣≤ L max
t∈In

∣∣∣∣pt
n

∣∣∣∣ . (28)

Note that (28) holds for a general sequence ht
n , t ∈ In . Using the definition of the

pN t−N+ j
n+1 (see (19)) and the bisection rule (27), it follows that

pN t−N+ j
n+1 = i j ◦pt

n + (1−2v j )◦ht
n = i j ◦pt

n + (1−2v j )◦1/2pt
n

= (i j +1/2(1−2v j ))◦pt
n = (i j −v j +1/21)◦pt

n =
{

1/2pt
n if j 6= 1,

−1/2pt
n if j = 1.

Thus, we have
max

t∈In+1

∣∣∣∣pt
n+1

∣∣∣∣= 1/2max
t∈In

∣∣∣∣pt
n

∣∣∣∣ .

Using (28), we finally obtain that

Dn ≤ L max
t∈In

∣∣∣∣pt
n

∣∣∣∣= 1/2L max
t∈In−1

∣∣∣∣pt
n−1

∣∣∣∣= (1/2)n−1L max
t∈I1

∣∣∣∣pt
1

∣∣∣∣= (1/2)n−1L
∣∣∣∣p1

1

∣∣∣∣ ,

which implies the theorem. In the proof above, note that, even if t ∈ In+1, there does

not necessarily exist a vector xt
n+1 ∈ Q

t
n+1 such that ϕ(xt

n+1) = s. This case occurs,
for example, when S t

n+1 =Qt
n+1.

In order to have convergence of the bisection method, we only need ϕ to be
Lipschitz continuous on Q(0,p1

1). However, to keep notation simple, we defined the
smaller set of functions N ′, which we will use in the following section.

7 The choice of the ht
n: the gradient rule

In this section, we present the gradient method, a different way of choosing the se-
quence ht

n , which guarantees a better asymptotic convergence rate in the case d = 2.
By x∧y, denote the componentwise minimum of x and y, and, by x∨y, the compo-
nentwise maximum. We keep the assumption that ϕ ∈N ′, see Theorem 8.

First, we use Taylor expansion to find a constant 0 ≤ R <∞ such that∣∣ϕ(b+δ)− (
ϕ(b)+∇ϕ(b)Tδ

)∣∣≤ R ||δ||2∞ ,

for all x ∈ Q(b,p) and x+δ ∈ Q(b,p), where ∇ϕ denotes the gradient of ϕ. Since ϕ
is twice differentiable, the constant R can be chosen to be the same for every b ∈
Q(0,p1

1).
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Theorem 9. Assume that ϕ ∈ N ′ and fix α ∈ (1/d ,1). For some n ∈N and all t ∈ In ,
let the sequence ht

n be defined as

ht
n =


pt

n , if S t
n =Q(bt

n ,pt
n),

(ht∗
n ∧pt

n)∨0, if S t
n 6=Q(bt

n ,pt
n),pt

n ∈Rd+,

(ht∗
n ∨pt

n)∧0, if S t
n 6=Q(bt

n ,pt
n),pt

n ∈Rd−,

(29)

where

(
ht∗

n

)
k =α s −ϕ(bt

n)

∂kϕ(bt
n)

, for all k ∈ D.

Then, we have that

Dn+1 ≤
(
max{1−α,αd −1}+α2 R

r 2 Dn

)
Dn . (30)

Before proving Theorem 9, we need the following result.

Lemma 10. Assume thatϕ ∈N ′ and fix n ∈N. Let ht
n , t ∈ In be defined by (29). Then,

for all t ∈ In , we have that

max
j : S

N t−N+ j
n+1 6=;

∣∣∣ϕ(bN t−N+ j
n+1 )− s

∣∣∣≤ (
max{1−α,αd −1}+α2 R

r 2

∣∣ϕ(bt
n)− s

∣∣)∣∣ϕ(bt
n)− s

∣∣ .

