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dependence, risk management, Value-at-Risk

1 Introduction

Due to its simplicity, but also because of regulatory reasons, Value-at Risk (VaR)
remains one of the most popular risk measures. This despite some fundamental
criticism (see for instance Artzner et al. (1999)). The aim of this paper is to give
more insight into the problem of managing the VaR of a joint position resulting
from the combination of different dependent risks.

Suppose for example that we have a VaR-based risk management system both
for market and credit risk denoted respectively by X1 and X2. The quantity
VaRα(Xi), i = 1, 2 denotes the Value-at-Risk at 100α% for a 1-day holding
period Xi, i.e. the α-quantile of the daily profit-and-loss distribution function
Fi of the position Xi, the latter calculated (estimated) through bank-internal
models. At the integrated level the bank has to measure the risk (compute the
VaR) of the joint position X1 +X2. Since VaRα(X1 +X2) is just the α-quantile
of FX1+X2 , it is clear that the knowledge of the joint distribution of X1 and X2

reduces the problem of determining VaRα(X1 +X2) to a computational issue.
Unfortunately, in many situations only partial or no information at all about the
dependence between the two risks is available, i.e. the joint distribution ofX1 and
X2 is unknown. In practice, most often the sum VaRα(X1)+VaRα(X2) is taken
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as a measure of risk in the worst case, i.e. as an upper bound for VaRα(X1+X2).
However, Fallacy 3 in Embrechts et al. (2002) states that “The worst case VaR
for a portfolio X1 +X2 occurs when the linear correlation function ρ(X1, X2) is
maximal”. This statement, though perhaps intuitively clear is in fact wrong. It
can be shown that ρ(X1, X2) maximal occurs for so called comonotonic risks; see
Section 2.3 below. Moreover, we will see in Proposition 3.1 that for comonotonic
random variables VaRα(X1 +X2) = VaRα(X1) + VaRα(X2). However, it may
be that VaRα(X1 +X2) > VaRα(X1) + VaRα(X2).

The question at hand, and the one lying at the heart of the work on coher-
ent risk measurement in Artzner et al. (1999), concerns the fact that typically
for non-elliptical portfolios, VaR will not be subadditive. Of course dependence
will play a fundamental role in determining (or bounding) the value of the so
called measure of diversification ∆(VaRα) := VaRα(X1 + X2) − (VaRα(X1) +
VaRα(X2)) as discussed in Embrechts et al. (2002). The latter paper has clearly
shown that linear correlation is insufficient as a measure of dependence for study-
ing ∆(VaRα) across a wide range of potential portfolio structures for (X1, X2).

More generally, the problem becomes the following: how can we bound VaR,
or indeed any reasonable measure of risk, on the global position ψ(X1, . . . , Xn),
where ψ : Rn → R is some function of interest, if we only know the marginal
profit-and-loss distributions F1, . . . , Fn of the n one-period risks X1, . . . , Xn.
One may think of the Xi’s as different types of financial or insurance risk. In
the above case we took n = 2 and ψ(x1, x2) = x1 + x2. The key point being
that we may not have any dependence information on the Xi’s. Further, how
do these bounds change when specific dependence information is assumed.

2 Definitions and preliminaries

Generalized inverses of increasing functions and copulae constitute the tech-
nical instruments underlying the solution to the Value-at-Risk problem in the
introduction. Most of the results presented exist in some form or other in the
literature, though many may be hard to find for the non-specialist. Specific
references will be given where relevant.

In the rest of the paper, we will often consider the componentwise order on
R
n defined for x, y ∈ Rn as x ≤ y if xi ≤ yi for all i = 1, . . . , n. Further, a

real-valued function defined on Rn is said to be increasing if it is so with respect
to the componentwise order.

2.1 Generalized inverses and Value-at-Risk

Generalized inverses of distribution functions are essential for a precise formu-
lation of the above described Value-at-Risk problem. They will also play an
important role in the proofs of the results of the next section.

Let R := R ∪ {±∞} denote the extended real line. In the following we will
make use of the convention inf ∅ = sup ∅ = −∞.

2



Definition 2.1. Let ϕ : R → R be an increasing function. Its generalized left
and right continuous inverses are the functions ϕ−1 : R → R and ϕ∧ : R → R

defined by

ϕ−1(y) := inf{x ∈ R |ϕ(x) ≥ y} and ϕ∧(y) := sup{x ∈ R |ϕ(x) ≤ y}.

These generalized inverses possess the following properties; see Embrechts et
al. (1997), p.130 and Appendix A1.6 for further details and references.

Lemma 2.1.

(i) ϕ−1 and ϕ∧ are increasing functions,

(ii) ϕ−1 and ϕ∧ are left, respectively right continuous on R,

(iii) If ϕ is right continuous and ϕ−1(y) > −∞, then ϕ(x) ≥ y ⇔ x ≥ ϕ−1(y),

(iv) If ϕ is left continuous and ϕ∧(y) > −∞, then ϕ(x) ≤ y ⇔ x ≤ ϕ∧(y).

Definition 2.2. For 0 ≤ α ≤ 1 the Value-at-Risk at probability level α of a
random variable X is its α-quantile, i.e. VaRα(X) := F−1

X (α).

For risk management applications, FX could stand for a 1- or 10-day mar-
ket profit-and-loss distribution for which, for a given level α, F−1

X (α) would
correspond to the market VaR at the level α. We will assume that losses are
represented in the right tail of FX and hence typical values for α in this (market
risk) case are 0.95 or 0.99. Similar interpretations can be given for credit risk
(leading to Credit-VaR) and operational risk (OpRisk-VaR). In the latter case
one typically looks at yearly aggregate loss data with α = 0.9995, say.

2.2 Dependence structures and copulae

Very often independence assumptions in stochastic models are more due to their
tractability rather than to the nature of the phenomenon being modelled.

For the static one-period situation given by real-valued random variables
X1, . . . , Xn, the dependence between X1, . . . , Xn is completely determined by
their joint distribution function F (x1, · · · , xn) = P [X1 ≤ x1, · · · , Xn ≤ xn].
The idea of separating F into two parts, one describing the dependence struc-
ture and another part describing the marginal behaviour only, leads to the by
now well known concept of a copula. Excellent introductions to copulae and
related concepts are given in Nelsen (1999) and Joe (1997), where most of the
material of this section can be found. Risk management applications of copulae
are considered in Embrechts et al. and (2001,2002); the latter papers contain
numerous references to the existing work on copulae.

Definition 2.3. An n-dimensional copula is an n-dimensional distribution func-
tion restricted to [0, 1]n with uniform-(0, 1) marginals.

For a given copula C and marginals F1, . . . , Fn one has that

F (x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)) (2.1)
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is a distribution function with these marginals. Conversely, for a given joint dis-
tribution function F with marginals F1, . . . , Fn there is always a copula C satis-
fying (2.1). This copula is not necessarily unique, but it is if F1, . . . , Fn are con-
tinuous and in this case we have that C(u1, . . . , un) = F (F−1

1 (u1), . . . , F−1
n (un)).

These results are known as Sklar’s Theorem and are a motivation for calling a
copula a dependence structure. In fact, equation (2.1) means that the copula
C separates the marginal behaviour given by F1, . . . , Fn from the dependence
contained in the joint distribution function F .

