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Abstract. We investigate algebraic Zd-actions of entropy rank one,
namely those for which each element has finite entropy. Such actions
can be completely described in terms of diagonal actions on products
of local fields using standard adelic machinery. This leads to numerous
alternative characterizations of entropy rank one, both geometric and
algebraic. We then compute the measure entropy of a class of skew
products, where the fiber maps are elements from an algebraic Zd-action
of entropy rank one. This leads, via the relative variational principle,
to a formula for the topological entropy of continuous skew products as
the maximum of a finite number of topological pressures. We use this
to settle a conjecture concerning the relational entropy of commuting
toral automorphisms.
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1. Introduction

An algebraic Zd-action is an action of Zd by automorphisms of a compact
abelian group. The action has entropy rank one if every element has finite
entropy. Examples include commuting toral automorphisms, multiplication
by 2 and by 3 on the 6-adic solenoid, and Ledrappier’s example on a totally
disconnected group [16]. Such actions share many dynamical properties
with those of a single group automorphism, yet also exhibit striking rigidity
phenomena (see, for example, [12] and [13]).

We give here a systematic account of all algebraic Zd-actions of entropy
rank one. Each such action can be built up from prime actions of entropy
rank one. Our main method is a modification of standard adelic machinery
to show that each prime action of entropy rank one is algebraically conjugate
to a diagonal action on a finite product of locally compact fields modulo an
invariant cocompact discrete subgroup.

There are just three types of locally compact fields: finite extensions of
the reals R, of the p-adics Qp, or of Laurent power series Fp((t)) over a
finite field Fp. Actions of commuting toral automorphisms use the reals,
and actions on solenoids combine the reals and the p-adics. As we will
see, Ledrappier’s example uses the third and last type of locally compact
field. More precisely, it is algebraically conjugate to a diagonal action on the
product of three isomorphic copies of F2((t)) modulo an invariant cocompact
discrete subgroup. Thus Ledreppier’s example can be viewed as being gener-
ated by two commuting “toral” automorphisms, where R has been replaced
by F2((t)). This new viewpoint perhaps explains why Ledrappier’s example
has played such a central role in the development of algebraic Zd-actions.

This structure theory for prime actions allows us to easily compute en-
tropy for each element of a general algebraic Zd-action with entropy rank
one. The generators of the action modify Haar measure in each locally com-
pact factor by a multiplicative constant, analogous to the absolute value
of an eigenvalue for a toral automorphism. We assemble this information
into a finite set of Lyapunov vectors for the action. Then the entropy for
a particular direction vector is just the sum of the positive dot products of
this direction vector and the Lyapunov vectors.

Skew product transformations have been continual sources of interesting
examples in dynamics. One important instance is the so-called “T -T−1”
transformation, which is a skew product of the 2-shift and its inverse with
base transformation also the 2-shift. This simply defined transformation is
Kolmogorov but not Bernoulli with respect to the direct product of Haar
measure on the base and the fiber [11]. Its entropy with respect to this
measure is log 2. This transformation is also continuous. As shown by
Marcus and Newhouse [21], its topological entropy is log(5/2) and there are
exactly two invariant measures of maximal entropy. Marcus and Newhouse
compute the entropy of similar skew products, where the fiber maps are
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powers of a single transformation, in other words drawn from a Z-action.
They ask “What happens if one skews into other groups?”

We answer this question for skewing with elements from an algebraic Zd-
action of entropy rank one. The measure entropy of such a skew product has
a simple expression in terms the Lyapunov vectors of the action. Using the
relative variational principle of Ledrappier and Walters [17], we then show
that the topological entropy of a continuous skew product is the largest of a
finite number of topological pressures, analogous to the result of Marcus and
Newhouse [21, Thm. B]. When the base transformation is a shift of finite
type, these pressures can be explicitly computed in terms of the Lyapunov
vectors.

