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Abstract

The worst-possible Value-at-Risk for a non-decreasing function � of 	 dependent risks is
known when 	�
� or the copula of the portfolio is bounded from below. In this paper we
analyze the properties of the dependence structures leading to this solution, in particular
their form and the implied functional dependence between the marginals. Furthermore, we
criticise the assumption of the worst-possible scenario for VaR-based risk management and
we provide an alternative approach supporting comonotonicity.
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1 Introduction

Consider an insurer holding a portfolio consisting of � policies with individual risks�����������������
over a fixed time period. Given some measurable function ����� ��� � ,

a relevant task in insurance mathematics is the investigation of the risk position
associated with �! �"���#�����#�$�%�'& , when the marginal distributions of the single risks
are known. Actuarial examples of the function � include ( �)+* �-, ) , characterizing the
aggregate claim amount deriving from the policies or ( �)+* �/. )  , ) & and .  ( �)+* � , ) & ,
providing the risk positions for a reinsurance treaty with individual retention func-
tions . ) �103254��#�����6� � , and a global reinsurance treaty with global retention function. , respectively.7
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(ETH Zürich/MIT) for helpful discussions. They are also grateful to the anonymous refer-
ees for the helpful remarks on the previous version of the paper. The third author gratefully
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The problem of finding the best-possible lower bound on the distribution function
(df) of �8 �"�����#���#������& has received a considerable interest in insurance mathemat-
ics; see the introduction in Embrechts and Puccetti (2004). In financial risk manage-
ment, the problem is equivalent to finding the worst-possible Value-at-Risk (VaR)
for the corresponding aggregate position.

Modelling the interdependence arising in a random portfolio calls for the use of
copulas. If a lower bound on the copula of the vector  �9�������#�#�����'& is given, the
above problem is fully solved and the bounds on VaR provided by Embrechts et al.
(2003) are sharp. In the no-information case sharpness does hold only if � 2;:

.
Rather than treating the technical proof of such results, for which we refer to the
above cited references, in this paper we analyse in more detail the properties of
their solutions. We concentrate mainly on the no-information case and we study the
optimizing copula for the sum of two dependent risks, which is well-known to differ
from comonotonicity. In particular we discuss its shape, its implications in terms
of dependence and we criticise it as not being a rational scenario for an insurance
company. Finally, we provide an alternative optimization approach leading to a
suitable measure of risk, which supports the assumption of comonotonicity for a
prudent evaluation of the VaR for the aggregate position.

2 Preliminaries and fundamental results

In this section we present some well-known concepts about copulas and briefly
recall the fundamental results about the problem of bounding the VaR for functions
of dependent risks. For more details about copulas, we refer to Nelsen (1999).

2.1 Value-at-Risk and dependence structures

On some probability space  =< �1>?�A@B& , let the random vector
� � 2  �9�����#���#������&

represent a portfolio of one-period risks. Given a measurable function �C��� �B� �
we face the problem of finding the supremum of the VaR for the aggregate position�8 � & over the class of possible dfs for

�
having fixed marginals D �6�#�����#� D � .

Definition 1 Let EF�G� � � be a non-decreasing function. Its generalized left
continuous inverse is the function EIH � �J� � � defined by EKH �  ML & � 2ONQPSR�T ,VU��W$EG , &YX L[Z � For \^] _;] 4

the Value-at-Risk at probability level _ for a
random variable ` with distribution function a is its _ -quantile, i.e.bdc'egf  M` & � 2 a H �  =_ &6�
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Of course, quantiles of the df of �8 � & can be computed if the joint distribution
function Dh , ����������� , ��&!2i@%jk��� ] , �6�����#������� ] , ��l is known. At this point, the
notion of copula becomes useful.

Definition 2 An � -dimensional copula is an � -dimensional distribution function
restricted to

j \ �#4#l � having standard uniform marginals. We denote with m � the fam-
ily of � -dimensional copulas.

Given a copula n U m � and a set of univariate marginals D ����������� D � , we can always
define a df D on � � having these marginals by

Do , �6��������� , ��& � 2 nh =D �  , �$&���������� D �  , ��&�&�� (1)

Hence, given � dfs D �6�������6� D � , we let
� p2  ���6�������6�����q& be the random vector

on � � having a copula n satisfying (1). Conversely, Sklar’s Theorem (Sklar (1973,
Theorem 1)) states that there always exists n U m � coupling the marginals of a
fixed df D trough (1). Observe that this copula is unique for continuous marginal
dfs.

We recall that any copula n lies between the lower and upper Fréchet boundsr  Ms �������#��� s ��& � 2  t( �)+* � s )vu �%w 4x&$y and z{ Ms ����������� s �'& � 2}|%NQP~��� ) �-� s ) , namelyr ]�n{]�z . Observe that, contrary to z , the lower Fréchet bound
r

is not a dis-
tribution function for ��� : . Random variables coupled through n 2 z ( n 2Vr )
are called comonotonic (countermonotonic). The independence copula is denoted
by �� �s �A�������6� s �q& � 2�� �)+* � s ) .
Remark 3 Comonotonicity characterizes the risks of the portfolio as being in-
creasing functions of a common random factor. It is therefore a strong dependence
and measures of dependence such as Kendall’s � or Spearman’s � will describez as a perfect structure, i.e. �� tz &�2 �[ tz &�2�4

holds if the marginals are con-
tinuous. It is precisely this representation which motivates the use of the concept
of comonotonicity in financial applications. Moreover, assuming comonotonicity
leads to almost all the computational benefits of independence, yielding, in addi-
tion, a prudent scenario in many contexts as we will emphasize in Section 4. For an
in-depth discussion of comonotonicity, see Dhaene et al. (2002).

2.2 Bounds on Value-at-Risk for functions of dependent risks

We now recall the two fundamental results being the object of our analysis. For a
proof of Theorems 5 and 6 below, we refer to Embrechts and Puccetti (2004). For
a copula n and marginals D �6�����#�#� D � , define

� pS� �  MD �����#���#� D �q&  t� & � 2��x� �������~� nh =D �  , �$&6�#�����#� D �  , ��&�&6�
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� pS� �  MD �����#���#� D �q&  t� & � 2 �$�/���� �k�k�k� � �� 6¡¢��£6¤nh =D �  , ��&6�#�����6� D � H �  , � H ��&6� D H�  ��¦¥� ¡§   t� &$&�&6�
where � ¥� ¡§   t� & � 2O���S�¨T , � U ��W©�! , H �ª� , ��&¬« �'Z for , H � � 2  , �6��������� , � H �& U� � H � . In the following, we refer to non-decreasing functions �C��� � � � as being
non-decreasing in each component.

Remark 4 Observe that � pS� �  MD �6�����#�#� D ��&  t� &®2¯@hj �! � p &�« � l for
� p

having
marginals D �6�������6� D � and copula n . In Proposition 20 in the Appendix, we show
that the operator � p/� � is the left-continuous version of a df, i.e. there exists a random
variable ° with

@%j ° « � l!2 � pq±�� �  =D �6�#�����#� D �'&  =� & . This result extends a claim
of Denuit et al. (1999, p. 37). As first noted in Schweizer and Sklar (1974) for the
sum of two risks, if n³²�´2 z there does not exist a measurable real function µ such
that ° 2 µ¶ � & , with

�
having marginals D �6�����#�#� D � .