(31)

Proof. In the case S t
n =Q(bt

n ,pt
n), there is nothing to prove. Suppose, instead, that

ϕ(bt
n) < s, S t

n 6=Q(bt
n ,pt

n) and p ∈Rd+, the other non-trivial case whereϕ(bt
n) > s and

p ∈Rd− being analogous. It follows from (29) that, for all j ∈ 1, . . . , N ,

ϕ(bN t−N+ j
n+1 )− s =ϕ(bt

n +v j ◦ht
n)− s

≤ϕ(bt
n +ht∗

n )− s ≤ϕ(bt
n)+∇ϕ(bt

n)T ht∗
n − s +R

∣∣∣∣ht∗
n

∣∣∣∣2
∞

=ϕ(bt
n)+dα(s −ϕ(bt

n))− s +R
∣∣∣∣ht∗

n

∣∣∣∣2
∞ = (αd −1)(s −ϕ(bt

n))+R
∣∣∣∣ht∗

n

∣∣∣∣2
∞ .

Recalling that ∂kϕ(x) > r , k ∈ D , we also have that ‖ht∗
n ‖∞ ≤ α/r

∣∣ϕ(bt
n)− s

∣∣ , which
gives

ϕ(bN t−N+ j
n+1 )− s ≤ |ϕ(bt

n)− s|
(
(αd −1)+α2 R

r 2 |ϕ(bt
n)− s|

)
. (32)

Note that (v j ◦ht
n)k = pk implies S

N t−N+ j
n+1 =;. Hence, for all j with S

N t−N+ j
n+1 6=

;, we have v j ◦ht
n = v j ◦ht∗

n . Thus,

ϕ(bN t−N+ j
n+1 )− s =ϕ(bt

n +v j ◦ht∗
n )− s

≥ϕ(bt
n)+∇ϕ(bt

n)T (v j ◦ht∗
n )− s −R

∣∣∣∣v j ◦ht∗
n

∣∣∣∣2
∞

≥ϕ(bt
n)− s +α#v j (s −ϕ(bt

n))−R(α/r )2(ϕ(bt
n)− s)2.
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As #v j ≥ 1, for all j = 1, . . . , N , we finally get

ϕ(bN t−N+ j
n+1 )− s ≥−|ϕ(bt

n)− s|
(
1−α+α2 R

r 2 |ϕ(bt
n)− s|

)
. (33)

Combining (32) and (33) yields (31).

Proof of Theorem 9. First of all, note that ht
n ∈H (pt

n), hence ht
n is correctly defined.

Due to Lemma 10, and recalling that R > 0,we have that

Dn+1 = max
t∈In+1

|ϕ(bt
n+1)− s|

= max
t∈In

max
j :S

N t−N+ j
n+1 6=;

|ϕ(bN t−N+ j
n+1 )− s|

≤ max
t∈In

(
max{1−α,αd −1}+α2 R

r 2

∣∣ϕ(bt
n)− s

∣∣)∣∣ϕ(bt
n)− s

∣∣
=

(
max{1−α,αd −1}+α2 R

r 2 Dn

)
Dn .

Now, we are ready to prove convergence of the gradient method.

Theorem 11. Assume that ϕ ∈N ′ and fix α ∈ (1/d ,1). For some n̂ ∈N and ξ ∈ (0,1),
assume that

max{1−α,αd −1}+α2 R

r 2 Dn̂ = 1−ξ< 1. (34)

For all n ≥ n̂, let the sequence ht
n be defined as (29). Then, we have that limn→∞ Dn = 0

and indeed

Dn =O
(
(max{1−α,αd −1})n)

.

Proof. Using (34) and (30) iteratively, we obtain that Dn ≤ (1−ξ)n−n̂Dn̂ for all n ≥ n̂.
Hence, limn→∞ Dn = 0 and

lim
n→∞

Dn+1

Dn
≤ lim

n→∞

(
max{1−α,αd −1}+α2 R

r 2 Dn

)
= max{1−α,αd −1}.

The condition (34), which guarantees the convergence of the gradient method
with a twice differentiable functionϕ, can always be achieved by using the bisection
method for the first iterations of the algorithm. In fact, if one defines the ht

n us-
ing (27), the sequence Dn will go to zero (Theorem 8) and will satisfy (34) for some
integer n̂ large enough. From that n̂ on, one can then use the gradient method with
convergence guaranteed.