Finally, we apply our results to compute the “relational entropy” of com-
muting group automorphisms, settling in the negative a conjecture made by
Geller and Pollicott [9].

2. Statement of results

Let X be a compact abelian group. An algebraic Zd-action on X is
a homomorphism α : Zd → aut(X) from Zd to the group of (continuous)
automorphisms of X. Denote the image of n ∈ Zd under α by αn, so that
αm+n = αm ◦ αn and α0 = IdX . Let ej = (0, . . . , 1, . . . , 0) be the jth
standard basis vector of Zd, so that α is generated by the d commuting
automorphisms αej . For a detailed account of algebraic Zd-actions, see
Schmidt’s comprehensive book [28].

Let µ be Haar measure on X, normalized so that µ(X) = 1. Then every
automorphism of X preserves µ. By [3, Prop. 7] the topological entropy
of αn coincides with its entropy with respect to µ, and we denote both
by h(αn). Say that α has entropy rank one if h(αn) < ∞ for all n ∈ Zd.

Denote by Rd the ring Z[u±1
1 , . . . , u±1

d ] of Laurent polynomials in d com-
muting variables with integer coefficients. As explained in Section 3, duality
theory provides a one-to-one correspondence between Rd-modules M and
algebraic Zd-actions αM on compact abelian groups XM = M̂ . Actions of
the form αRd/p, where p is a prime ideal in Rd, are called prime actions.
They form the basic building blocks for algebraic Zd-actions.

Our first main result is a structure theorem for prime actions of entropy
rank one, which extends earlier work of Schmidt [27] for connected groups.

Theorem 2.1. Let αRd/p be a prime action of entropy rank one on an
infinite group XRd/p. Then there is a finite product A = k(1) × · · · × k(m)

of locally compact fields, a diagonal action β of Zd on A for which βei

multiplies the jth factor k(j) by ξ
(j)
i ∈ k(j), and a discrete cocompact β-

invariant subgroup Λ ⊂ A such that αRd/p is algebraically conjugate to the
quotient action of β on A/Λ.

If k is a locally compact field, µk is a Haar measure on k, and ξ ∈ k, then
µk(ξE) = modk(ξ)µk(E) for all compact subsets E ⊂ k. Here modk(ξ) ∈
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[0,∞) is called the module of ξ, and plays the role of the modulus of an
eigenvalue.

For a prime action αRd/p, let β be the diagonal action of Zd on A =
k(1) × · · · × k(m) described in the previous theorem. For each factor k(j)

define the jth Lyapunov vector v(j) for αRd/p to be

v(j) =
(
log modk(j)(ξ

(j)
1 ), . . . , log modk(j)(ξ

(j)
d )

)
.

Define the set of Lyapunov vectors of αRd/p to be L(αRd/p) = {v(1), . . . ,v(m)}
(if XRd/p is finite, put L(αRd/p) = ∅). The Lyapunov vectors, for example,
can be used to compute h(αn) to be

∑m
j=1 max{n · v(j), 0}.

Next, consider a general algebraic Zd-action α = αM corresponding to
an Rd-module M . For reasons explained in Section 4, we will confine our
attention to Noetherian Rd-modules M , and call such actions Noetherian.
In this case, the corresponding group X = XM has a filtration

X0 = {0} ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xr−1 ⊂ Xr = X

of α-invariant compact subgroups Xj for which the restriction of α to each
Xj/Xj−1 is algebraically conjugate to a prime action αRd/pj

. Also, α has
entropy rank one if and only if each of these prime actions does. In this case
we define the Lyapunov vectors of α to be L(α) = L(αRd/p1

)∪· · ·∪L(αRd/pr
),

with multiplicity taken into account. This set turns out to be independent
of the particular filtration used. The addition formula for entropy shows
that h(αn) =

∑
v∈L(a) max{n · v, 0}.