Theorem 5 Let
� p 2  ���6���#�����$�%��& be a random vector on � �  M��� 4x&

having
marginal distribution functions D �6�#�����#� D � and copula n . Assume that there exists
a copula n³² such that n X n³² . If �5�v� �o� � is non-decreasing, then for every
real � , we have

� pS� �  =D �������#�#� D �q&  t� &·X � pq±'� �  MD ���#�����#� D ��&  t� &�� (2)

Translated in the language of VaR, the above statement becomes

VaR
f  M�! �������#���#�����'&�& ]�� pq±q� �  =D �6��������� D �'& H �  =_ &

for every _ in the unit interval.

The bounds stated in Theorem 5 are pointwise best-possible and cannot be tight-
ened if � 2�:

or a lower copula bound ng² on the copula of the portfolio
� p

is
assumed.

Theorem 6 Further to the hypotheses of Theorem 5, we assume that � is also
right-continuous in its last argument. Define the function n f � j \ ��4�l � � j \ ��4#l as

n f  Ms & � 2 ¸¹ º |hc�»[T _ � nG²¼ Ms & Z if s 2  Ms ���#�����#� s �'& U j _ ��4�l � �|%NQP¼T s ���#�����#� s � Z otherwise
�

where _ 2 � p ± � �  =D �6��������� D ��&  =� & . Then n f is a copula and it attains bound (2), i.e.

� p'½�� �  =D �6�������6� D ��&  =� &d2 _ � (3)

When �¾� : , the statement of Theorem 5 remains valid taking
r

as lower bound
instead of nG² but the bound stated in (2) is no more sharp.
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3 Analysis of the worst-case portfolios

The aim of the present paper is to give more insight into the shape of the cop-
ula yielding the worst-possible VaR for �8 � p &o2 �! �����#�����#�$�%��& and to under-
stand the implied dependence among the marginals. Under all possible depen-
dence structures, the maximum VaR at level _ is given by the copula minimizing@%j �! � p &?« � l over � -regions depending on _ . Indeed, according to Definition 1,
with ¿ �  t� & � 2 NQPSRp £§À   T�@%j �8 � p�&G« � l Z � � U � �
we have that VaR

f  M�! � p¨&�& ] ¿ H ��  =_ &�� _ U j \ ��4#l=� The problem at hand becomes
also the characterization of the copula attaining

¿ �  t� & , or equivalently maximizing¿ �  =� &¦2Á4 u ¿ �  t� &K2Â�$�/�p £�À   T�@%j �! � p�&GX � l Z � � U � � (4)

Such a copula will be referred to as a worst-case scenario for the aggregate po-
sition �8 � p & . We use the term scenario to indicate a (possibly degenerate) set of
probability measures, in line with Artzner et al. (1999). Analogous to the above
definitions, in the presence of partial information, we write

¿ pq±�� � (
¿ pq±q� � ) and the

infimum (supremum) is taken over all n U m � satisfying the boundary conditionn X nG² .

Next, we concentrate on the sum of risks (generalizations to non-decreasing con-
tinuous functions � being straightforward) and we choose nÃ² 2�r . See Section 5
for some comments on this choice of no dependence information.

3.1 Two-dimensional portfolios

If we take two risks and � 2 w , the sum operator, the bound given in Theorem 5
cannot be tightened and there always exists a two-dimensional copula meeting that
bound at a given point � . We restate Theorem 6 in this particular case.

Theorem 7 Let
� p2  �����$�hÄA& be a random vector on � Ä having marginal dis-

tribution functions D �6� D Ä and copula n . Define the copula n f � j \ ��4�l Ä � j \ ��4�l ,
n f  Ms & � 2 ¸¹ º |hc�»[T _ �Ar  �s & Z if s 2  �s �A� s Ä�& U j _ ��4#l Ä ,|%NQP[T s ��� s Ä Z otherwise

�
where _ 2 �#Å � y  =D �6� D ÄA&  t� & . Then this copula attains bound (2), i.e.

� p'½�� y  =D �6� D ÄA&  t� &K2 _ � (5)
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Fig. 1. Support of the copula Æ f (dotted line), sets Ç ��È©É³� and curve Ê for: N(0,1)-N(1,2)
marginals and Ë�
iÌ (which gives ÍÎ
�Ï�Ð+Ì�Ñ�Ì�Ò ) (left); Log-Normal(0.4,1)-marginals andËG
YÓ ( Í"
ÔÏ�ÐÕ�§Ò�ÏxÑ ) (right).

Proofs of Theorem 7 can be found in Frank et al. (1987) and Rüschendorf (1982).
Our aim here is to restate the problem of maximizing (4) from a geometric point
of view and illustrate the properties of the optimizing copula n f . Without loss of
generality, in what follows, we take continuous, increasing marginals. Let more-
over a � � 2¯T  , ��� , Ä6& U � Ä W , � w , ÄÖX ��Z and . �d� Ä � j \ ��4#l Ä , .  , �6� , Ä6& � 2 =D �  , �$&�� D Ä  , Ä�&�& .
The basic idea is to use the function . to transport the optimization problem on
the unit square

j \ �#4#l Ä . In fact, × p � 2 .  � p & is a random vector, with distribution
function n on

j \ ��4#l Ä . The function . is invertible, hence we have that@%j � p U a � l¼2�@hj .  � p¨& U .  Ma � &©l¼2ÙØ p  �Ú � &6�
where

Ø p is the measure corresponding to n on
j \ ��4#l Ä and

Ú � � 2 .  Ma � &K2^T  �s �A� s Ä�& U j \ ��4#l Ä WD H ��  Ms �$& wÛD H �Ä  �s ÄA&³X �'Z �
The maximization function (4) can now be rewritten as¿ y  t� &¦2����S�p £�À�Ü TxØ p  MÚ � & Z � (6)

For _ 2Ý4
, (2) leads to � p/� y  =D �6� D Ä�&  t� &?2O4

for every copula n , hence take _ Uj \ ��4x& . The boundary of Ú � is the image of the curveÞ ��� � j \ ��4#l Ä � Þ  àß & � 2  MD �  àß &6� D Ä  t� u ß &�&6�
In Figure 1 the curve Þ delimiting the set Ú � is drawn, with the support of the copulan f , in case of Normal and Log-Normal marginals.