The so called survival copula and the dual of a copula defined below will play
an important role for the results of Sections 3 and 4.

Definition 2.4. Let (U1, . . . , Un) be an n-dimensional random vector with stan-
dard uniform marginals and C be its distribution function. The dual of C is
defined by

Cd(u1, . . . , un) := P [∪ni=1{Ui ≤ ui}]

and the survival copula Ĉ of C is the distribution function of (1−U1, . . . , 1−Un).
Observe that for random variablesX1, . . . , Xn with joint distribution function

F , marginals F1, . . . , Fn and copula C

Cd(F1(x1), . . . , Fn(xn)) = P [∪ni=1{Xi ≤ xi}] , (2.2)

Ĉ(F 1(x1), . . . , Fn(xn)) = F (x1, . . . , xn), (2.3)

where F i(xi) := 1−Fi(xi) and F (x1, . . . , xn) := P [X1 > x1, . . . , Xn > xn]. Note
that Cd(F1(x1), . . . , Fn(xn)) is increasing in each of the arguments x1, . . . , xn
and that (2.3) is the analogue of Sklar’s Theorem for survival distribution func-
tions. Finally, observe that contrary to Ĉ the dual Cd is not a copula and
that

Cd(u1, . . . , un) = 1 − Ĉ(1 − u1, . . . , 1 − un). (2.4)

The natural question relative to dependence structures concerns their com-
parison, i.e. we have to specify which copula leads to a strong or to a weak kind
of dependence. The most natural approach is to compare copulae pointwise as
functions and to define the riskiness of a dependence structure through this com-
parison. At this extent, we want to recall that any copula C lies between the
so called lower and upper Fréchet bounds CL(u1, . . . , un) := (

∑n
i=1 ui − n+ 1)+

and CU(u1, . . . , un) := min1≤i≤n ui, namely

CL ≤ C ≤ CU. (2.5)

Observe that, contrary to CU, the lower Fréchet bound CL is not a distribution
function for n ≥ 3.

2.3 Comonotonicity and orthant dependence

The issue of comparing copulae described above is part of the more general
framework of comparing probability measures onRn making use of partial orders
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(see Müller (1996,1997a,1997b) and Bäuerle and Müller (1998) among others).
For a considered partial order and two ordered distributions, the dependence
between the marginals of the larger one are said to be more (or less) risky than
the one between the marginals of the smaller one.

The upper Fréchet bound CU corresponds to the riskiest possible dependence
with respect to many partial orders for distributions as e.g. the lower orthant
and the supermodular order ; see Bäuerle and Müller (1998) for definitions of
the latter. Random variables X1, . . . , Xn with a CU-dependence structure are
called comonotonic. An equivalent formulation of comonotonicity allows for a
representation

(X1, . . . , Xn) = (f1(Z), . . . , fn(Z)) in law, (2.6)

where f1, . . . , fn : R → R are increasing and Z is some random variable. We
see from (2.6) that comonotonic random variables are increasing functions of
a common random variable and therefore strongly dependent. It is precisely
this representation which motivates the use of the concept of comonotonicity in
financial applications. The random variable Z can be seen as a common (or even
causal) underlying factor. Usually, one makes use of the representation

(X1, . . . , Xn) = (F−1
1 (U), . . . , F−1

n (U)) in law, (2.7)

where the Fi’s are the distribution of the Xi’s and U is any standard uniformly
distributed variable.

Besides this extreme situation, there are other interesting ones. For example,
random variables X1, . . . , Xn having a copula C satisfying C ≥ CI, where

CI(u1, . . . , un) :=
n∏
i=1

ui (2.8)

is the copula corresponding to independent copies of the Xi’s, are called positive
lower orthant dependent, PLOD for short. A brief discussion on the orthant
order, its interpretation and its connections with other related concepts is given
below.

Definition 2.5. Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) have pairwise
equal marginal distributions and FX(x1, . . . , xn) := P [X1 > x1, . . . , Xn > xn],
FY (x1, . . . , xn) := P [Y1 > x1, . . . , Yn > xn],. The random vector X is said to
be smaller than Y in the upper orthant order, written X ≤uo Y , if FX ≤ FY .
Similarly, X is said to be smaller than Y in the lower orthant order, written
X ≤lo Y , if FX ≤ FY .

Denoting by X̃1, . . . , X̃n independent copies of X1, . . . , Xn we see that X̃ ≤lo

X is equivalent to saying thatX1, . . . , Xn are PLOD. Similarly, in the case X̃ ≤uo

X the variables X1, . . . , Xn are said to be positive upper orthant dependent,
PUOD for short. In the case where we have both PLOD and PUOD, then one
simply speaks about positive orthant dependent (POD) risks. Intuitively, PLOD
(PUOD) means that the risks X1, . . . , Xn are more likely to take simultaneously
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small (large) values compared to independent copies of them. The important
fact about PLOD, PUOD and ≤lo, ≤uo is that they are implied by other stronger
dependence concepts and relations such as association, conditional increasing in
sequence (CIS) and supermodular order (see Joe (1997), Theorem 2.4 and Müller
and Scarsini (2000)). These orders are also consistent with the intuition behind
usual linear correlation. In fact (see Dhaene and Goovaerts (1996)) it can be
shown that X ≤uo Y or X ≤lo Y implies for any f, g increasing and all i 6= j
that

Cor(f(Xi), g(Xj)) ≤ Cor(f(Yi), g(Yj)). (2.9)

In particular, forX1, . . . , Xn PLOD or PUOD the correlation between increasing
transformed Xi, Xj is non-negative, whence the name “positive dependence”.
Finally, when n = 2, the orders ≤lo and ≤uo coincide and one usually speaks
about positive quadrant dependent (PQD) risks instead of PLOD, PUOD or POD
risks.

Many copulae are governed by parameters controlling the amount of de-
pendence between the components. Examples are the Clayton and the Gumbel
copulae

CCl,α(u1, . . . , un) :=

(
n∑
i=1

u−αi − n+ 1

)−1/α

, (2.10)

CGu,β(u1, . . . , un) := exp


−

(
n∑
i=1

(− log ui)1/β
)β , (2.11)

where 0 < α <∞ and 0 < β ≤ 1. It can be shown (see Nelsen (1999), Corollary
4.4.5) that CCl,α and CGu,β increase with respect to ≤lo as the parameters α
and β increase. Moreover, for α and β at the boundary of the respective parame-
ter intervals one gets (as a limit) independence and comonotonicity respectively.
For n = 2, the copula CGu,β is consistent with bivariate extreme value theory
and could be used to model the limiting dependence structure of component-
wise maxima of bivariate random samples (Galambos (1987), Genest and Rivest
(1989) and Joe (1997)). A motivation for the use of CCl,α when dealing with
conditional bivariate extremes is given in Juri and Wüthrich (2002).

3 Distributional Bounds

For given risks X1, . . . , Xn and a function ψ : Rn → R one often is interested
in computing certain quantities of ψ(X1, . . . , Xn) like some moments or a quan-
tile. For our discussion below, we shall concentrate on estimating quantiles of
ψ(X1, . . . , Xn) and always refer to this as estimating a VaR. Typical examples
of ψ include:

- ψ(x1, . . . , xn) = x1 + · · · + xn, hence in the quantile case one would be
interested in the Value-at-Risk of the joint position X1 + · · · +Xn.
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- ψ(x1, . . . , xn) =
∑n

i=1(xi − k)+, k ≥ 0. This corresponds to the func-
tional underlying an excess-of-loss treaty in reinsurance. The Xi’s could
be individual claims or insurance losses due to different lines of business.