Finally, observe thatα∗ = 2
d+1 minimizes max{1−α,αd−1} with max{1−α∗,α∗d−

1} = d−1
d+1 . Thus, the rate

Dn =O

((
d −1

d +1

)n)
, (35)

is the best possible rate attainable using (29).
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8 Applications

In this section, we test the GAEP algorithm on some random vectors X = (X1, . . . , Xd )
and several functions ϕ. For illustrative reasons, we provide the joint distribution H
of X in terms of the marginal distributions FXi , i = 1, . . . ,d , and a copula C . For the
theory of copulas and the definition of the Gumbel and Clayton copula families, we
refer the reader to Nelsen (2006).

In Table 1, we consider the two-dimensional case (d = 2) with Pareto marginals,
that is,

FXi (x) =P[Xi ≤ x] = 1− (1+x)−θi , x ≥ 0, i = 1,2,

with tail parameters θ1 = 1 and θ2 = 2. We couple these Pareto marginals via a Gum-
bel copula CGu

γ with a parameter γ= 1.5. For this example, we compute the approxi-
mation Pn (see (20)) using both the bisection and the gradient method, for different
values of the thresholds s and different numbers of iterations n of the algorithm.
Here, we set ϕ(x1, x2) = (1+ x1)2/3(1+ x2)1/3 −1. For the gradient method, we pro-
vide the differences Pn −P16 and their average computation times, for all iterations
n and threshold s. This has been done to show the speed of convergence of GAEP.
The choice of n = 16 represents the maximum number of GAEP iterations allowed
by the memory (4 GB RAM) of our laptop under the gradient method. Within the
same table, we give the differences Pn −P18, but using the bisection method. Again,
n = 18 is the maximum number of GAEP iterations under the bisection method.
Note that these numbers are different because the number of quasisimplexes pro-
duced at each iteration of GAEP and, consequently, the memory used by the algo-
rithm, depend on the method chosen. In Table 1, we also compute the ratio

Rn = Dn

s −ϕ(0)
. (36)

Since, from Lemma 6, we have

∣∣Pn −VH
[
S 1

1

]∣∣≤P[
1−Rn < ϕ(X)−ϕ(0)

s −ϕ(0)
≤ 1+Rn

]
,

the sequence Rn provides a relative measure of convergence of the algorithm. In-
deed, the convergence of Rn to 0 implies that the algorithm converges to a certain
value. Note that, since analytical values for VH [S 1

1 ] are not available for this ex-
ample, nothing can be said about the correctness of the limit. However, for a two-
dimensional portfolio, we see that the estimate P9 (for the gradient method) and P13

(bisection) could be already considered reasonably accurate and are both obtained
in less than 0.1 second.

In Tables 2 (d = 3) to 4 (d = 5), we perform the same analysis for different Gum-
bel and Clayton models in which we progressively increase the number of Pareto
random variables used, and we also change the function ϕ. In all tables, the ref-
erence values used represent the maximum number of iterations admissible under
the corresponding method.

In all examples, the sequences Rn and Dn are decreasing to 0, indicating conver-
gence of GAEP. A deeper study of the convergence rates of GAEP will be carried out in

17



Section 9. At this stage, we only note that for d = 2, the gradient method, measured
in terms of Rn , is more accurate than the bisection method, whereas for d = 4,5 the
opposite is the case. Memory constraints made estimates for d ≥ 6 prohibitive.

9 Convergence rates and comparison with MC and QMC
methods

In this section, we compare the GAEP algorithm to its main competitors for the es-
timation of VH [S 1

1 ], which are the so-called Monte Carlo and quasi-Monte Carlo
methods.

Given M points x1, . . . ,xM in S 1
1 , it is possible to approximate VH [S 1

1 ] by the
average of the density function vH of H evaluated at those points, i.e.