The copula n f is uniformly distributed on its support, hence, definingá � � 2ÁT  Ms �1� s Ä�& U j \ ��4#l Ä W©s � w¾s ÄI254 w_dZ
6



we have
Ø p ½  á � &?2O4 u _ . As noted in Nelsen (1999, p. 187), this is the crucial

property leading to the statement of Theorem 7. In fact, when \ « _ «¯4
, the

continuity of the D ) ’s implies that

_ 2 �#Å � y  MD �6� D Ä�&  =� &¦2 D �  ,~â � & wÛD Ä  t� u ,~â � & u 4
for some , â � . Hence the curve Þ meets the segment

á � at least in one point. The
technical (and for general � and ng²�� r rather laborious) part of the proof consists
in showing that Þ always lies below the segment

á � , hence Ú �Iã á � and
Ø p ½  �Ú � &·XØ p ½  á � &d2^4 u _ . Noting that

Ø p ½  MÚ � & ] 4 u _ , from Theorem 5 we obtain (5). For_ 2 \ , instead, the existence of a tangent point between Þ and
á � is not necessary,

since the copula
r

yields the theorem. Analogous geometric considerations can be
given for the case n³²�� r and for non-decreasing continuous � .

The geometric properties of the support of n f , illustrated in Figure 1, can be ex-
tended to a whole family of copulas, since the dependence structure leading to the
worst-case VaR is not unique. In fact, let ¥m Äf and m Äf denote the family of copulas
leading to the worst possible VaR and the family of copulas sharing their support
on
j _ ��4#l Ä with n f , respectively. Formally:¥m Äf � 2ÁT n U m Ä W � pS� y  MD �6� D Ä�&  =� &¦2 _dZ �m Äf � 2ÁT n U m Ä Wnh Ms �A� s Ä1&K2 n f  Ms ��� s Ä1&äR�å�æ _Ô]Cs ��� s Ä ] 4 Z �

Observe that we can write ¥m Äf 2ÝT n U m Ä W Ø p  MÚ � &?2çØ p ½  MÚ � & Z . In particular, it
trivially follows from m Äf%è ¥m Äf that every copula in m Äf attains bound (2).

We now focus on the dependence implied by the copulas in m Äf . The supporté!f � 2ÁT  �s �A� s Ä�& U j \ � _ & Ä W©s �J2 s Ä ZGê T  Ms �A� s ÄA& U j _ ��4#l Ä W©s � w¾s ÄI254 w_dZ
of the copula n f implicitly defines the dependence of the coupled random variables
by the substitution s ) 2 D )  , ) &��10G2ë4��A:

. In fact, if the copula n f couples
���

and�%Ä
into the random vector

� p ½
and if we assume D �6� D Ä to be increasing on their

domain, then we have
�oÄ·2 µ¶ �"�& , where the function µ¬�'� � � is defined as

µ¶ , & � 2 ¸¹ º D H �Ä  =D �  , &�& if , « D H ��  M_ & ,D H �Ä  4 wÛ_ u D �  , &$& otherwise.
(7)

Analogously, every other copula in m Äf defines a functional dependence identical to
that of µ for , X D H ��  M_ & . For example, the copula n �f given by

n �f  �s �A� s Ä�& � 2 ¸¹ º |ocx»vT nG²¨ �s �A� s Ä�&6� _KZ when  �s ��� s ÄA& U j _ ��4#l Ä ,ì � ì Üf otherwise
�

couples two marginals which are independent if the first lies below the thresholdD H ��  =_ & and behaves like n f otherwise. Figure 2 compares
éíf

with the support ofn �f .
7
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Fig. 2. Supports of the copulas Æ¦î � ï (left) and Æ �î � ï (right).

Merging the two marginals by n f is therefore equivalent to letting
�oÄ%2 µ¨ ���$& .

Hence, the two risks are mutually completely dependent, see Lancaster (1963).
Moreover, the copula n f is a so-called shuffle-of-M and hence implies that

�9�
and

�hÄ
are strongly piecewise strictly monotone functions of each other, in the

sense defined in Mikusiński et al. (1991). Nevertheless, measures of dependence
such as Kendall’s � or Spearman’s � describe n f as a non-perfect structure when\Û]Ý_ «ð4

, i.e. �� =n fª&6� �[ Mn f-&�«ð4
. This is due to the fact that this copula only

represents piecewise comonotonicity.

Mathematically, the dependence structure induced by n f is, however, as strong ad
the one induced by z , since the two variables coupled by n f are in a one-to-
one correspondence. Finally, note that every df on � Ä defined by applying a ¥m Äf -
copula to the given set of marginals has a singular component, i.e. is mixed with a
continuous distribution having zero derivative except for a set of Lebesgue measure
zero. For more details about singular distribution functions see Billingsley (1995,
Section 31) and Nelsen (1999, p. 23).

At this point, it is relevant to note that, in general, z ñU ¥m Äf when \�];_ «Â4
,

the case _ 2ò4
being the trivial one in which ¥m Äf 2 m Ä . This provides a further

geometric proof that comonotonicity does not lead to the worst-VaR and empha-
sizes the non-coherence of VaR as stated in Artzner et al. (1999). Suppose that

�ó�
and

�%Ä
are identically distributed with unbounded, absolutely continuous df having

positive density ô . If ô is eventually decreasing, it is easy to show that for � large
enough we have that _ 2}: Dh t�xñ :�& u 4 , while�võ � y  =D � D &¦2 Do =�xñ :�& �C_ � (8)

A necessary condition for z to be in ¥m Äf is that the point  M_ � _ & lies in
j \ ��4#l Ä÷ö Ú � .

Equation (8) implies that this condition is not satisfied for � large enough. Finally,z U ¥m Äî if and only if Ú � 2Fj \ ��4#l Ä , i.e. the sum
�"� w �%Ä is

@
-a.s. bounded from

below by the threshold � . In this case the problem of bounding the VaR for the
sum does not arise. We conclude that, apart from pathological cases of no actuarial
importance, we have that �¼õ � y  MD ��� D Ä6&  =� & � ¿ y  t� & when \ó]ø_ «ù4

. As a con-
sequence, the assumption of comonotonicity among the risks of the portfolio may

8



lead to a dangerous under-valuation of the VaR for the aggregate position. At first,
the worst dependence scenario could seem to be the one implied by z , since under
comonotonicity it is indeed known that every random variable is a non-decreasing
function of the other, so that high values for the first imply high values for the sec-
ond. Theorem 6 provides a deeper view on this issue, stating, instead, that for every
threshold � such that _ «{4 , there exists a copula n f yielding a value for the VaR
which is higher than that of comonotonicity. The following example further stresses
the fact that z does not belong, in general, to ¥m Äf .
Example 8 Let

�"�
be standard normally distributed with df ú and set

�¬ÄG2 u ���
to obtain

@%j �"� w �%Äû2 \ l�2 4
. The copula describing this dependence is the

countermonotonic copula
r

under which
�oÄ

is a non-increasing function of
�®�

.
According to Theorem 6,

¿ y  =\ &¦2 \ . In this set-up, the maximizing solution of (6)
is then the structure of dependence which is opposite to comonotonicity (note that
happens whenever _ 2 \ ), for which we have instead �¶õ � y  tú � ú &  =\ &ü2ç4 ñ : . Fig-
ure 3 (left) illustrates that, for every positive � U � , there exists a copula n U ¥m Äf
such that � pS� y  tú � ú &  t� &�« �võ � y  tú � ú &  t� & . In the same figure (right) we also pro-
vide the shape of the bivariate distribution obtained by applying n f to the marginals
for � 2þý/� ÿ � ÿ

( _ 2 \ � � ÿ���� ). Note that the upper right density lives on a general
curve, whereas the corresponding copula support is linear.
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Fig. 3. Range for ��� 	 ��
 	 Ä� Ë�� for a N(0,1)-portfolio. Together with the independence
and comonotonic value we plot the lower bound � y�� Ë�� (left) and the density of the distri-
bution of � 	 � È 	 Ä � obtained by applying the copula ÆKî � ����ï�� to a N(0,1)-portfolio (right).