We now turn to skew product transformations. Let (Y, ν) be a measure
space and T : Y → Y be a measurable transformation preserving ν. To
construct a skew product with base transformation T using fiber maps from
an algebraic Zd-action α, let s : Y → Zd be a measurable skewing function.
Define the skew product T ×s α on Y ×X by

(T ×s α)(y, x) =
(
T (y), αs(y)(x)

)
.

Clearly T ×s α preserves the product measure ν × µ.
To obtain useful results, we need to assume that s is ν-integrable, namely

that ∫

Y
‖s(y)‖ dν(y) < ∞,

where ‖ · ‖ denotes the Euclidean norm on Rd. Hence s has an average value
ν(s) =

∫
Y s(y) dν(y) ∈ Rd. In addition, we often need to assume that s is

T -ergodic, namely that the ergodic averages

1
n

[
s(y) + s(Ty) + · · ·+ s(Tn−1y)

] →
∫

Y
s dν = ν(s)

for ν-almost every y ∈ Y . Of course this condition automatically holds if T
itself is assumed ergodic, but the extra flexibility turns out to be needed.
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Theorem 2.2. Let α be a Noetherian algebraic Zd-action of entropy rank
one with Lyapunov vector set L(α). Let T be a measure-preserving trans-
formation of (Y, ν) and s : Y → Zd be a ν-integrable and T -ergodic skewing
function with average value ν(s) ∈ Rd. Then

hν×µ(T ×s α) = hν(T ) +
∑

v∈L(α)

max
{

ν(s) · v, 0
}
.

Suppose now that Y is compact, that T is a homeomorphism, and that
the skewing function s : Y → Zd is continuous. Then T ×sα is also a homeo-
morphism, and we ask for its topological entropy in terms of the Lyapunov
vectors in L(α). For each subset E ⊂ L(α) define fE(y) =

∑
v∈E s(y) · v,

which is a continuous function on Y . By convention we put f∅(y) ≡ 0.
Denote the topological pressure of a continuous function f : Y → R with
respect to T by P(f, T ) (see Walter’s book [30] for a lucid account of topo-
logical pressure and its properties, especially the variational principle).

Theorem 2.3. Let α be a Noetherian algebraic Zd-action of entropy rank
one with Lyapunov vector set L(α). Suppose that Y is a compact space, and
that T : Y → Y and s : Y → Zd are continuous. For every E ⊂ L(α) define
fE(y) =

∑
v∈E s(y) · v. Then the topological entropy of T ×s α is given by

h(T ×s α) = max
E⊂L(α)

P(fE , T ).

We remark that when T is a shift of finite type, each of the pressures
P(fE , T ) can be computed explicitly. Hence in this case the topological
entropy of the skew product is easily calculated.

For example, let A and B be commuting automorphisms of Tm with
real eigenvalues ξ1, . . . , ξm and η1, . . . , ηm, respectively, on their common
eigenspaces. The corresponding Lyapunov vectors for the Z2-action α they
generate are v(j) = (log |ξj |, log |ηj |) for 1 6 j 6 m. Let Y = {1, 2}Z, T be
the 2-shift on Y , and s(y) = ey0 . Thus T ×s α is the skew product of A and
B over the 2-shift. Computing pressures, we find that

(2.1) h(T ×s α) = max
E⊂{1,...,m}

log
( ∏

j∈E

|ξj |+
∏

j∈E

|ηj |
)
.

Let Z be a compact metric space, and let R ⊂ Z×Z be an arbitrary closed
subset, or relation. Friedland [8] defined a “relational entropy” h(R) for R

to be the entropy of the shift map on ZN restricted to the compact subset
{(zi) ∈ ZN : (zi, zi+1) ∈ R for all i ∈ N}. If RS is the graph of a continuous
transformation S : Z → Z, then h(RS) coincides with the usual topologi-
cal entropy h(S), so in this sense relational entropy generalizes topological
entropy.