VH [S 1
1 ] =

∫
S 1

1

vH (x)dx ≈V (S 1
1 )

1

M

M∑
i=1

vH (xi ),

where V (S 1
1 ) is the Lebesgue measure of S 1

1 . If the xi ’s are chosen to be (pseudo)randomly
distributed, this is the Monte Carlo (MC) method. If the xi ’s are generated from a so-
called low discrepancy sequence (see Niederreiter (1992)), this is the quasi-Monte
Carlo (QMC) method. The main features of (Q)MC methods (their convergence rates
included) do not depend on the function ϕ. We refer to Arbenz et al. (2010) for ref-
erences and a more detailed discussion on both methods relevant for the present
paper.

Unfortunately, we were not able to find a convergence rate for the sequence Pn ,
which would be necessary to compare GAEP to (Q)MC methods. However, it is pos-
sible to calculate bounds on convergence rates for Dn , which, assuming that the
random variable ϕ(X) has a density near s, has the same asymptotic behavior of Pn .
Indeed, because of Lemma 6, we have that

|Pn −VH [S 1
1 ]| ≤P[s −Dn <ϕ(X) ≤ s +Dn] =O(Dn).

The total number M(n) of evaluations of the joint distribution H performed by
GAEP after the nth iteration (as well as the computation time used) is proportional
to the number of simplexes needed to calculate Pn . Since the number In of qua-
sisimplexes passed to the nth iteration is bounded by N = 2d , we have that

M(n) ≤ B N n ,

where B is a constant depending only on the dimension d .

From (35), we know that Dn =O
((

d−1
d+1

)n)
is the best convergence rate attainable

with GAEP, when the gradient method is used. Analogously, from Theorem 8, we
know that Dn = O

(
2−n

)
, for the bisection method. By expressing the convergence

rates for Dn in terms of M(n), we find that

Dn =O
(
M(n)κ

)
with κ=

{
− 1

d ln(2) ln
(

d+1
d−1

)
, for the gradient method,

−1/d , for the bisection method.
(37)
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Since, in general, we do not know the exact number of simplexes passed to the next
iteration by GAEP, the rates provided by (37) represent only an upper bound on the
real convergence rates of the GAEP algorithm. As a matter of fact, the convergence
rates encountered in many numerical examples turned out to be much better than
those predicted by (37).

In Figure 6, we plot absolute errors |Pn −VH [S 1
1 ]| versus computation time, for

random vectors with independent marginals and functions ϕ for which VH [S 1
1 ] is

available analytically. We use linear least squares fitting on these curves in order to
calculate so-called empirical convergence rates for the algorithm. Here, computa-
tion time (which is proportional to M(n)) is used as a measure of numerical com-
plexity. These results are collected in Table 5, where the empirical convergence rates
obtained from Figure 6, as well as the bounds obtained from (37), are compared with
convergence rates for the MC and QMC methods.
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Figure 6: Errors |Pn −VH [S (0,3)]| from the GAEP algorithm for random vectors of
different dimensions having independent Pareto marginals with tail indexes θi =
i , i = 2, . . . ,5. GAEP errors are plotted versus computation time, for the function
ϕ(x) =∏d

k=1(xk +1).

From Table 5, it is clear that the gradient method is to be preferred for two-
dimensional vectors. This is consistent with the results illustrated in Table 1. In
higher dimensions, the situation is not so clear. Upper bounds on the convergence
rate suggest that the bisection method, in dimension d = 4,5, is slightly more com-
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d = 2 d = 3 d = 4 d = 5

GAEP, g. (bound) M−0.79 M−0.33 M−0.18 M−0.12

GAEP, g. (empirical) M−2.18 M−0.74 M−0.40 M−0.26

GAEP, b. (bound) M−0.5 M−0.33 M−0.25 M−0.2

GAEP, b. (empirical) M−1.62 M−0.74 M−0.40 M−0.28

MC M−0.5 M−0.5 M−0.5 M−0.5

QMC (best) M−1 M−1 M−1 M−1

QMC (worst) M−1(log M)2 M−1(log M)3 M−1(log M)4 M−1(log M)5

Table 5: Asymptotic convergence rates of GAEP, g(radient) and b(isection) method,
MC and QMC methods. Here, we use the simplified notation M = M(n). For (Q)MC
methods, M is the number of samples used.

petitive than the gradient, as confirmed by the results in Tables 3-4. However, Table 6
(and the corresponding empirical rates) indicate that the gradient rule can be bet-
ter, computationally, also in higher dimensions. Here, it is important to remark that
exact convergence rates for Pn are not available, and (empirical) convergence rates
for the two methods depend on the probability model under study.