3.2 Two-dimensional uniform portfolios

We now state some simple results for uniform marginals that will turn out to be
useful in understanding the � -dimensional case.
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Proposition 9 Let the hypotheses of Theorem 7 be satisfied with D �6� D Ä uniformly
distributed on the unit interval. Then ¥m Äf 2 m Äf .

Proof If _ 2Á4 , ¥m Ä � 2 m Ä � 2 m Ä . Let \%]Ù_ 2 � u 4B«V4 and n U ¥m Äf .
PSfrag replacements

������ �"!$#�% �� �'& � �"� #�%(%� �")
* %* %

*,+*-+
. %

. +
/ /0

0

0

0

1
1 1

1
243

5 %
5 +

Fig. 4. Sets defined in Proposition 9.

Observe that, for uniform marginals, the boundary of 687 coincides with 9:7 . As
illustrated in Figure 4 (left), let ;$<>=@?BADCFE�G�HIEKJML�NPORQDH�SUT J�V E�GXWYEKJ[Z]\�H^EK<`_badc ,e ?fS�H-g . By the definition of copula and h]Njik Jl we have that

m�n Co;<Dpq6r7sLt? m�n Co;<uL�W m�n CF6v7ILw?fS>xyadH e ?fS�H�gzHm�n CF6v7ILw?fS>xyadH
which implies m{n CF;><FL|?}Q ,

e ?]S~H-g and m�n CsO"QDHIawL J L|?}a . For the upper region we
introduce the following partition:

��� <�=�?�CFaqW e C�S>xjawLg � W S$xjag ��� G HMa�W C e W�S�LUC�S>xja�Lg � T� CoaqW C�g � x e L,C�S>xjawLg � x S>xjag ��� G HMaqW Cug � x e LUC�S$xja�Lg � T
for ��_ Q and

e ? QDH����U�UH-g � xbS . See Figure 4 (right). In particular, consider����� ?]C G � lJ H�SUT J and let

h|<�=�?�ADC�E�GMHIEKJ-L�N�ORQDH�SUT J V E�G�WyEKJ���S`Wja�HIE4<{� S|W�ag c�H e ?PS~H-gzH� G|=�?�ADC�E�GMHIEKJ-L�N�ORQDH�SUT J V E�G�WyEKJ?�S`Wja�HMa��YE�G|� S|W�ag c�H� J$=�?�ADC�E�GMHIEKJ-L�N�ORQDH�SUT J V E�G�WyEKJ?�S`Wja�H S|Wjag Z�E�G|��S�c��
10



Using the properties of a copula and considering that � � and � Ä have zero
Ø p -

measure, we have thatØ p  u  î�î & w Ø p  =n ��& w Ø p  u¡ �$&¦2Á4 u 4 w_: 2 4 u _: �
Ø p  Mn �$& w Ø p  u¡ �$&K2 4 w_: u _ 2 4 u _:

and hence
Ø p  u  î�î &g2 \ . Analogously, applying the same arguments to the upper-

right triangles of the squares

j _ � 4 wÛ_: l�¢¾j 4 wÛ_: ��4#l
and

j 4 wÛ_: ��4#l{¢¾j _ � 4 wÛ_: l=�
respectively, we obtain that

Ø p  o  � î &�2 Ø p  u  ���$&�2 \ . By iteration we have thatØ p  o  � ) &¦2 \ for all � X \ , 0 2 \ �#�����#�A: � u 4 and we trivially obtain

Ø p £[¤¥� * î
Ä   H �¥)+* î   � )§¦ 2 \ �

Hence the only possibility for n is to assign probability mass  4 u _ & to the set¡ � êq¡ Ä·2Vá � , which implies that n U m Äf . ¨
Remark 10 With respect to (7), for

4 ]i�¬] : and
� p 2  ���6���%Ä�& having stan-

dard uniform marginals and copula n 2 n f , �%ÄG2 µ¨ ���$& , where µo� j \ ��4#l � j \ ��4#l
is the linear function µ¶ , &d2 ¸¹ º , if , « � u 4 ,� u , otherwise.

The above remark, together with Lemma 9, imply that the copula n of a uniform
portfolio

� p92  �"�A���%Ä�& belongs to ¥m Äf if and only if@%j �"� w �hÄ·2 �SW ��� w �%ÄÃX � l¼2Á4�� (9)

3.3 Multidimensional portfolios

Though the bound (2) holds in arbitrary dimensions, Theorem 7 cannot be extended
to �Ö� : . Proposition 11 below shows in a simple way that, if we choose uniformly
distributed marginals, it is not always possible to choose a copula n so as to obtain¿ �  =� &K2 � pS� y  MD �6�����#��� D �q&  t� &K2 �q_ . Analogously to ¥m Äf in the previous section, we
define ¥m � f 2 T n U m � W � pS� y  MD �����#���#� D �q&  t� &¦2 _KZ .
Proposition 11 Let

� p 2  ���������#�#�����'& be a random vector having marginal dfs
uniformly distributed on

j \ ��4#l and copula n . Take ��� : and � u 4?« � « � . Then¥m � f 2ª©
.

11



Proof Let « � � 2 ( �)+* � � ) and note that, for uniform marginals, we have _ 2� u �gw 4 . If there exists ¬ U T-4���������� � u : Z such that
@%j « � Hz « � u ¬ l¶2Á4 we have@%j « ��X � l[2 \ and the statement trivially holds. Suppose then

@%j « � Hz X � u ¬ l �C\
for all ¬ U T-4������#�#� � u : Z . In this case we have@%j « � X � l¼2C@hj « � X � � « � H �IX � u 4#l w @%j « � X � � « � H �I« � u 4#l2C@hj « � X �SW"« � H �·X � u 4#l4®x@%j « � H �IX � u 4#l=�
since

���
is uniformly distributed on

j \ ��4#l . Proceeding by iteration we obtain@%j « ��X � l[2C@hj « ��X �SW"« � H �·X � u 4#lq���#�1@%j «°¯ X � u �%w�±¼W"« ÄÃX � u �%w :�l®x@%j « ÄüX � u �%w : W �"�·X � u �%w 4#l  M� u � &6�
(10)

Assume now that ¥m � f ´2²©
, i.e. there exists

� p 2  ���������#�#������& with copula n U¥m � f . It immediately follows that
@%j « �oX � l�2^@%jk��� w ®�®�® w ���oX � l�2 � u � and

hence all factors in (10), apart from the last one, must be equal to one. In particular,
this yields @%j �"� w �%ÄÃX � u �%w : W ���·X � u �hw 4�l[254 c¢P´³

(11)@hj «°¯ X � u �%wµ±[W"« ÄÃX � u �hw :xl[254�� (12)

According to (9), (11) implies that
@%j « Ä·2 � u ��w : W"« ÄÃX � u ��w :xl¼2Á4�� which,

together with (12), leads to4!2}@%j «°¯ X � u �ow�±¼W"« ÄgX � u �%w :�l¼2V@%j � ¯ X 4 WR« ÄgX � u �hw :�l2 @%j � ¯ X 4�� « ÄÃX � u �hw :�l &@%j « ÄüX � u �ow :�l �
The latter equation is clearly a contradiction to the fact that

� ¯ is uniformly dis-
tributed on

j \ ��4#l . ¨
Remark 12 The bound given in (2) fails to be sharp when �Ù� :

and nü² 2ër
.