Geller and Pollicott [9] studied an entropy e(A,B) for a pair of commuting
transformations A and B, by using the union RA,B of the graphs of A
and of B and putting e(A,B) = h(RA,B). They showed that if Z = T
and A and B are multiplication by p and by q, respectively, with p 6= q,
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then e(A,B) = log(p + q), confirming a conjecture of Friedland. They
also conjectured a formula for e(A,B) when A and B are commuting toral
automorphisms.

Relational entropy is closely related to skew products. Let A and B be
commuting group automorphisms, and α be the algebraic Z2-action defined
by αe1 = A and αe2 = B. The analogue of the condition p 6= q above is that
µ({x : Ax = Bx}) = 0. We can then compute e(A,B) using Theorem 2.3
as follows.

Theorem 2.4. Let A and B be commuting automorphisms of a compact
abelian group X that generate a Noetherian Z2-action α. Assume that µ({x :
Ax = Bx}) = 0. Let Y = {1, 2}Z and T be the shift on Y . Define s : Y → Z2

by s(y) = ey0. Then e(A,B) = h(T ×s α).

For example, suppose that A and B are commuting automorphisms of Tm

with real eigenvalues ξ1, . . . , ξm and η1, . . . , ηm, respectively, on their
common eigenspaces. Suppose that µ({x : Ax = Bx}) = 0 or, equivalently
here, that A 6= B. Applying Theorem 2.3 we see that e(A,B) is given by the
formula (2.1). This shows that the formula for e(A,B) conjectured in [9] is
not correct.

3. Algebraic Zd-actions

We begin with a brief description of algebraic Zd-actions and their rela-
tionships, via duality, with commutative algebra.

Let X be a compact abelian group, which we assume henceforth to be
metrizable. Then its dual group M = X̂ is discrete, and is also countable
by metrizability of X.

Denote by Rd the ring Z[u±1
1 , . . . , u±1

d ] of Laurent polynomials in d com-
muting variables with integer coefficients. An element f ∈ Rd has the form

f =
∑

n∈Zd

fn un,

where fn ∈ Z for all n = (n1, . . . , nd) ∈ Zd, fn = 0 for all but finitely
many n, and un = un1

1 · · ·und
d .

We use α and duality to make M into an Rd-module as follows. For
n ∈ Zd and a ∈ M put un · a = α̂n(a), where α̂n is the automorphism of M
dual to αn. This extends naturally to all f ∈ Rd by putting

f · a =
∑

n∈Zd

fn(un · a).

The Rd-module M is called the dual module of α.
This process can be reversed. Suppose that M is a countable Rd-module.

Then XM = M̂ is a compact metrizable group. The Rd-module structure
on M gives an algebraic Zd-action αM on XM , in which αn

M is dual to the
automorphism of M given by multiplication by un.
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Thus via duality there is a one-to-one correspondence between algebraic
Zd-actions and Rd-modules.

An Rd-module is said to be Noetherian if it satisfies the ascending chain
condition on submodules. We call an algebraic Zd-action Noetherian if its
dual module is Noetherian over Rd. Duality shows that α is Noetherian
if and only if whenever X1 ⊃ X2 ⊃ . . . is a descending chain of closed
α-invariant subgroups, then there is an m for which Xk = Xm for all k > m.

An ideal p ⊂ Rd is prime if it is a proper ideal with the property that if
f · g ∈ p, then either f ∈ p or g ∈ p. A prime ideal p ⊂ Rd is associated to
an Rd-module M if there is an a ∈ M such that p = {f ∈ Rd : f · a = 0}. If
M is Noetherian over Rd, then the set asc(M) of associated prime ideals is
finite.

Algebraic Zd-actions of the form αRd/p with p a prime ideal in Rd play
a fundamental role. We call such an action a prime action. If αM is an
algebraic Zd-action with dual module M , then the prime actions αRd/p for
p ∈ asc(M) are the associated prime actions of αM . The associated prime
actions of an algebraic Zd-action carry much of the information about its
dynamical behavior.