With respect to (Q)MC methods, the figures indicate that a well-designed QMC
algorithm will perform better, asymptotically, than GAEP under a smooth probabil-
ity model and for dimensions d ≥ 3. At this point, it is however important to stress
that GAEP and (Q)MC methods are substantially different. First of all, (Q)MC meth-
ods provide a final estimate which contains a source of randomness, while the GAEP
algorithm, being solely based on geometric properties of a certain domain, is purely
deterministic. This can be seen in Table 6, where we compare GAEP and MC esti-
mates on two examples.

Also recall that (Q)MC methods need either a density (everywhere on S 1
1 ) or a

sampling algorithm for the distribution function of X. Instead of this, the GAEP algo-
rithm does not require the density of H in analytic form, nor does it have to assume
overall smoothness. In order to use GAEP, one only needs that H can be evaluated
numerically and that ϕ ∈ N ′. Furthermore, (Q)MC methods need to be tailored to
the specific example under study, their accuracy being generally lost when the den-
sity vH is not smooth or ϕ(X) have infinite first or second moments. In these cases,
relative errors increase for (Q)MC for s tending to infinity. Contrary to this, GAEP
does not need any adaptation to the probabilistic model under study, nor it is influ-
enced by the heaviness of the marginal distributions used. Moreover, in Section 11,
we will present another method for the three dimensional case which seems to be
competitive with respect to QMC.
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(a) GAEP estimate MC estimate MC s.e.

s (n = 12, 61 sec.) (M = 5e07, 64 sec.)

100 0.416123502687784 0.41614132 6.97e-05
102 0.860937621800580 0.86099074 4.89e-05
104 0.975466112029285 0.97545864 2.19e-05
106 0.996034158165874 0.99603776 8.88e-06

(b) GAEP estimate MC estimate MC s.e.

s (n = 8, 41 sec.) (M = 4e07, 47 sec.)

10−2 0.000729352448762 0.000715050 4.22e-06
100 0.174626428280207 0.172616075 5.98e-05
102 0.989734882116519 0.989638175 1.60e-05
104 0.999899605726889 0.999899550 1.58e-06

Table 6: GAEP (bisection) and MC estimates for VH [S 1
1 ] for the example described

in: (a) Table 2; (b) Table 3.

10 GAEP versus AEP

The GAEP algorithm is similar to the AEP algorithm introduced by the same authors
in Arbenz et al. (2010) for the sum operator, but cannot be seen as an extension of
AEP. In the case ϕ(x) =∑d

k=1 xk , the geometrical decompositions of the set

S 1
1 = {x ∈Rd : 0 < x and x1 +·· ·+xk ≤ s},

used by AEP and GAEP (gradient method), are equivalent for d = 2,3, but differ-
ent for d ≥ 4. AEP decomposes S 1

1 in a countable family of overlapping simplexes,
whereas the (quasi)simplexes produced by GAEP are always disjoint. The decompo-
sition used by AEP has the advantage that all the simplexes generated by the algo-
rithm are scaled copies of the simplexes from which they have been generated. On
the other hand, using overlapping simplexes implies a larger numerical complexity,
particularly in high dimensions, and a much more cumbersome proof of conver-
gence. Indeed, the problem of convergence of AEP in dimensions d ≥ 9 is still open.