This follows from the fact that
r

is not a copula for �i� :
, i.e. for more than

two random variables it is impossible for each of them to be almost surely a non-
increasing function of each of the remaining ones. In Rüschendorf (1982), the
worst-possible bound is provided for uniform and binomial marginals. Till now,
these are the only known analytical results. In fact, the optimum dependence for
uniform marginals does not solve the general problem, showing that, contrary to
the two-dimensional case, for �û� : the dependence structure maximizing (4) may
depend upon the choice of the marginals. In Embrechts and Puccetti (2004), how-
ever, an improved bound for the VaR is provided. Figure 5 illustrates the optimum
values for uniform portfolios.
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Fig. 5. Range for �8� 	 �{
 	 ÄX
 	 ¯ � Ë�� for a standard uniform portfolio. Together with
the independence and comonotonic scenario, we plot the worst-case value � y�� ËU� which
differs from the lower bound ¶ p ± � y � ËU� given by (2).

4 Evaluating risk through comonotonicity

In the following, we show that the assumption of comonotonicity among the
� )

’s
may lead to a prudent evaluation of the risk associated with the aggregate position�8 � & . To this purpose, we first illustrate that such kind of dependence leads to the
more dangerous scenario with respect to both stop-loss and supermodular order.
Then, introducing a new optimization approach, we show that comonotonicity also
arises as a suitable dependence assumption in a VaR context.

4.1 Stochastic orders and comonotonicity

In this section we provide some motivation for the assumption of comonotonicity
among risks based on stochastic orders. We refer the reader to Rolski et al. (1999,
Def. 3.2.1(b)) and Bäuerle (1997, Def. 2.1) for the definitions of stop-loss and su-
permodular order, respectively. In this framework, we give a relevant application
for actuarial mathematics. The next theorem states that comonotonicity represents
the worst possible dependence scenario with respect to both such orders.

Theorem 13 Let
� p 2  ���������#�#�����'& be a � -dimensional random vector hav-

ing marginal distributions D �6���#���#� D � and copula n . Let �ù�3� � � � be a non-
decreasing supermodular function. Then

(a)
� p ] �F· � õ ,

(b) �! � p & ] �u¸ �! � õ & .
Proof As noted in Müller (1997), part (a) follows from Theorem 5 in Tchen (1980).
Since �8 � p & ] �o¸ �8 � õ & holds if and only if � j µ¶ � p &©l ]¹� j µ¶ � õ &©l holds for
all non-decreasing convex functions µÔ�¨� � � for which expectations exists, to

13



prove part (b) it is sufficient to show that for such a function µ the function µvº·� is
supermodular. This follows from Lemma 2.2(b) in Bäuerle (1997). ¨
Remark 14 Note that Theorem 13 (b) applies to a large class of interesting func-
tionals, including �8 , &Û2 ( �)+* � . )  , ) & , where the . ) ’s are non-decreasing (see
also Müller (1997)) and �! , &³2 .  ( �)+* � , ) & for . non-decreasing and convex; see
Marshall and Olkin (1979, pp. 150–155). We want to point out that Theorem 13 (b)
does not apply to (4) since the indicator function of the set

T �! � & X �'Z is not
supermodular.

Consider again a portfolio of risks
� p 2  �������#���#������& . In insurance mathematics

if �8 � p�& is to be insured with a retention level � , the net premium » j �! � p¨& u � l y is
called the stop-loss premium. A stop-loss premium is determined once the retention� and the multivariate df of

� p
are given. Hence we set¼ p/� �  =D �6��������� D �'&  � & � 2 » j �! � p�& u � l y �½ �  � & � 2 ���/�p £§À   T ¼ pS� �  MD ���#�����#� D ��&  � & Z � (13)

According to Müller and Stoyan (2002, Theorem 1.5.7), part (b) of Theorem 13 is
equivalent to ½ �  � &¦2 ¼[õ � �  MD �����#���#� D �q&  � & (14)

for all non-decreasing supermodular functions � , real retention � and arbitrary
dimension � . Hence ¼ pS� �  =D �6��������� D �'&  � & is maximized over m � when the fixed
marginals of the portfolio have a comonotonic joint distribution, provided that �
is a non-decreasing supermodular function. It is remarkable to note that this so-
lution is not unique pointwise. In Figure 6 (right) we plot the density of a df on� Ä which, though differing from comonotonicity (left), maximizes ¼ pS� y  =ú � ú &  M\ &
over m � . However, z is the only dependence structures that attains (13) for all real
retentions � .

Fig. 6. Densities of two-dimensional distributions obtained by comonotonic dependence
(left) and by maximizing ¾ p/� y �F¿ È ¿ � � ÏÀ� over Á Ä (right).
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Fig. 7. Range for �8� 	 � 
 	 Ä � Ë�� under different dependence scenarios for a standard
uniform portfolio.

4.2 Changing the optimization approach in the VaR problem

An insurance company holding the risky position �! � p & knows, from Theorem 5,
that VaR

f  M�! � p &�& ] ��Å � �  =D ����������� D ��& H �  =_ & , for all n U m � . This inequality
may however fail to yield the most useful information. Therefore, recalling the
definition of the family of copulas reaching the above level _ , i.e. ¥m � f 2 T n Um � W � pS� �  MD �����#���#� D �q&  t� &¦2 _KZ , two quite natural conditions the insurer may ask to
be satisfied are

(a) ¥m � f ´2ª©
, i.e. the above bound is sharp,

(b) ¥m � f does not depend on � , i.e. the worst scenario for the insurance company
does not depend upon the parameter _ chosen for aggregate risk evaluation.

In the previous sections we showed that (a) holds only in the two-dimensional case,
while (b) is violated even when � 2^: . Our aim here is to change the optimization
approach so that the solutions satisfy conditions (a) and (b). In order to do this, we
define the worst-case VaR scenario over a suitable range for the threshold � , rather
than on a single value. Figure 7 explains how that can be done.