- ψ(x1, . . . , xn) = (
∑n

i=1 xi − k)+, k ≥ 0, with an obvious interpretation to
financial derivatives (e.g. Asian options) or stop-loss reinsurance.

- The worlds of exotic options, basket derivatives, credit derivatives and
operational risk insurance covers yield numerous further interesting exam-
ples.

As already mentioned in the introduction, determining VaRα(ψ(X1, . . . , Xn))
reduces to a computational issue once the copula relative to X1, . . . , Xn is spec-
ified. Since this is usually not the case, it would be useful to find bounds be-
tween which VaR must lie or equivalently bounds for the distribution function of
ψ(X1, . . . , Xn) as VaRα(ψ(X1, . . . , Xn)) is just its α-quantile. Such bounds and
the proof of their sharpness have been found first by Makarov (1981) in terms
of generalized inverses in the case n = 2 and ψ(x1, x2) = x1 + x2. Frank et
al. (1987) proved the same results using copulae, i.e introducing (without men-
tioning them explicitly) dependence structures. They also extended Makarov’s
results (except for the optimality of the bounds) to include arbitrary increasing
continuous functions ψ. Williamson and Downs (1990) proved the pointwise
best-possible nature of the bounds in the two-dimensional case and also devel-
oped an algorithm for computing these bounds numerically. Finally, Denuit et
al. (1999) and Cossette et al. (2000) extended some of the existing theoretical
results to n ≥ 3. In the next section we further generalize these results by re-
laxing some of the continuity assumptions relative to ψ. Simpler and modified
proofs of Theorems 3.1 and 3.2 of the next section are given in the Appendix.

3.1 Main results

For ψ : Rn → R and 1 ≤ i1 < · · · < ik ≤ n denote by ψxi1 ,...,xik
the function ψ

with the i1−th, . . . , ik−th variables held fixed and taking the values xi1 , . . . , xik .
Further, for a copula C, marginals F1, . . . , Fn and an increasing function ψ :
R
n → R, define

τC,ψ(F1, . . . , Fn)(s) := sup
x1,...,xn−1∈R

C(F1(x1), . . . , Fn−1(xn−1), Fn(ψ∧
x1,...,xn−1

(s))),

σC,ψ(F1, . . . , Fn)(s) :=
∫
{ψ≤s}

dC(F1(x1), . . . , Fn(xn)),

ρC,ψ(F1, . . . , Fn)(s) := inf
x1,...,xn−1∈R

Cd(F1(x1), . . . , Fn−1(xn−1), Fn(ψ∧
x1,...,xn−1

(s))).

Observe that, if (X1, . . . , Xn) has copula C and marginals F1, . . . , Fn, then
σC,ψ(F1, . . . , Fn) = Fψ(X1,...,Xn). Further, it is easily seen that τC,ψ(F1, . . . , Fn)
and ρC,ψ(F1, . . . , Fn) are themselves distribution functions. Thus τC,ψ, σC,ψ and
ρC,ψ can be viewed as operations mapping ∆n to ∆, where ∆ is the set of
one-dimensional distribution functions.
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Theorem 3.1. Let (X1, . . . , Xn) have marginal distribution functions F1, . . . , Fn
and let ψ : Rn → R be increasing and left continuous in the last argument. If a
copula C for (X1, . . . , Xn) satisfies C ≥ C0 and Cd ≤ Cd1 for some given copulae
C0 and C1, then

τC0,ψ(F1, . . . , Fn) ≤ σC,ψ(F1, . . . , Fn) ≤ ρC1,ψ(F1, . . . , Fn).

Translated in the language of Value-at-Risk, the statement of Theorem 3.1
becomes

ρC1,ψ(F1, . . . , Fn)−1(α) ≤ VaRα(ψ(X1, . . . , Xn)) ≤ τC0,ψ(F1, . . . , Fn)−1(α).

The next result states that the bounds in Theorem 3.1 are pointwise best-
possible. More precisely, there are dependence structures for (X1, . . . , Xn) such
that the distribution function of ψ(X1, . . . , Xn) attains the bounds at least at
one point.

Theorem 3.2. Let the hypotheses of Theorem 3.1 be satisfied and for fixed s ∈ R
consider α := τC0,ψ(F1, . . . , Fn)(s) ≤ ρC1,ψ(F1, . . . , Fn)(s) =: β. Then there are
copulae Cα and Cβ such that

σCα,ψ(F1, . . . , Fn)(s) = α and σCβ ,ψ(F1, . . . , Fn)(s) = β.

Some remarks relative to the nature of the bounds of Theorems 3.1 and 3.2
and a detailed discussion of the assumptions C ≥ C0 and Cd ≤ Cd1 are given
below.

3.2 Nature of the bounds

As stated above, the bounds τC0,ψ(F1, . . . , Fn) and ρC1,ψ(F1, . . . , Fn) are them-
selves distribution functions. Nevertheless, it is not true in general that they
are distribution functions of some random variable ψ(Y1, . . . , Yn) such that Yi is
distributed as Fi, i.e. there is not necessarily a portfolio ψ(Y1, . . . , Yn) such that
τC0,ψ(F1, . . . , Fn) = Fψ(Y1,...,Yn) or ρC1,ψ(F1, . . . , Fn) = Fψ(Y1,...,Yn). In fact, al-
ready in the two-dimensional case, we have from Theorem 1 in Schweizer and
Sklar (1974) (see also Frank et al. (1987) p. 208 and Denuit et al. (1999) p. 87)
that for ψ(x1, x2) = x1 + x2 and C0, C1 6= CU there is no Borel-measurable
function f such that τC0,ψ(F1, F2) = Ff(X1,X2) or ρC1,ψ(F1, F2) = Ff(X1,X2). In
other words, the operations τC0,ψ and ρC0,ψ cannot be derived form any binary
operation on the random variables X1, X2.

3.3 The conditions C ≥ C0 and Cd ≤ Cd
1

We have already emphasized that in general the copula C of (X1, . . . , Xn) is
unknown. It could even be that C is non-unique. For an application of The-
orems 3.1 and 3.2 the problem therefore reduces to verifying the assumptions
C ≥ C0 and Cd ≤ Cd1 . In practice these inequalities need not to be checked
since C0 and C1 are chosen (engineered) depending on the situation consid-
ered and C ≥ C0, C

d ≤ Cd1 are assumed to hold for these choices. Indeed,
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C ≥ C0 and Cd ≤ Cd1 represent the partial information available about the de-
pendence between X1, . . . , Xn or equivalently they define different dependence
scenarios. For simplicity, consider first the two-dimensional case, where C ≥ C0

is equivalent with Cd ≤ Cd0 , i.e. where we can take C1 = C0. Since CL is the
lower Fréchet bound, we have that any copula C satisfies C ≥ C0 = CL and
Cd(u1, u2) ≤ Cd1 (u1, u2) = CdL(u1, u2) = (u1 + u2) ∧ 1. The interpretation be-
hind the bounds obtained with C0 = C1 = CL is that no information about
the dependence between X1, X2 is available or alternatively that no dependence
restrictions are made.