This is different with GAEP, which uses disjoint simplexes and is more efficient
than AEP for ϕ(x) = ∑d

k=1 xk in dimensions d ≥ 4. Moreover, convergence (under
some smoothness of ϕ) is easily stated in arbitrary dimensions. Unfortunately, the
disjoint (quasi)simplexes produced by GAEP can be “cut off” at the edges. This does
not allow the use of the extrapolation technique described in Arbenz et al. (2010,
Section 5). This is the reason why the AEP algorithm, in its extrapolated version
(AEP-E), turns out to be better than GAEP for the sum operator, in every dimensions.

In Figure 7, we plot the error committed by AEP, AEP-E (see (43) below) and GAEP
(gradient method) versus computation time, when the three algorithms are applied
to random vectors of different dimensions for the function ϕ(x) = ∑d

i=1 xi . In these
examples, the value VH [S 1

1 ] is available analytically. Again, note that AEP and GAEP
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are equivalent in dimensions d = 2 and d = 3. As already remarked, GAEP is more
efficient than standard AEP in dimensions d ≥ 4 due to the use of a disjoint decom-
position. However, AEP-E turns out to be the best algorithm to be used with the sum
operator, in all dimensions d .
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Figure 7: Errors |Pn −VH [S (0,10)]| from the AEP, AEP-E and GAEP (gradient) al-
gorithms for random vectors of different dimensions having independent Gamma
marginals with scale parameter 1 and shape parameters 0.5+0.5i , i = 1, . . . ,5. GAEP
errors are plotted versus computation time, for the sum operator ϕ(x) =∑d

i=1 xi .

In order to better clarify the difference between AEP and GAEP, suppose we want
to decompose the simplex {x ∈ R2 : 0 ≤ x ≤ p,ϕ(x) ≤ s} ⊂ R2, where 0 ≤ h ≤ p and
ϕ(h) < s. In the case of a general function ϕ ∈ N , an overlapping decomposition,
analogous to the one used by AEP, can be carried out, leading to

VH [{x : 0 ≤ x ≤ p,ϕ(x) ≤ s}] =VH [Q(0,h)]+VH [{x : (0,h2) ≤ x ≤ p,ϕ(x) ≤ s}]

+VH [{x : (h1,0) ≤ x ≤ p,ϕ(x) ≤ s}]−VH [{x : h ≤ x ≤ p,ϕ(x) ≤ s}].
(38)
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For the same simplex, the disjoint decomposition used by GAEP gives, instead,

VH [{x : 0 ≤ x ≤ p,ϕ(x) ≤ s}] =VH [Q(0,h)]+VH [{x : (0,h2) ≤ x ≤ (h1, p2),ϕ(x) ≤ s}]

+VH [{x : (h1,0) ≤ x ≤ (p2,h1),ϕ(x) ≤ s}]+VH [{x : h ≤ x ≤ p,ϕ(x) ≤ s}].
(39)

The two decompositions are illustrated in Figure 8.

+ + +

+ + −

=

=decomposition:

disjoint
decomposition:

overlapping

Figure 8: An illustration of the two decompositions (38) and (39) .

In conclusions, the AEP-E algorithm is to be used with sum operator, while, for
a general function ϕ, GAEP will perform better. The problem of finding a technique
analogous to extrapolation, and working with a general functional ϕ, will be ad-
dressed in future research.

11 An alternative choice of the ht
n for d = 3.

The (speed of) convergence of GAEP heavily depends on the choice of the {ht
n , t ∈ In}

at each iteration of the algorithm. In this paper, we have presented two different
ways of choosing this sequence: the bisection and the gradient methods. For both
these methods, we have derived their mathematical properties, including conver-
gence rates. Of course, we are aware that a different choice of the sequence ht

n
may provide better results on a particular model. As an example of a possible im-
provement of GAEP, we present an alternative approach, which, in numerical exam-
ples, yields extraordinarily fast convergence for three-dimensional vectors. Thus,
throughout this section, fix d = 3 and, for all n ∈N and t ∈ In , let the sequence ht

n be
defined as

ht
n =

{
pt

n , if S t
n =Q(bt

n ,pt
n),

Φ(bt
n), otherwise,

(40)
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where Φ : R3 → R3−∪R3+ is the function which maps b ∈ R3 to the unique vector h ∈
R3−∪R3+ satisfying

ϕ (b+h◦ (1,1,0)) =ϕ (b+h◦ (1,0,1)) =ϕ (b+h◦ (0,1,1)) = s. (41)

Note that, for a fixed b, existence and uniqueness of a vector h ∈ R3− ∪R3+ satisfy-
ing (42) follow from the definition of the set N . Moreover, we also have ht

n ∈H (pt
n),

for all n ∈N and t ∈ In . Hence,Φ is well-defined.