In this graph we plot � p�Â�� y  MD ��� D Ä6&  =� & for different values of Ã U  =\ ��4§& in case of
two uniform marginals together with the best-possible lower bound

¿ y  t� & and the
comonotonic curve �[õ � y  =D �6� D Ä�&  t� & . As a consequence of Theorem 7, every copulan|Ä gives a lower bound that meets the curve

¿ y  t� & at the corresponding threshold
and then becomes one. The intuition behind this plot is that the comonotonic cop-
ula, though never meeting the bound

¿ y  t� & , is closer to it than any other copula on
average.

This idea can now be formalized by introducing a loss function Å to measure the
error committed by evaluating the risky position using a fixed copula n U m � rather
than the appropriate worst-possible structure of dependence. We then integrate the
loss function over a suitable set

á
and we search for the infimum over the class

of all � -copulas. For a copula n , let Æ p/� �  t� & � 2 � pS� �  =D �������#�#� D �q&  t� & u ¿ �  t� & . We
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then define Ã � � 2 NQPSRp £§À  |Ç ��È Å j Æ pS� �  t� &�l � ��É (15)

for some non-decreasing weighting function Åþ� j \ �#4#l � � yî . Let Êm �  á & denote
the set of copulas leading to (15). To focus our attention, we choose

á�2;j � �MËC&
and Å 2�Ì�³

, the identity function.

Theorem 15 Let Å 2ÍÌ�³
and

á 2 j � ��ËC& . Then, for every real threshold � and
non-decreasing supermodular function � satisfying » j �8 � õ &©l�«YË

, we have that

z U Êm �  j � ��ËC&�&��
Proof Let Î ¤Ï ¿ �  =� & � � «�Ë

. Note that
¿ �  t� & depends only on the fixed marginals,

so we obtain

Ã � 2 NQP�Rp £§À   Ç � ¤Ï j Æ pS� �  t� &�l � ��É 2 u �$�/�p £�À   Ç � ¤Ï jÕ@%j �8 � p�&GX � l u ¿ �  =� &©l � ��É2�� ¤Ï ¿ �  t� & � � u ���/�p £§À   Ç � ¤Ï @%j �! � p¨&³X � l � �DÉ2 � ¤Ï ¿ �  t� & � � u ���/�p £§À   Ç � ¤Ï @%j �! � p & ��� l � � É �
where the last step is obtained since

@hj �! � p &¬2 � l can be positive at most for
countably many values of � , so that the last two integrals contained in the brackets
are the same. Finally, recalling that Î ¤Ï @%j �8 � p�& �Ù� l � � 2 » j �! � p¨& u � l y � it
follows that

Ã � 2V� ¤Ï ¿ �  =� & � � u �$�/�p £�À   Ç � ¤Ï @%j �8 � p�& �C� l � ��É2V� ¤Ï ¿ �  =� & � � u �$�/�p £�À   T » j �! � p¨& u � l y Z2 � ¤Ï ¿ �  =� & � � u ½ �  � &��
Since » j �! � õ &©l is finite, (14) finally implies that z U Êm �  j � ��ËC&�& . If the integralÎ ¤Ï ¿ �  t� & � � 2ªË

, trivially Êm �  j � ��ËC&�&J2 m � . ¨
Remark 16 It is important to observe that Theorem 15 holds for semi-infinite in-
tervals. In fact, if we fix a trivial interval consisting of a single point, we go back to
the original VaR problem and, in that case, z does not lead to the worst-possible
scenario.

Remark 17 For the above theorem, the only relevant portfolios  � �����#���#������& are
those for which Î ¤Ï ¿ �  =� & � � is finite. In Proposition 21 in the Appendix we show
that this technical condition is satisfied for all marginal distributions of interest.
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The main issue underlying Theorem 15 is that, even if the comonotonic dependence
structure does not lead to the worst-case scenario for the original VaR problem, if
an insurance company wants to bound � pS� �  =D �6�������6� D �q&  t� & for all thresholds inj � ��ËC& in the sense defined by (15), comonotonicity provides a prudent evaluation
for the aggregate risk. We illustrate this concept in the following example.

Example 18 Let D )[Ð Ñ  u± ��4x& for
0�2 4���:

and � �  , �6� , Ä�&92  , � w , Ä u �'& y ,� Ä  , �6� , Ä�&B2  , � u :�& y w5 , Ä u :�& y . By Remark 14 and Proposition 21, � � and� Ä are supermodular and satisfy » j � )  � õ &�lB«ÍË
,
0�2ò4���:

. Figure 8 illustrates
the distribution functions

@%j � )  �������%Ä�&?« � l , 0³2þ4��A:
in the case of independent,

comonotonic and n f -dependent marginals for _ 2 \ � ÿ ± (left), _ 2 \ �Ò� � (right),
together with the worst-case distribution.
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Fig. 8. Range for �8� � 	 � 
 	 Ä4Ó�Ô � y � Ë�� (left) and ��� � 	 �DÓ ��� y 
 � 	 Ä4Ó ��� y � ËM� (right)
for an independent, comonotonic, Æ î � � ¯ - and Æ î � �Õ� -dependent, Ö � Ò È Ì-� -portfolio.

In Table 1, we evaluate Î ¤Ï Æ pS� �  =� & � � for � � and � Ä on some upper-intervals of
interest. Observe that the comonotonic copula always lead to the minimal values of
the above integral, in accordance with Theorem 15.

× ¤Ï]Ø pS� � � ËU��Ù'Ë
Æ �Ö
Y� �tÚ Ù!
ÔÏ Ùí
ÎÑ'Ð+Ì�� ��
Y� Ä`Ú Ùí
ÔÏ Ù!
ÎÑ'ÐkÓ§ÓÛ Ì�Ð'Ü�Ñ Ï�ÐÕ�§� �'Ð+Ì Ô Ï�ÐÕ��ÝÞ �'Ð Ï§Ï Ï�ÐÕÒ§Ñ �'Ð+Ì�Ñ Ï�ÐkÓ�ÜÆ÷î � � ¯ �'Ð Ï�ß Ï�ÐÕÒ�ßÆ÷î � �Õ� �'Ð+Ì�Ñ Ï�ÐkÓÀß

Table 1
Values for

× ¤Ï Ø pS� � � ËU��Ù'Ë for � � �áà � È à Ä �g
 �áà � 
 à Ä|ÓâÔ � y , � Ä �áà � È à Ä �Ã
 �áà �tÓ ��� y 
�áà Ä�Ó ��� y .
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The next theorem yields some insight into a possible extension of Theorem 15 for
general loss functions Å , i.e. every increasing, convex function Å � j \ ��4#l � � yî
satisfying Åí M\ &¦2 \ .
Theorem 19 Consider

� p92  ���6�������6�����q& with marginal distributions D �����#���#� D �
and let � be as in Theorem 15 with Î ¤î ¿ �  t� & � � «ãË