Although for n ≥ 3 the lower Fréchet bound CL is not a copula, we have
that Theorem 3.1 holds true even for C0 and Cd1 replaced by CL and 1∧∑n

i=1 ui
respectively. In fact, for the proof of Theorem 3.1 (see Appendix) only the
property that C0 and Cd1 are increasing in each argument is used. Moreover,
any copula C satisfies Cd(u1, . . . , un) ≤ 1 ∧∑n

i=1 ui. The interpretation of the
corresponding bounds is the same as above.

Alternatively, the choice C0 = C1 = CI means that the risks are POD. In
view of Section 2.3, this kind of partial information is a reasonable assumption
for many scenarios where positive dependence has to be modelled.

In general, C ≥ C0 can be rewritten as C ≥lo C0. Because of (2.4), we get
that Cd ≤ Cd1 is equivalent to Ĉ ≥ Ĉ1, i.e. to Ĉ ≥lo Ĉ1. Because of (2.9),
these conditions have natural interpretation in terms of correlations. However,
a choice like for instance C0 = CCl,α (or Ĉ1 = CGu,β) is typically justified if we
are in the presence of conditional bivariate extremes (componentwise maxima)
as mentioned in Section 2.3.

From the definitions of τC0,ψ and ρC1,ψ it is clear that the bounds obtained
when sharpening the conditions C ≥ C0 and Cd ≤ Cd1 (or Ĉ ≥ Ĉ1) become
tighter. This corresponds to the intuitive fact that the more information relative
to the dependence structure of X1, . . . , Xn is available the smaller becomes the
range in which VaR can lie.

3.4 Extensions

In contrast to the existing literature on results like Theorems 3.1 and 3.2, we
only require that ψ is increasing in each argument and left continuous in the last
one. This allows for a more flexible application of the results in practice since
especially in the financial derivatives world, discontinuous functions abound.

Theorems 3.1 and 3.2 can be modified for functions ψ which are increasing
in some of their arguments and decreasing in the others. Further, although in
the whole paper the main emphasis is put on Value-at-Risk, the above theorems
can easily be adapted for risk measures different from VaR.

3.5 Some special cases: comonotonicity and independence

Comonotonicity and independence are particularly interesting cases. One reason
for this is that in both cases VaR can be computed exactly and fairly easily.
Further, comonotonicity represents an extreme dependence situation, whereas
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independence often leads to a boundary case against which several dependence
scenarios can be calibrated. In other words, formulae (3.1) and (3.3) below will
be used in the example of Section 5 as a term of comparison for the bounds
obtained.

Though a special case of the next result is well known and indeed easy to
prove, we thought it important to state it in full detail. For risk management
applications, it tells us when VaR calculations can be transported painlessly
through functions of different risk types.

Proposition 3.1. Let ψ : Rn → R be increasing and left continuous in each
argument, 0 ≤ α ≤ 1 and X1, . . . , Xn be comonotonic. Then

VaRα(ψ(X1, . . . , Xn)) = ψ(VaRα(X1), . . . ,VaRα(Xn)), (3.1)

provided that the above expressions are defined.

Proof. Let Z be a real valued random variable with range Im(Z) and suppose
that ϕ : Im(Z) ⊂ R → R is increasing and left continuous. Suppose that
VaRα(Z) is finite for a given α ∈ [0, 1]. Using Lemma 2.1 we have that the
distribution function of ϕ(Z) is given by Fϕ(Z)(t) = P [ϕ(Z) ≤ t] = P [Z ≤
ϕ∧(t)] = FZ(ϕ∧(t)). Hence, again because of Lemma 2.1, we obtain

VaRα(ϕ(Z)) = inf{t ∈ R |Fϕ(Z)(t) ≥ α} = inf{t ∈ R |FZ(ϕ∧(t)) ≥ α}
= inf{t ∈ R |ϕ∧(t) ≥ F−1

Z (α)}
= inf{t ∈ R | t ≥ ϕ(F−1

Z (α))} = ϕ(F−1
Z (α)) = ϕ(VaRα(Z)).

(3.2)

Denote by F1, . . . , Fn the distribution functions of the comonotonic random vari-
ables X1, . . . , Xn and consider the increasing left continuous function ϕ(α) :=
ψ(F−1

1 (α), . . . , F−1
n (α)). For an arbitrary, on [0, 1] uniformly distributed random

variable U , we get from (3.2) that

VaRα(ψ(X1, . . . , Xn)) = VaRα(ψ(F−1
1 (U), . . . , F−1

n (U))) = VaRα(ϕ(U))

= ϕ(VaRα(U)) = ϕ(α) = ψ(F−1
1 (α), . . . , F−1

n (α))
= ψ(VaRα(X1), . . . ,VaRα(Xn)).

For independent random variables X1, . . . , Xn the distribution function of
ψ(X1, . . . , Xn), and hence its VaR, can be computed by iterated conditioning.
Since X1, . . . , Xn are independent, we have that

Fψ(X1,...,Xn)(s) = P [ψ(X1, . . . , Xn) ≤ s]

=
∫
dFn(tn)P [ψtn(X1, . . . , Xn−1) ≤ s]

=
∫
dFn(tn) · · ·

∫
dF2(t2)F1(ψ∧

t2,...,tn(s)).

(3.3)

When n = 2 this formula simplifies to Fψ(X1,X2)(s) =
∫
F1(ψ∧

t2(s)) dF2(t2).
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4 Computational aspects

For notational convenience, we will write in the sequel Fmin and Fmax instead of
τC0,ψ(F1, . . . , Fn) and ρC1,ψ(F1, . . . , Fn) respectively. In most cases, the bounds
Fmin and Fmax do not allow for a closed form expression. Exceptions are the
cases where ψ(x1, . . . , xn) =

∑n
i=1 xi and the Fi’s all are of the same type,

for example all are shifted exponential, shifted Pareto, Weibull or uniform (see
Denuit et al. (1999)). In general, one has to resort to numerical approximations
as proposed by Williamson and Downs (1990).

In the sequel, we denote again by C0 a copula or the lower Fréchet bound
CL. Similarly, Cd1 can represent the dual of a copula C1 as well as 1 ∧∑n

i=1 ui.
Further, for (U1, . . . , Un) with distribution function C and indices 1 ≤ i1 < · · · <
ik ≤ n let Ci1,...,ik be the distribution function of (Ui1 , . . . , Uik) and Cdi1,...,ik its
dual, where for C = CL and Cd1 (u1, . . . , un) = 1 ∧∑n

i=1 ui we obviously mean
(CL)i1,...,ik(v1, . . . , vk) = (

∑k
j=1 vj − k + 1)+ and (CL)d)i1,...,ik(v1, . . . , vk) =

1 ∧∑k
j=1 vj .

4.1 Duality

The main problem relative to a practical computation of the expressions Fmin(s)
and Fmax(s), thus of their inverses, is that they are defined as a supremum, re-
spectively as an infimum, over the unbounded set Rn−1. Hence, even the com-
putation over a discretization of Rn−1, amounts to an infinite number of com-
parisons for finding the maximum (minimum) of the relative expressions. This
problem can be avoided applying the duality principle of Frank and Schweizer
(1979). The special case useful for our purposes takes the following form.