To illustrate this point, let us characterize those algebraic Zd-actions
having the important finiteness property of expansiveness, a result due to
Schmidt [28, Thm. 6.5]. Recall that α is called expansive if there is a neigh-
borhood U of the identity 0X in X such that

⋂

n∈Zd

αn(U) = {0X}.

Introduce the notations S = {z ∈ C : |z| = 1}, C× = Cr {0}, and

VC(p) = {z ∈ (C×)d : f(z) = 0 for every f ∈ p}.
Theorem 3.1. Let M be an Rd-module and αM be the corresponding alge-
braic Zd-action. If αM is expansive then it is Noetherian.

Assume now that αM is Noetherian, and let asc(M) be the finite set of
its associated prime ideals. Then the following are equivalent:

(1) αM is expansive.
(2) αRd/p is expansive for every p ∈ asc(M).
(3) VC(p) ∩ Sd = ∅ for every p ∈ asc(M).

The following result shows that expansiveness is “exact.” One direction
is proved in [28, Cor. 6.15], and the other uses a simple argument in the
proof of [6, Lemma 4.8].

Proposition 3.2. Let α be an algebraic Zd-action on X, and let K be a
closed α-invariant subgroup of X. Then the action α is expansive if and only
if the restriction αK of α to K is expansive and the induced action αX/K of
α on X/K is expansive.

It is often informative to examine a notion of expansiveness along sub-
spaces of Rd (see [4] for details). Let H be a hyperplane of dimension d− 1
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in Rd. Say that α is expansive along H if there is a neighborhood U of 0X

and a ball B(r) around 0 in Rd such that
⋂

n∈(H+B(r))∩Zd

αn(U) = {0X}.

We let Nd−1(α) denote the set of all hyperplanes along which α is not ex-
pansive. According to [4], if X is infinite then Nd−1(α) is a closed nonempty
subset of the compact Grassman manifold of hyperplanes, and it determines
all lower dimensional expansive behavior. For algebraic actions, this set is
computed explicitly in [6].

There is another place where prime actions arise. If M is a Noetherian
Rd-module, then it is easy to find a chain of submodules

(3.1) 0 = M0 ⊂ M1 ⊂ M2 ⊂ · · · ⊂ Mr−1 ⊂ Mr = M

such that Mj/Mj−1
∼= Rd/qj for 1 6 j 6 r, where each qj is a prime ideal

containing one of the associated prime ideals of M (see [28, Prop. 6.1]). Dual
to this filtration is a reversed chain of closed αM -invariant subgroups

(3.2) XM = X0 ⊃ X1 ⊃ X2 ⊃ · · · ⊃ Xr−1 ⊃ Xr = {0},
where Xj is the annihilator of Mj in X, and the induced action of αM on
Xj−1/Xj is isomorphic to the prime action αRd/qj

. In this sense an arbi-
trary Noetherian algebraic Zd-action can be built up as a finite succession
of extensions by prime actions.

Although the prime ideals qj appearing in the successive quotients in
(3.1) are not necessarily unique, we will see in Proposition 8.3 that there is
a strong relation between them and asc(M).

4. Rank one actions

We introduce two notions of rank one for algebraic Zd-actions together
with a closely related notion of irreducibility.

Definition 4.1. Let α be an algebraic Zd-action.
(i) α has entropy rank one if h(αn) < ∞ for all n ∈ Zd.
(ii) α has expansive rank one if there exists an n ∈ Zd such that αn is

an expansive transformation.
(iii) α is irreducible if every proper closed α-invariant subgroup is finite.

Remarks 4.2. (1) See [6] for a more general discussion of expansive rank
and entropy rank (with a slightly different definition of entropy rank which
is equivalent in the expansive case). For more information about irreducible
actions and their properties see [7], [13], [15], and [28, Section 29].