. Then there exists � p Uj � p � � p l such that for all loss functions Å :� ¤Ï Å j Æ pS� �  =� &©l � � X�� ¤Ï Å j Æ õ � �  t� &©l � � (16)

for every � X � p , where

� p � 2����/�¶T � U ��W�Æ pS� �  t� & ]�Æ õ � �  � &��{ä � X �
and Æ õ � �  t� & �YÆ pS� �  =� & on some interval  ��åp � � & Z �� p � 2�NQP�R6T � U ��W�Æ pS� �  t� &GX Æ õ � �  t� &���ä � X � Z �

Proof Theorem 15 yields Î ¤Ï Æ pS� �  t� & � � X Î ¤Ï Æ õ � �  =� & � � for all � U � . The latter
integrals are finite since Î ¤î ¿ �  t� & � � «�Ë

. Denote with æ8 � ��ËC& and
¿

the Borel
sets on  � ��ËC& and the Lebesgue measure, respectively. Applying Chong (1974,
Theorem 1.6, Theorem 2.1 and Corollary 1.2) to Æ pS� � and Æ õ � � , with ú 2 Å and � � Å �1Ø�&¦2  � â � Å â �1Ø â &¦2  � � ��ËC&6� æ8 � ��ËC&�� ¿ & , (16) is equivalent with� ¤Ï j Æ pS� �  t� & u s l y � � X�� ¤Ï j Æ õ � �  t� & u s l y � � (17)

for all s U � . By definition, � p ] � p and Æ pS� � X Æ õ � � on
j � p ��ËC& implying � p ]� p . Assume now

u Ë « � p « � p and let � U  � åp � � p l . Choosing s 2 Æ õ � �  � p & in
(17) we have that

� ¤Ï j Æ pS� �  =� & u s l y � � 2³� Ï çÏ j Æ pS� �  t� & u Æ õ � �  � p &�l y � �Iw � ¤Ï ç j Æ pS� �  =� & u Æ õ � �  � p &�l y � �2 � Ï çÏ j Æ pS� �  t� & u Æ õ � �  � p &�l y � � « � Ï çÏ j Æ õ � �  t� & u Æ õ � �  � p &©l y � �] � ¤Ï j Æ õ � �  =� & u s l y � � �
which concludes the proof. ¨
With respect to a copula n and any loss function Å , comonotonicity is hence a
suitable extreme dependence scenario on

j � p ��ËC& . Note that, for a copula n , the set
in the definition of � p may be empty and hence � p arbitrarily small. On the other
hand, since �8 � p & ] �o¸ �8 � õ & , we have that � p «�Ë

if the two dfs cross finitely
many times. Unfortunately, in general, � p and � p may become arbitrary large. For
instance, if the function � is unbounded, Rüschendorf (1981, Theorem 5) yields
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the existence of a copula ¥n depending on � , � and the marginals D �6���#����� D � such
that ¿ �  =� &¦2 � ¥p � �  MD �����#���#� D �q&  t� & ] �võ � �  MD �����#���#� D �q&  t� &6�
where, in general, ¥n ´2 z implying

���/� p £§À   � p 2èË
. Analogously there exist

dependence structures leading to
���/� p £�À   � p 2éË

. We therefore conclude that
an extension of Theorem 15 to general loss functionals can only exist for suitable
subclasses of m � .

5 The Presence of Information

From a mathematical point of view, the no-information assumption seems to be
unsatisfactory, since, for �^� :

,
r

is not a copula and the bound (2) fails to be
sharp. However, we want to warn the reader from choosing too lightly some a pri-
ori assumption such as n X � ; such a choice may lead to a critical undervaluation
of the portfolio risk. The assumption n X � , for instance, corresponds to so-called
positive lower orthant dependent risks, see Nelsen (1999, Def. 5.6.1.). Unfortu-
nately, restricting the optimization to the class

T n X �BZ substantially changes the
initial problem, since it does not allow to focus on riskier portfolios, as long as¿ y � ¿ëê � y . This is a consequence of the fact that the componentwise ordering in
the class m � is not complete and, putting a lower bound on a copula, excludes all
copulas not comparable to such bound. To highlight this point, observe that every
copula in ¥m � is shuffled with countermonotonicity and hence it is not comparable
with the independence scenario.

6 Conclusions

In this paper we focus on the copulas leading to the worst-possible VaR for a func-
tion of dependent risks and we emphasize that comonotonicity does not lie in this
family. Such worst-case scenarios depend upon the level _ where the VaR is evalu-
ated and therefore may not be reasonable from a practical point of view. Moreover,
these solutions are known only for two-dimensional portfolios or in the presence
of partial information. The investigation of optimal bounds in arbitrary dimensions
with no prior information remains open. Therefore, we provide an alternative ap-
proach supporting the assumption of comonotonicity in a prudent evaluation of the
quantiles of the aggregate position.
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Appendix The operator � p/� �
In this section, we extend a claim of Denuit et al. (1999, p. 37) by showing that the
operator

� p/� �  =D ����������� D ��&  =� &¦2 �$�/�� � �k�k�k� � �  6¡¢� £6¤nh =D �  , ��&6�#�����6� D � H �  , � H ��&6� D H�  ��¦¥��¡§   t� &$&�&6�
with � ¥� ¡�   =� &³2Á���S�¨T , � U ��W©�! , H �ª� , ��&!« �'Z , for fixed , H � U � � H � , is actually
the left-continuous version of a df.

Proposition 20 For �Á�¼� �"� � non-decreasing, there exists a random variable° such that � pS� �  MD ���#�����#� D ��&  t� &¦2V@%j ° « � l .
Proof Since � is non-decreasing in each component, � pS� �  t� & � 2 � pS� �  =D �6�#�����6� D ��&  =� &
is a non-decreasing function. Hence, we have to show that it is also left-continuous
and that its right and left limits converge to one and zero, respectively. To prove
that ì N | �uí ¤ � pS� �  =� &�2;4

, we fix îû�ù\ and define sKï 2  Ms4ï � �����#�#� s4ï� & as a vector
satisfying

D )  Ms ï) &·X 4 u î� � 0 254'��������� � �
The existence of such a vector is straightforward, since D �6�����#�#� D � are non-defective
dfs. By definition, the function � ¥ì-ð ¡§  is non-decreasing and its right limit is either
finite or infinite. Suppose it is finite. For every real � , it follows that�$�/�¨T , � U ��W©�! Ms ï H � � , ��&·« �'Z�]èì NQ|�uí ¤ �J¥ì ð ¡�   =� &¦2 � éÁ«YËV�
which implies �! Ms ï H � � , ��&GX � for all , ��X�é .

Therefore �8 �s ï H � �Aé?&Y2 Ë
, which contradicts � having � as its range. Henceé 2�Ë

and it is always possible to select a real � ï , depending only on î , such that� ¥ì-ð ¡§   t� ï & ��s4ï� implying D �  M� ¥ì-ð ¡�   =� ï &$&³X D �  �s4ï� &·X 4 u ï� .