Theorem 4.1 (Duality). Let −∞ ≤ a < b ≤ +∞ and ψ : [a, b]n → [a, b] be
an increasing continuous function with range [a, b]. For a copula C0, marginals
F1, . . . , Fn and any 0 ≤ α < 1 one obtains

F−1
min(α) = inf

C0(u1,...,un)=α
ψ(F−1

1 (u1), . . . , F−1
n (un)), (4.1)

F−1
max(α) = sup

Cd
1 (u1,...,un)=α

ψ(F−1
1 (u1), . . . , F−1

n (un)). (4.2)

Observe that, contrary to Theorems 3.1 and 3.2, the functional ψ in Theorem
4.1 has to satisfy the additional condition that its domain is [a, b]n and that its
range is [a, b]. These constraints are satisfied for many functionals of interest
and in particular in the example of Section 5.

The origin of the name “Duality Theorem” for the above result is due to the
fact that (4.1) and (4.2) can be obtained from

sup
ψ(t1,...,tn)=s

C0(F1(t1), . . . , Fn(tn)), (4.3)

inf
ψ(t1,...,tn)=s

Cd1 (F1(t1), . . . , Fn(tn)), (4.4)

11



replacing infima by suprema, the Fi’s by the F−1
i ’s and exchanging the role of ψ

and C0 (or C1). Moreover, formulae (4.3) and (4.4) look very similar to Fmin(s)
and Fmax(s). In fact, for fixed s such that {(t1, . . . , tn) ∈ Rn |ψ(t1, . . . , tn) =
s} 6= ∅, the condition ψtn(t1, . . . , tn−1) = ψ(t1, . . . , tn) = s is equivalent with
ψ∧
t1,...,tn−1

(s−) ≤ tn ≤ ψ∧
t1,...,tn−1

(s). Since C0(F1(t1), . . . , Fn(tn)) is increasing
in t1, . . . , tn, it follows that its supremum over {(t1, . . . , tn) ∈ Rn |ψ(t1, . . . , tn) =
s} is taken for tn at the right end point of [ψ∧

t1,...,tn−1
(s−), ψ∧

t1,...,tn−1
(s)]. Hence,

Fmin(s) = sup
t1,...,tn−1∈R

C0(F1(t1), . . . , Fn−1(tn−1), Fn(ψ∧
t1,...,tn−1

(s)))

= sup
ψ(t1,...,tn)=s

C0(F1(t1), . . . , Fn(tn)),

which is an alternative representation of Fmin(s) for all s such that {ψ = s} 6= ∅.
In general, the same cannot be repeated for Fmax, meaning that there are

situations where (4.4) is at some points strict smaller than Fmax and where (4.4)
does not even yield an upper bound for Fψ(X1,...,Xn) as the counterexample in the
Appendix shows. However, both (4.3) and (4.4) can be used in order to obtain
the quantile functions F−1

min and F−1
max, i.e. bounds for VaRα(ψ(X1, . . . , Xn)).

In effect, (4.4) is the left continuous version of Fmax and hence it leads to the
same quantiles. More precisely, considering left continuously defined distribution
functions instead of right continuous ones, a representation like (4.4) holds even
for Fmax.

Remark. In some of the classical literature on the subject left continuous ver-
sions of distribution functions are taken. Hence, when using results from those
papers, care has to be taken.

4.2 Practical computation of F−1
min(α) and F−1

max(α)

The advantage of (4.1) and (4.2) is that the infimum and the supremum are
taken over the compact sets {C0 = α} and {Cd1 = α} respectively. The practical
idea, summarized by Figure 4.1 below, is to consider a suitable discretization of
these sets and to minimize (maximize) over such a finite set of points.

For notational convenience, let α = r/N , where N is some fixed integer and
r ∈ {1, . . . , N − 1}. Consider further, l1, . . . , ln−1 ∈ {0, . . . , N} and look for a
solution νr,l1,...,ln−1 to

C0

(
l1/N, . . . , ln−1/N, νr,l1...,ln−1

)
= r/N. (4.5)

Since C0(l1/N, . . . , ln−1/N, ·) is a continuous function mapping the unit interval
[0, 1] to [0, (C0)1,...,n−1(l1/N, . . . , ln−1/N)], we have that a solution νr,l1,...,ln−1

always exists if
(C0)1,...,n−1(l1/N, . . . , ln−1/N) ≥ r/N.

Thus, because of (4.1) we have that

qmin(r/N) := min
Ar,l1,...,ln−1

ψ(F−1
1 (l1/N), . . . , F−1

n−1(ln−1/N), F−1
n (νr,l1...,ln−1))
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is an approximation of F−1
min(r/N), where the minimum is taken over the set

Ar,l1,...,ln−1 := {l1, . . . , ln−1 | (C0)1,...,n−1(l1/N, . . . , ln−1/N) ≥ r/N}. Similarly,

qmax(r/N) := max
Br,l1,...,ln−1

ψ(F−1
1 (l1/N), . . . , F−1

n−1(ln−1/N), F−1
n (ν∗r,l1...,ln−1

))

is nearly F−1
max(r/N), where ν∗r,l1,...,ln−1

is a solution to the equation

Cd1

(
l1/N, . . . , ln−1/N, ν

∗
r,l1...,ln−1

)
= r/N (4.6)

and Br,l1,...,ln−1 := {l1, . . . , ln−1 | (C1)d1,...,n−1(l1/N, . . . , ln−1/N) ≤ r/N}.

0

1

1

α

α

νr,l1,...,ln−1

{C0 = α}

{Cd1 = α}

li/N

Figure 4.1: Discretization of {C0 = α} and {Cd1 = α}.

Remarks.

(a) In the two-dimensional case the above formulae for qmin, qmax simplify to

qmin(r/N) = min
r≤l≤N

ψ(F−1
1 (l/N), F−1

2 (νr,l)),

qmax(r/N) = max
0≤l≤r

ψ(F−1
1 (l/N), F−1

2 (ν∗r,l)),
(4.7)

which can be easily implemented.

(b) The quantities qmin(r/N) and qmax(r/N) given by (4.7) are approximate
bounds for VaRr/N (ψ(X1, . . . , Xn)). More generally, one could be interested in
approximating the whole distribution functions Fmin and Fmax as for instance in
the case of risk measures different from VaR. This can be done approximating
Fmin and Fmax from below and from above using the step functions

Fmin,N :=
1
N

N∑
r=1

1[qmin(r/N),∞), Fmax,N :=
1
N

N−1∑
r=0

1[qmax(r/N),∞), (4.8)

where qmin(1) := sup supp(F ), qmax(0) := inf supp(F ).

13



4.3 Archimedean scenarios

In many cases, νr,l1,...,ln−1 can be found explicitly. For instance, if C0 belongs
to the wide class of strict archimedean copulae, i.e. if it is of the form

C0(u1, . . . , un) = φ−1
0

(
n∑
i=1

φ0(ui)

)
, (4.9)

where φ0 : [0, 1] → [0,∞] is a continuous strictly decreasing function with
φ0(0) = ∞, φ0(1) = 0 and such that the inverse φ−1

0 is completely monotonic,
then

νr,l1,...,ln−1 = φ−1
0

(
φ0(r/N) −

n−1∑
i=1

φ0(li/N)

)
(4.10)

provided that l1, . . . , ln−1 satisfy φ0(r/N) ≥ ∑n−1
i=1 φ0(li/N). This is the case

for the Clayton copula defined in (2.10) generated by φ0(t) = t−α − 1 and for
the independent copula CI generated by φ0(t) = − log t.