(2) More generally say that α has entropy rank k if the restriction of α
to every subgroup of Zd of rank k has finite entropy, and k is minimal with
this property. Then entropy rank zero corresponds to X being finite. Thus
the property defined in Definition 4.1(i) should really be termed “entropy
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rank at most one,” but it is convenient to use the briefer term here. An
analogous remark applies to expansive rank.

Proposition 4.3. If an algebraic Zd-action has expansive rank one, then it
also has entropy rank one.

Proof. Choose n so that αn is expansive. Then by [4, Thm. 6.3] or [29]
it follows that h(αm) < ∞ for every m ∈ Zd, so that α has entropy rank
one. ¤

The converse of Proposition 4.3 is false. For example, the identity au-
tomorphism on an infinite compact group has entropy rank one but not
expansive rank one. Less trivially, so does an ergodic toral automorphism
which has some eigenvalues of modulus one. Example 7.4 of [6] gives an
interesting algebraic Z3-action of expansive rank three and entropy rank
two.

We next characterize rank one in terms of the associated prime actions.
The case when X is connected is treated in [7, Theorem 4.4]; the argument
here for the general case is similar.

Proposition 4.4. Let αM be a Noetherian algebraic Zd-action. Then αM

has entropy rank one if and only if each of its associated prime actions αRd/p

for p ∈ asc(M) has entropy rank one. Similarly, αM has expansive rank one
if and only if each associated prime action αRd/p has expansive rank one.

Proof. First suppose that αM has entropy rank one. Let p ∈ asc(M). Then
p = {f ∈ Rd : f · a = 0} for some a ∈ M , and so Rd/p ∼= Rd · a ⊂ M . By
duality, αRd/p is a quotient of αM . Hence h(αn

Rd/p) 6 h(αn
M ) < ∞ for all

n ∈ Zd, so that αRd/p has entropy rank one.
Conversely, suppose that for each p ∈ asc(M) the associated prime action

αRd/p has entropy rank one. The restriction αXj−1/Xj
of αM to a partial

quotient Xj−1/Xj from the filtration (3.2) is isomorphic to the prime action
αRd/qj

, where qj contains some p ∈ asc(M). The surjection Rd/p → Rd/qj

dualizes to an inclusion XRd/qj
→ XRd/p. Hence for every n ∈ Zd we have

that
h(αn

Xj−1/Xj
) = h(αn

Rd/qj
) 6 h(αn

Rd/p) < ∞.

Repeated use of Yuzvinsky’s addition formula (see [19] or [28, Thm. 14.1])
then shows that

h(αn
M ) =

r∑

j=1

h(αn
Xj−1/Xj

) < ∞

for every n ∈ Zd, so that αM has entropy rank one.
Now suppose that αM has expansive rank one, so that αn

M is expansive
for some n ∈ Zd. Let p ∈ asc(M). As before, αRd/p is a quotient of αM . By
Proposition 3.2, αn

Rd/p is expansive, and so αRd/p has expansive rank one for
every p ∈ asc(M).
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Conversely, suppose that αRd/p has expansive rank one for every p ∈
asc(M). We will see in Propositions 7.1 and 7.2 that αm

Rd/p is expansive
except for those m lying in a finite union of hyperplanes in Rd. It follows
that there is an n ∈ Zd for which αn

Rd/p is expansive for all p ∈ asc(M).
Then repeated application of Proposition 3.2 to the filtration (3.2) shows
that αn

M is expansive, so that αM has expansive rank one. ¤

The analogue of Proposition 4.4 for entropy rank greater than one can fail,
because the set of nonexpansive hyperspaces can have nonempty interior.

Example 4.5. Consider the Z3-action αR3/p, where p = 〈1+u1+u2, u3−2〉,
treated in [6, Example 5.8], which the reader should consult for details.
This action has expansive rank two, yet the set N2(αR3/p) of nonexpansive
2-planes has nonempty interior. Hence there are a finite number of prime
ideals pj , each obtained from p by a coordinate change of monomials in R3,
such that every 2-plane is nonexpansive for at least one of the αR3/pj . Let
M =

⊕
j R3/pj . Then αM has expansive rank three, but all of its associated

prime actions αR3/pj
have expansive rank two.