For � pS� �  =� ï & we also obtain that

� pS� �  t� ï &¦2 ���S�� � �k�k�k� � �  6¡'� £�¤ nh =D �  , ��&���������� D � H �  , � H �$&6� D H�  �� ¥� ¡�   =� ï &$&�&X no MD �  �s ï � &6���#���#� D � H �  �s ï� H � &�� D H�  M� ¥ì ð ¡�   t� ï &$&�&X}r  =D �  Ms ï � &6�#�����6� D � H �  Ms ï� H � &6� D H�  ��¦¥ì-ð ¡§   t� ï &�&�&X  4 u î� & � u �%w 4!2Á4 u î �
and, since � pS� � is non-decreasing, � pS� �  =� &%X � pS� �  =� ï &�XO4 u î for every � X � ï .
Hence the right limit converges to one. Similarly, for the left limit, we fix î � \ and
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choose s ï satisfying D )  Ms ï) &³« î ,
0J2{4��#�����6� � for which ñC� 2 ì N | �uí H ¤ � ¥ì-ð ¡§   t� &I2u Ë

. It is always possible to select a real � ï , depending only on î , such that � ¥ì ð ¡�   =� ï &G«s ï� and D H�  �� ¥ì-ð ¡§   t� ï &�&G« D �  �s ï� &G« î .

Let now Ú ì ð � 2 T , H � U � � H � W , )�ò ] s4ï) ò for some
0 â U T-4���������� � u 4 ZqZ andÚ ì ð � 2ÁT , H � U � � H � W , ) ��s4ï) for all

0 254������#��� � u 4 Z . Then�$�/�� ¡�  £UóDô ð nh =D �  , ��&���������� D � H �  , � H �$&6� D H�  ��¦¥��¡§   =� ï &�&$&] ���S�� ¡§  £�ó ô ð z{ =D �  , ��&6���#����� D � H �  , � H ��&�� D H�  M�J¥� ¡§   t� ï &�&�&]�D ) ò  Ms ï) ò &G« î � (18)

If ,óU Ú ì ð , then � ¥��¡§   t� ï & ]C� ¥ì-ð ¡§   t� ï & and hence���/�� ¡�  £ óDô ð no MD �  , �&6�����#�#� D � H �  , � H ��&6� D H�  M�J¥� ¡�   =� ï &$&�&] �$�/�� ¡§  £ óDô ð no MD �  , ��&6���#���#� D � H �  , � H �$&�� D H�  M� ¥ì,ð ¡�   =� ï &$&�&]ÙD H�  M�J¥ì,ð ¡�   t� ï &$&G« î � (19)

From (18) and (19) we have that � p/� �  t� ï &�« î . Since � pS� � is non-decreasing,� pS� �  t� &·« � p/� �  t� ï &G« î for all � « � ï and the left limit goes to zero.

It remains to show that � p/� � is left-continuous. For non-decreasing functions ôÁ�� � � left-continuity is equivalent to lower-semicontinuity. By Rudin (1974,
p. 39), the supremum of any collection of lower-semicontinuous function is lower-
semicontinuous. It is therefore sufficient to show that

no MD �  , ��&6���#���#� D � H �  , � H �$&�� D H�  M�J¥� ¡§   t� &�&$&
is left-continuous in � for every , H � U � � H � . By uniform continuity of n , left-
continuity and non-decreasingness of D H� , and non-decreasingness of � ¥� ¡�   =� & , the
problem is reduced to showing that � ¥��¡�   =� & is left-continuous. By definition, � ¥��¡§   t� &
is non-decreasing and hence, for every real � , there exists õ$ =� & � 2 ì NQ| � íg� H � ¥��¡�   , & .
Assume now that � ¥��¡�   t� & is not left-continuous. Then there exists � � with õ t� ��&Ã«� ¥� ¡�   =� �& . Let õ =� �$& be finite (otherwise there is nothing to prove). Then, for arbi-
trary positive î , we have���S�¨T , � U ��W©�! , H �ª� , ��&³« � � u î-Z�]öõ$ =� �$&G«YË
and hence, whenever , ��X õ t� ��& , it follows that �8 , H �S� , �q& X � � u î . Since î is
arbitrary, it follows that �8 , H �S� õ t� �$&$&·X � � , contradicting the fact that

�! , H ��� , �-&·« � for every , ��« �J¥� ¡§   t� ��&6�
which concludes the proof. ¨
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In the following proposition, we show that, under suitable assumptions, the rv °
has finite expectation.

Proposition 21 Let
� p

have increasing, continuous marginals D �6��������� D � , � �� � � � be non-decreasing continuous and increasing in the last argument. Then,
for ° as in Proposition 20, � j ° l ]¹÷,øx���#ß÷w�Î ¤Ï ¿ �  t� & � � «bË

for all � U � if
and only if » j �8 � õ &�lä«�Ë

.

Proof A random variable ` with df D has finite expectation if and only if Î îH ¤ Dh , & � , «Ë
and Î ¤î D% , & � , «�Ë

, which is equivalent to » j ` u � l y «YË
for all � U � . We

therefore have to show that for all � U �� ¤Ï ¿ �  t� & � � «�Ë
if and only if » j �8 � õ & u � l y «YËV�

(20)

By the definition of
¿ �  t� & , we have that for � U � ,

» j �8 � õ & u � l y 2 � ¤Ï ù j �! � õ &³X � l � �B] � ¤Ï ¿ �  =� & � �
and hence ”only if” immediately follows.

Assume now that the rhs of (20) holds and let × be uniformly distributed on
j \ ��4�l .

By Dhaene et al. (2002, Theorem 2) we have that» jûú  �× & u � l y 2 » j �! � õ & u � l y «YËV�
where

ú � j \ ��4#l � � ,
ú  Ms & � 2 �! =D H ��  Ms &6���#���#� D�H ��  �s &�& . Under the assumptions of

the theorem,
ú

is continuous and
ú  ú H �  t� &�&¦2 � . We can write¿ �  t� & ] 4 u �#Å � �  =D �A��������� D ��&  =� &2Á4 u ���/���¡§ §£6¤  6¡¢� T  =D �  , ��& w ®�®�® wÛD � H �  , � H �$& wÛD H�  ��¦¥��¡§   t� &$& u �hw 4x& y Z] NQPSR� ¡§  £6¤  6¡'� T D �  , ��& w ®�®�® w D � H �  , � H ��& w @%j �%��X � ¥� ¡§   t� &�l Z � (21)

Choosing , H ��2  =D H ��  ú H �  t� &$&6�����#�#� D H �� H �  ú H �  =� &$&�& in (21) and since � is increas-
ing in the last argument, � ¥� ¡�   =� &¦2 D H ��  ú H �  t� &�& . Integrating, we finally obtain:

� ¤Ï ¿ �  t� & � �?] � ¤Ï �ü )+* � @hj � ) X D H �)  ú H �  =� &�&©l � �2 �ü ) * � � ¤Ï @%j D H �)  �× &GX D H �)  ú H �  t� &�&�l � �2 �ü ) * � � ¤Ï @%j × Xöú H �  t� &�l � ��]
�ü)+* � � ¤Ï @%j'ú  �× &·X�ú  ú H �  =� &�&©l � �2 � � ¤Ï @%jûú  �× &GX � l � � 2 �ý» jûú  � õ & u � l y «�ËV�
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