Lemma 12. Let d = 3 and assume that ϕ ∈ N . Then, the sequence ht
n , as defined

by (40) and (41), satisfies ht
n ∈H (pt

n) for all n ∈N and t ∈ In .

Proof. Using induction on n, it is possible to show that, for all n ∈N, we have

ϕ(bt
n +pt

n ◦ek ) = s for all t ∈ In and k = 1,2,3. (42)

Equation (42) is illustrated in Figure 9. Recalling that bt
n = 0, (42) follows, for n = 1,

from the definition (4) of p1
1. Now assume that (42) is true for some n and choose an

arbitrary t ∈ In . First of all, it is easy to see, using (18) and (19), that the quasisim-

plexes S
8t−8+ j

n+1 , j = 5, . . . ,8, are empty. Therefore, it is sufficient to show that

ϕ(bN t−N+ j
n+1 +pN t−N+ j

n+1 ◦ek ) = s for j = 1, . . . ,4 and k = 1,2,3.

For j = 1 (the proofs in the other cases are analogous), we have that

ϕ(bN t−N+1
n+1 +pN t−N+1

n+1 ◦ek ) =ϕ(bt
n +ht

n −ht
n ◦ek ) =


ϕ(bt

n +ht
n ◦ (0,1,1)), if k = 1,

ϕ(bt
n +ht

n ◦ (1,0,1)), if k = 2,

ϕ(bt
n +ht

n ◦ (1,1,0)), if k = 3.

The induction step then follows from (41).
Suppose now that, for a certain n and t ∈ In , (42) is satisfied with pt

n ≥ 0. Since ϕ
is strictly increasing, for any vector x with at least one coordinate, say the first, larger
than pt

n , we have that

ϕ(bt
n +x◦ (1,1,0)) ≥ϕ(bt

n +x◦ (1,0,0)) >ϕ(bt
n +pt

n ◦ (1,0,0)) = s.

Since, by (40), ϕ(bt
n +ht

n ◦ (1,1,0)) = s, we must have that ht
n ≤ pt

n . Analogously, if
(42) is satisfied with pt

n ≤ 0, we get ht
n ≥ pt

n and, finally, ht
n ∈H (pt

n).

Choosing the sequence ht
n according to (40) has several advantages. First of all,

it reduces numerical complexity of GAEP, since (see the proof of Lemma 12)

S 8t−8+5
n+1 =S 8t−8+6

n+1 =S 8t−8+7
n+1 =S 8t−8+8

n+1 =; for all n ∈N and t ∈ In .

As illustrated in Figure 9, the maximum number of new simplexes generated by the
decomposition (12) is then reduced from 8 to 4, as, for some n ∈ N and t ∈ In , we
have

VH
[
S t

n

]=VH
[
Qt

n

]−VH
[
S 8t−8+1

n+1

]+VH
[
S 8t−8+2

n+1

]+VH
[
S 8t−8+3

n+1

]+VH
[
S 8t−8+4

n+1

]
.
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On the other hand, solving (41) requires numerical root finding algorithms, which
can be time-consuming depending on the function ϕ. However, for a polynomial
ϕ, the use of Newton’s method combined with an initial guess obtained from (29)
proved to be extremely fast. Indeed, it is possible to show that, when bt

n approaches
the curve {x :ϕ(x) = s}, the sequence ht

n , as defined in (40), goes to the sequence (29)
characterizing the gradient method.