On the contrary, finding ν∗r,l1,...,ln−1
may be not so easy. For instance, for

a two-dimensional archimedean copula C1 generated by some φ1, we have that
φ1(ν∗r,l) + φ1(l/N) − φ1(ν∗r,l − (r − l)/N) = 0 which cannot be solved explicitly
in general. This problem can be avoided making assumptions on the survival
copula Ĉ1. Indeed, assuming for instance that Ĉ1 is strict archimedean with
generator φ1, it follows by (2.4) that ν∗r,l1,...,ln−1

is a solution to r/N = 1 −
Ĉ1(1 − l1/N, . . . , 1 − ln−1/N, 1 − ν∗r,l1,...,ln−1

), i.e. that

ν∗r,l1,...,ln−1
= 1 − φ−1

1

(
φ1(1 − r/N) −

n−1∑
i=1

φ1(1 − li/N)

)
(4.11)

provided that l1, . . . , ln−1 satisfy φ1(1 − r/N) ≥∑n−1
i=1 φ1(1 − li/N).

Remark. The lower Fréchet bound CL has also a representation like (4.9) for
φ0(t) = 1 − t and (4.10) corresponds to the solution νr,l1,...,ln−1 of (4.5) and
the relative boundary conditions for l1, . . . , ln−1 coincide. Similarly, the solution
ν∗r,l1,...,ln−1

of (4.6) and the relative boundary conditions can be obtained from
(4.11) for φ1(t) = 1 − t.

4.4 Alternative computational methods

The gridding procedure of Section 4.2 has the disadvantage that the computa-
tional complexity increases exponentially in the number of dimensions. Thus,
an immediate generalization of the above procedure for large n translates into
a massive increase of computational time. Further, the question relative to
the convergence of qmin(α), qmax(α) to F−1

min(α), F−1
max(α) as the number N of

discretization steps increases was not considered in the previous sections. Nev-
ertheless, for many examples of interest, as the one discussed in Section 5 below,
the above numerical procedure works well. An alternative numerical approach
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that can be used for several applications of our results is based on the theory
of Semidefinite Programming (SDP), where by means of interior point methods
extremely efficient results are obtained for minimax problems having similari-
ties with the computation of our bounds. The convergence properties of these
methods have been studied in detail and one can in general expect that the in-
crease of the numerical complexity is polynomial. We checked this approach for
the example discussed in Section 5; the results obtained coincide. Further work
along these lines is definitely necessary, especially as one may want to obtain nu-
merical procedures for functions of high dimensional portfolios (n ≥ 100, say).
We plan to return to this in future work. For the relevant (linear, convex, SDP)
techniques, see for instance Boyd and Vandenberghe (1999) and the references
therein.

5 Example

The methodology of Section 4 can be applied to different concrete situations.
Figure 5.1 below, gives the range for VaRα(X1 +X2) in the case of standard nor-
mal marginals under various dependence scenarios. We have chosen to illustrate
our results in the case of normal marginals in order to stress that the difficulties
obtained, i.e. the non-subadditive of the risk measure is not stemming from the
marginal distributions (P&L’s) but from the dependence structure imposed. We
also took the liberty to use the VaR language throughout the example, even if
some of the obtained values become negative. This should not deter from the
main message. We also have tested the results obtained on several other portfo-
lios and alternative functions ψ, and also cross-checked the numerics with those
obtained via convex programming techniques; these results are not reproduced
here.

In the language of Theorem 3.1, the scenarios are:

(Sc1) C0 = C1 = CL: no dependence restriction,

(Sc2) C0 = C1 = CI : POD dependence,

(Sc3) C0 = CCl,8, Ĉ1 = CGu,0.2,

where the choices of the parameter values α = 8 and β = 0.2 correspond both
to a Kendall’s tau of 0.8. Also included are the independent and comonotonic
cases. Figure 5.1 below was obtained computing qmin(r/N) and qmax(r/N) by
means of (4.7) for N = 1000 points using S-Plus within seconds.

When dealing with two-dimensional portfolios as in this examples, a typical
dependence scenario consists of PQD risks as in (Sc2). In this case the ap-
proximated lower bound Fmin in Theorem 3.1 calculated by means of (4.8) with
C0 = C1 = CI (partial information) and the one computed with C0 = C1 = CL

(no information) do not look very much different in the tails as Figure 5.1 shows.
A careful look at the numerical procedure used to calculate the quantiles gives
more insight into this phenomenon which can also be observed for many dif-
ferent choices of ψ, F1, F2. The quantiles qmin(r/N) and qPQD

min (r/N) when no

15



alpha

V
a

R

0.90 0.92 0.94 0.96 0.98 1.00

0
2

4
6

comonotonicity
C0=C_L
C_1=C_L
C_0=C_I
C_1=C_I
C_0=Clayton
^C_1=Gumbel
independence

Figure 5.1: Range for VaRα(X1 + X2) for a standard normal portfolio under
scenarios (Sc1), respectively (Sc2) and (Sc3).

information is available or a PQD assumption is made have the form

qmin(r/N) = min
r≤l≤N

ψ

(
F−1

1 (l/N), F−1
2

(
N − (l − r)

N

))
,

qPQD
min (r/N) = min

r≤l≤N
ψ(F−1

1 (l/N), F−1
2 (r/l)).

For fixed r we have to take the minimum of

l = r ψ(F−1
1 (r/N), F−1

2 (1))
l = r + 1 ψ(F−1

1 ((r + 1)/N), F−1
2 ((N − 1)/N))

l = r + 2 ψ(F−1
1 ((r + 2)/N), F−1

2 ((N − 2)/N))
. . . . . .
l = N ψ(F−1

1 (1), F−1
2 (r/N))
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in the first case and of

l = r ψ(F−1
1 (r/N), F−1

2 (1))
l = r + 1 ψ(F−1

1 ((r + 1)/N), F−1
2 (r/(r + 1)))

l = r + 2 ψ(F−1
1 ((r + 2)/N), F−1

2 (r/(r + 2)))
. . . . . .
l = N ψ(F−1

1 (1), F−1
2 (r/N))

in the second one. We observe that the quantiles of F1 are the same in both
cases whereas the quantiles of F2 are evaluated at the points

1 ≥ N − (l − r)
N

≥ r

N
= α and 1 ≥ r

l
≥ r

N
= α,

respectively. If α is near to 1, then (N − (l − r))/N ≈ l/r for N ≥ l ≥ r = Nα.
This means that the quantiles in the second argument of ψ are almost the same.
Indeed, take for example N = 100 and α = 0.9, then

l=r+1 l=r+2 l=r+3 . . . l=N-3 l=N-2 l=N-1 l=N
(N-(l-r))/N 0.99 0.98 0.97 . . . 0.93 0.92 0.91 0.90

r/l 0.989 0.978 0.968 . . . 0.928 0.918 0.909 0.90

The only way to see a difference would be to take F2 heavy tailed and ψ strongly
increasing in the second component at the same time.