There exist non-Noetherian actions having entropy rank one.

Example 4.6. Let A =
[
1 1
1 0

]
, and consider M = Q2 as an R1-module

via u1 · q = Aq. Then Mn = (n!)−1Z2 is a strictly increasing sequence
of R1-submodules whose union is M , showing that M is not Noetherian
over R1. However, XMj+1 is a finite extension of XMj for j > 1, and so αM

has entropy rank one.

This example works because each intermediate group is a zero entropy
extension of its predecessor. But are there examples of non-Noetherian
actions of entropy rank one where the action on successive quotients has at
least one element with positive entropy? Answering this question turns out
to be equivalent to answering Lehmer’s Problem, which has been open for
almost 70 years. According to [18], the original number-theoretic version of
Lehmer’s Problem can be reformulated as follows.

Problem 4.7 (Lehmer). For every ε > 0 is there an automorphism φ of a
compact abelian group for which 0 < h(φ) < ε?

To see the equivalence between these problems, first suppose that M1 ⊂
M2 ⊂ . . . is an increasing chain of Noetherian Rd-modules such that for
every j there is an n ∈ Zd for which h(αn

Mj+1/Mj
) > 0. Using prime filtrations

of the form (3.1), we may assume that Mj+1/Mj
∼= Rd/qj for prime ideals qj .

Anticipating our results on entropy, our assumption that h(αn
Rd/qj

) > 0
for some n is equivalent to the existence of a nonzero Lyapunov vector
vj ∈ L(αRd/qj

) for all j > 1. It is then easy to see that there is an n ∈ Zd

for which n · vj > 0 for infinitely many j. The addition formula for entropy
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shows that

h(αn
M ) = h(αn

M1
) +

∞∑

j=1

h(αn
Rd/qj

) < ∞,

and h(αn
Rd/qj

) > n ·vj > 0 for infinitely many j. Hence for every ε > 0 there
is a j for which 0 < h(αn

Rd/qj
) < ε, showing that the answer to Lehmer’s

Problem would be affirmative. Conversely, if Lehmer’s problem has an af-
firmative answer, it is easy to use a direct product of a countable number of
automorphisms with summable positive entropies having the desired non-
Noetherian and entropy properties.

Rather than formulate our results as conditional on Lehmer’s Problem,
which may not confer any essentially new generality, we will confine our
attention to Noetherian actions.

5. Algebraic preliminaries

We sketch here the algebraic ideas needed to describe the structure of
algebraic Zd-actions of entropy rank one. For more algebraic background see
[5] and [10]. Detailed accounts of global fields and local fields are contained
in [25] and [31].

An integral domain D has characteristic zero if n · 1D 6= 0D for all n > 1,
in which case we write charD = 0. It has characteristic p if p · 1D = 0D for
some prime number p > 2, denoted by charD = p. In the latter case we
also say that D has positive characteristic.

By definition we require that all prime ideals p in Rd be proper. Observe
that p is prime if and only if Rd/p is an integral domain. If p ∩ Z = {0},
then charRd/p = 0, and XRd/p is a connected topological group whose
topological dimension we denote by dimXRd/p > 1. If p ∩ Z = pZ for a
prime p, then charRd/p = p, and XRd/p is totally disconnected, or equiva-
lently, dimXRd/p = 0.

If K is an extension field of F, the transcendence degree trdegFK is the
maximal number of elements in K that are algebraically independent over F.
For a prime ideal p in Rd, let K denote the fraction field of Rd/p. If
charRd/p = 0, we define trdegQRd/p to be trdegQK, while if charRd/p = p
we put trdegFp

Rd/p to be trdegFp
K.