S 3
2

h

0

h2
h1

h3 S 4
2

{x ∈R3+ :ϕ(x) = s}

S 2
2

S 1
2

p1

p2

p3

Figure 9: Decomposition (12) of the three-dimensional simplex S 1
1 = S (0,p1

1) for
the h1

1 satisfying (41).

In Arbenz et al. (2010), the authors introduce two sequences of estimators for
VH [S 1

1 ] in the case of the sum operator ϕ(x) = ∑d
k=1 xk . The first sequence, Pn , is

the standard AEP estimator. The second sequence, the so-called AEP-E(xtrapolated)
estimator P∗

n , defined as

P∗
n = Pn−1 + (d +1)d

d ! 2d

N n−1∑
t=1

τt
nVH

[
Qt

n

]
, (43)

converges significantly faster to VH [S 1
1 ] than Pn . The idea behind AEP-E is that the

simplexes generate by AEP become smaller and smaller at each iteration, so that a
smooth probability distribution H can be approximated by its Taylor expansion.

Using the same philosophy, (43) can be used with the GAEP estimator in the case
d = 3. Thus, we define the GAEP-E estimator as

P∗
n = Pn−1 +4/3

In∑
t=1

τt
nVH [Qt

n],

where Pn is now the sequence defined in (20) and the sequence ht
n as defined in (41).

Unfortunately, we were not able to find theoretical results for the GAEP-E estimator
for a general functionϕ. However, in numerical examples, we found P∗

n to be signif-
icantly more accurate and faster than Pn . Figure 10 gives an illustration of this im-
provement on a specific example where the value VH [S 1

1 ] is available analytically.
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Empirical convergence rates
∣∣P∗

n −VH [S 1
1 ]

∣∣ = O(M(n)κ) found in examples for the
GAEP-E vary from κ = −2 to κ = −1.6, thus making GAEP-E more than competitive
with respect to QMC methods.

Unfortunately, we were not able to find the improvements in accuracy provided
by the GAEP-E estimator P∗

n in any other dimension than d = 3.
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Figure 10: Errors |Pn −VH [S (0,100)]| from the GAEP (gradient method), GAEP (al-
ternative approach as defined in (40)) and GAEP-E algorithm for a random vector
having d = 3 independent Pareto marginals with tail indexes θi = i , i = 1,2,3. GAEP
errors are plotted versus computation time, for the function ϕ(x) =∏3

k=1(xk +1).

12 Final remarks

In this paper, we have introduced the GAEP algorithm in order to compute numeri-
cally the distribution function of a function ϕ(X) of a d-dimensional random vector
X with given joint distribution function H . The algorithm is mainly based on two as-
sumptions: the marginal components of X have to bounded from below, and ϕ has
to be strictly increasing in each coordinate. If the vector X is absolutely continuous,
and ϕ is also twice differentiable, the convergence of the algorithm is guaranteed
in arbitrary dimensions, even if its numerical complexity limits any application to
dimensions d ≤ 5.

The convergence (rate) of GAEP depends heavily on the method adopted to de-
fine the sequence Pn of estimators converging to the value P[ϕ(X) ≤ s]. In the pa-
per, we have proposed three different methods, which are (very) effective for dif-
ferent dimensions d : the gradient (for d = 2), the bisection (d ≥ 4) and the GAEP-
Extrapolated rule (d = 3). Summarizing all the results presented in the paper, we
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can say that the GAEP algorithm is better than its competitors, mainly Monte Carlo
and quasi-Monte Carlo methods, for dimensions d ≤ 3. The GAEP algorithm be-
haves slightly worse in dimension d = 4,5. We remark again that, contrary to (Q)MC-
methods, the GAEP algorithm is deterministic and does not need any adaptation to
the probabilistic model under study.

An improvement of the GAEP convergence rates in dimensions d ≥ 4 needs an
extension of the extrapolation technique introduced in Arbenz et al. (2010) to gen-
eral aggregating functionals ϕ. Alternative methods for the choice of the vectors
{ht

n , t ∈ In}, more efficient than those described in this paper, may also be possible.
We propose to address these problems in future research.
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