To have an idea of the range of values obtained for a particular α, we have
summarized this information in Table 5.1 for α = 0.95 and α = 0.99. The
quantiles for the marginals are VaR0.95(Xi) = 1.96, respectively VaR0.99(Xi) =
2.33, i = 1, 2. Results as summarized in Figure 5.1 and Table 5.1 yield a measure
of uncertainty for VaR calculations at the aggregate level X1 + X2 given VaR
information at the sub-portfolio level X1 and X2. For instance, Table 5.1 tells

α = 0.95 α = 0.99
scenarios exact min max exact min max

1 -0.13 3.92 -0.03 5.15
2 1.52 3.91 2.56 5.15
3 2.90 3.83 4.19 5.14

C = CI 2.33 3.29
C = CU 3.29 4.65

Table 5.1: Range for VaR0.95(X1 + X2) and VaR0.99(X1 + X2) for a standard
normal portfolio

us in the α = 0.95 case that, whereas the marginal VaRs are 1.96 Mio. $,
say, for each position separately, the VaR for the joint portfolio X1 + X2 can
reach a value between -0.13 and 3.92 Mio. $. If one is prepared to accept extra
dependence information as for instance PQD, then the bounds narrow to 1.52
and 3.91 Mio. $. Only when much stronger assumptions can be made, in our
situation Ĉ ≥ CGu,0.2 and C ≥ CCl,8, then we have a substantial reduction for
the interval size to [2.90, 3.83] Mio. $.
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6 Conclusions

In this paper we focus on the construction of optimal bounds for risk measures of
functions of dependent risks. The techniques introduced are exemplified in the
case of Value-at-Risk. The methodology used is based on the theory of copulae.
A numerical procedure for calculating these bounds in specific cases is provided.
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Appendix

Proof of Theorem 3.1

Proof. Let s be fixed and t1, . . . , tn−1 ∈ R such that ψ∧
t1,...,tn−1

(s) is finite. By
Lemma 2.1, we have that Xi > ti for i = 1, . . . , n − 1 and Xn > ψ∧

t1,...,tn−1
(s)

together imply that ψ(X1, . . . , Xn) ≥ ψt1,...,tn−1(Xn) > s. Hence,

P [ψ(X1, . . . , Xn) ≤ s] ≤ P [∪n−1
i=1 {Xi ≤ ti} ∪ {Xn ≤ ψ∧

t1,...,tn−1
(s)}]

= Cd(F1(t1), . . . , Fn−1(tn−1), Fn(ψ∧
t1,...,tn−1

(s)))

≤ Cd1 (F1(t1), . . . , Fn−1(tn−1), Fn(ψ∧
t1,...,tn−1

(s))).

If ψ∧
t1,...,tn−1

(s) = +∞, then we have that

Cd1 (F1(t1), . . . , Fn−1(tn−1), Fn(ψ∧
t1,...,tn−1

(s))) = 1

which is greater or equal than P [ψ(X1, . . . , Xn) ≤ s]. On the other hand, if
ψ∧
t1,...,tn−1

(s) = −∞, then ψt1,...,tn−1(tn) > s for all tn ∈ R and therefore

P [ψ(X1, . . . , Xn) ≤ s] = P
[{ψ(X1, . . . , Xn) ≤ s} ∩ ∪n−1

i=1 {Xi ≤ ti}
]

+ P [{ψ(X1, . . . , Xn) ≤ s} ∩ ∩n−1
i=1 {Xi > ti}]

≤ P [∪n−1
i=1 {Xi ≤ ti}] + 0

= Cd(F1(t1), . . . , Fn−1(tn−1), 0)

= Cd1 (F1(t1), . . . , Fn−1(tn−1), Fn(ψ∧
t1,...,tn−1

(s))).

Taking the infimum over all t1, . . . , tn−1 ∈ R leads to Fψ(X1,...,Xn)(s) ≤ Fmax(s).
Similarly, if ψ∧

t1,...,tn−1
(s) is finite, then Xi ≤ ti for i = 1, . . . , n − 1 and
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Xn ≤ ψ∧
t1,...,tn−1

(s) together imply that ψ(X1, . . . , Xn) ≤ ψt1,...,tn−1(Xn) ≤ s.
Therefore,

P [ψ(X1, . . . , Xn) ≤ s] = 1 − P [ψ(X1, . . . , Xn) > s]

= 1 − P [{ψ(X1, . . . , Xn) > s} ∩ ∪n−1
i=1 {Xi > ti} ∪ {Xn > ψ∧

t1,...,tn(s)}]
≥ 1 − P [Xi > ti, i = 1, . . . , n,Xn > ψ∧

t1,...,tn(s)]

= C(F1(t1), . . . , Fn−1(tn−1), Fn(ψ∧
t1,...,tn−1

(s)))

≥ C0(F1(t1), . . . , Fn−1(tn−1), Fn(ψ∧
t1,...,tn−1

(s))).

If ψ∧
t1,...,tn−1

(s) = +∞, then ψt1,...,tn−1(tn) ≤ s for all tn ∈ R and therefore

P [ψ(X1, . . . , Xn) ≤ s] ≥ C0(F1(t1), . . . , Fn−1(tn−1), 1)
= C0(F1(t1), . . . , Fn−1(tn−1), Fn(ψ∧

t1,...,tn−1
(s))).

If ψ∧
t1,...,tn−1

(s) = −∞, then C0(F1(x), . . . , Fn−1(tn−1), ψ∧
t1,...,tn−1

(s)) = 0 which
is smaller or equal than P [ψ(X1, . . . , Xn) ≤ s]. Taking the supremum over all
t1, . . . , tn−1 ∈ R leads to Fψ(X1,...,Xn)(s) ≥ Fmin(s).

Proof of Theorem 3.2

Proof. For the optimality of Fmin it suffices to define a copula Cα satisfying

Cα ≥ C0, (6.1)
µα({C0 ≤ α}) ≤ α, (6.2)

where µα is the measure corresponding to Cα. Indeed, from (6.1) and Theo-
rem 3.1 we have that α = τC0,ψ(F1, . . . , Fn)(s) ≤ σCα,ψ(F1, . . . , Fn)(s). Conse-
quently, we only have to show that

σCα,ψ(F1, . . . , Fn)(s) ≤ α. (6.3)

The proof of (6.3) is essentially based on the idea of transporting the whole
problem on the unit cube [0, 1]n. Let in fact (Uα1 , . . . , U

α
n ) have distribution

function Cα. Further, let (Xα
1 , . . . , X

α
n ) := (F−1

1 (Uα1 ), . . . , F−1
n (Uαn )) be a ran-

dom vector with copula Cα and marginals F1, . . . , Fn. For the distribution να

of (Xα
1 , . . . , X

α
n ), the transform h := (F−1

1 , . . . , F−1
n ) and any measurable set

G ⊂ Rn we have that

να(G) = P [(Xα
1 , . . . , X

α
n ) ∈ G] = P [h(Uα1 , . . . , U

α
n ) ∈ G] = µα(h−1(G)).

Further, for G = {ψ ≤ s} we get that

h−1({ψ ≤ s}) = {(u1, . . . , un) ∈ [0, 1]n |ψ(F−1
1 (u1), . . . , F−1

n (un)) ≤ s} =: A.

With this formalism, inequality (6.3) is equivalent to µα(A) ≤ α. We assume
without loss of generality that {ψ ≤ s} 6= ∅ i.e. that A 6= ∅ and we consider
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(t1, . . . , tn) ∈ {ψ ≤ s}. For any such point we have by Lemma 2.1 that tn ≤
ψ∧
t1,...,tn−1

(s) and therefore that

C0(F1(t1), . . . , Fn(tn)) ≤ C0(F1(t1), . . . , Fn−1(tn−1), Fn(ψ∧
t1,...,tn−1

(s)))

≤ τC0,ψ(F1, . . . , Fn)(s) = α. (6.4)

Equation (6.4) together with Lemma 2.1 implies for (u1, . . . , un) ∈ A that

C0(u1, . . . , un) ≤ C0(F1(F−1
1 (u1)), . . . , Fn(F−1

n (un))) ≤ α

i.e. that A ⊂ {C0 ≤ α}. This means that (6.2) implies (6.3). The copula

Cα(u1, . . . , un) :=
{
C0(u1, . . . , un) ∨ α when (u1, . . . , un) ∈ [α, 1]n,
CU(u1, . . . , un) otherwise.

satisfies condition (6.1) since CU is the upper Fréchet bound. The values assigned
by µα to subsets of [0, 1]n are described in Figure 6.1 and in particular, µα assigns
mass α to any set [0, u1] × · · · × [0, un] such that C0(u1, . . . , un) = α. It follows

0

0

0

0

1

1

α

α

α

(u1, . . . , un)

1 − α
{C0 = α}

0

0

1

1β

β

1-β

(u1, . . . , un)

{Cd1 = β}

Figure 6.1: Mass values assigned by µα and µβ .

that µα({C0 ≤ α}) = α and hence (6.3) has been proved.
The proof of the optimality of Fmax is based on similar arguments. In fact it
suffices to define a copula Cβ such that

(Cβ)d ≤ Cd1 , (6.5)

µβ({Cd1 ≥ β}) ≤ 1 − β, (6.6)

where µβ is the measure corresponding to Cβ . Indeed, from (6.5) and Theo-
rem 3.1 we have that β = ρC1,ψ(F1, . . . , Fn)(s) ≥ σCβ ,ψ(F1, . . . , Fn)(s). Conse-
quently, we only have to show that

σCβ ,ψ(F1, . . . , Fn)(s) ≥ β (6.7)
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which is the same as showing that 1 − σCβ ,ψ(F1, . . . , Fn)(s) ≤ 1 − β. Using the
above notation, we see that

1 − σCβ ,ψ(F1, . . . , Fn)(s) = P [ψ(Xβ
1 , . . . , X

β
n ) > s]

≤ P [ψ(F∧
1 (Uβ1 ), . . . , F∧

n (Uβn )) > s] = µβ(B),

where B := g−1({ψ > s}) and g := (F∧
1 , . . . , F

∧
n ). We assume without loss of

generality that {ψ > s} 6= ∅ i.e. that B is non-empty. Hence, for (x1, . . . , xn) ∈
{ψ > s} it follows from Lemma 2.1 that xn > ψ∧

x1,...,xn−1
(s) and therefore that

β = ρC1(F1, . . . , Fn)(s) ≤ Cd1 (F1(x1), . . . , Fn−1(xn−1), Fn(ψ∧
x1,...,xn−1

(s)))

≤ Cd1 (F1(x1), . . . , Fn−1(xn−1), Fn(xn)).

It follows for any (u1, . . . , un) ∈ B that

β ≤ Cd1 (F1(F∧
1 (u1)), . . . , F1(F∧

n (u1))) ≤ Cd1 (u1, . . . , un)

i.e. that B ⊂ {Cd1 ≥ β}. This means that (6.6) implies (6.7). The idea behind
the choice of Cβ is better understood in the two-dimensional case with the help
of Figure 6.1. In fact, for n = 2, condition (6.5) is equivalent to Cβ ≥ C1.
Hence, we set first Cβ equal to CU on [0, 1]2 \ [0, β)2. Because of this, it follows
that µβ([0, β]2) = β. It suffices to define Cβ such that µβ assigns mass 0 to any
rectangle [u1, β] × [u2, β] with Cd1 (u1, u2) = β. More precisely:

0 = Cβ(β, β) − Cβ(u1, β) − Cβ(β, u2) + Cβ(u1, u2)

= β − u1 − u2 + Cβ(u1, u2) = Cd1 (u1, u2) − u1 − u2 + Cβ(u1, u2)

= −C1(u1, u2) + Cβ(u1, u2).

In other words, Cβ must be equal to C1 on {Cd1 = β}. In summary, define

Cβ(u1, u2) :=




u1 ∧ u2 if (u1, u2) ∈ [0, 1]2 \ [0, β)2

u1 + u2 − β if (u1, u2) ∈ [0, β)2 ∩ {Cd1 ≥ β}
C1(u1, u2) if (u1, u2) ∈ [0, β)2 ∩ {Cd1 < β}

.

Notice that Cβ is a copula satisfying both (6.5) and (6.6) since on {Cd1 ≥ β}
holds C1(u1, u2) ≤ u1+u2−β and hence (Cβ)d(u1, u2) ≤ Cd1 (u1, u2) for all u1, u2.
These arguments can be generalized to n ≥ 2, the idea being to define Cβ such
that µβ([0, 1]n \ [0, β)n) = 1 − β and µβ(

∏n
i=1[ui, β]) = 0 for any (u1, . . . , un)

with Cd1 (u1, . . . , un) = β. Moreover, the condition (Cβ)d ≤ Cd1 is already taken
into account when constructing Cβ .

Counterexample

In this paragraph we give a two-dimensional example where (4.4) is strictly
smaller than Fmax and not even an upper bound for Fψ(X1,X2). Denote by Gmax

the expression given by (4.4) i.e. Gmax(s) := infψ(t1,t2)=sC
d
1 (F1(t1), F2(t2)).
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Let F1 = F2 be uniform(0,1) distribution functions and ψ : R2 → R be the
increasing and continuous function defined by

ψ(x, y) := 2y1[0,1/2)(y) + 1[1/2,2)(y) + (y − 1)1[2,∞)(y).

Note that ψ is actually a function in a single variable, namely y. For s = 1
we have that ϕ∧

x (s) = ϕ∧
x (1) = 2 for all x ∈ R and {(t1, t2) |ψ(t1, t2) = 1} =

R× [1/2, 2]. Hence,

Fmax(1) = inf
x∈R

Cd1 (F1(x), F2(ϕ∧
x (1))) = inf

x∈R
Cd1 (F1(x), 1) = Cd1 (0, 1) = 1,

Gmax(1) = inf
ψ(t1,t2)=1

Cd1 (F1(t1), F2(t2)) = inf
t1∈R,1/2≤t2≤2

Cd1 (F1(t1), F2(t2))

= Cd1 (0, 1/2) = 1/2

and consequently Gmax(1) < Fmax(1). Moreover,Gmax(1) is not an upper bound
for Fψ(X1,X2)(1). Indeed, Fψ(X1,X2)(1) = P [X2 ≤ 2] = 1 which is actually the
bound given by Fmax(1).
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