The Krull dimension of a ring R is the length r of the longest chain
p0 ( p1 ( · · · ( pr of prime ideals in R. The following result clarifies the
relationship between transcendence degree and Krull dimension for quotients
Rd/p. Roughly speaking, it says that the set of prime ideals p in Rd consists
of d+1 layers with respect to inclusion, where the kth layer consists of those
p for which kdimRd/p = d + 1− k.

Proposition 5.1. The ring Rd has Krull dimension kdimRd = d+1. Every
prime ideal p is contained in a maximal chain

〈0〉 ( p1 ( · · · ( pk = p ( · · · ( pd+1
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of prime ideals pj. Its position k is the same for all such chains and is given
by k = d + 1− kdimRd/p.

If charRd/p = 0 then kdimRd/p = 1+trdegQRd/p, while if charRd/p =
p then kdimRd/p = trdegFp

Rd/p.
Every maximal ideal m ⊂ Rd has finite index, and Rd/m is a finite field.

A prime ideal p satisfies kdimRd/p = 1 if and only if |Rd/p| = ∞ and
|Rd/a| < ∞ for every ideal a ) p.

Proof. Almost all of this is standard commutative algebra for polynomial
rings. The only differences are the use of integer coefficients (which con-
tributes the extra 1 in kdimRd/p in characteristic zero), and the use of
Laurent polynomials (easily handled by forming fractions from Z[u1, . . . , ud]
using the multiplicative set of monomials for denominators).

Although there are elementary arguments for the statements in the first
two paragraphs, they also follow from the observation that Rd is a Cohen-
Macaulay ring [5, Prop. 18.9], and therefore universally catenary [5, Cor. 18.10].

For the last paragraph, first observe that if m is a maximal ideal, then
Rd/m is a field that is finitely generated over Z as a ring, and is therefore
finite. Next, suppose that kdimRd/p = 1, and let a ) p be an ideal.
Considered as an Rd/p-module, Rd/a has a prime filtration as in (3.1),
where each quotient Mj/Mj−1

∼= Rd/mj for some maximal ideal mj . Hence
Mj/Mj−1 is finite for every j, and therefore so is Rd/a. Conversely, suppose
that p is a prime ideal such that |Rd/a| < ∞ for every ideal a ) p. Let q
be a prime ideal with q ) p. Then Rd/q is a finite integral domain, hence a
field, so that q is maximal. Hence kdimRd/p = 1. ¤

An absolute value | · | on a field K is a function | · | : K → R such that
there is a constant C so that for all a, b in K we have that

(i) |a| ≥ 0 and |a| = 0 if and only if a = 0,
(ii) |ab| = |a| |b|, and
(iii) |a + b| ≤ C max(|a|, |b|).

If instead of (iii) the stronger property |a + b| ≤ max(|a|, |b|) holds, we say
that | · | is a nonarchimedean absolute value; otherwise | · | is archimedian.
We will always assume that | · | is non-trivial, namely that |a| 6= 0, 1 for some
a ∈ K. Two absolute values | · |1 and | · |2 are called equivalent if the metrics
they induce on K give the same topology. This is the case exactly when
there is a positive constant κ such that | · |1 = | · |κ2 . An equivalence class of
absolute values is called a place on K. Places are denoted by letters like v
and w, and the set of all places on K is denoted by P(K). If v ∈ P(K), we
let Kv denote the completion of K with respect to any absolute value in v;
this is well-defined since absolute values in v give equivalent metrics on K.

A global field K is a finite field extension of either Q, in which case K is
also called an algebraic number field, or of Fp(t), where K is called a function
field over Fp. A local field k is the completion k = Kv of a global field with
respect to a place v ∈ P(K).
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Ostrowski’s Theorem [25, Thm. 4-30 (i)] states that every place on Q is
either the infinite place ∞ corresponding to the usual absolute value | · |∞,
or the place p corresponding to the p-adic absolute value | · |p for some prime
number p, defined by |m pk/n|p = p−k where p - mn. Places of the second
type are called finite places. The local fields for Q are therefore Q∞ = R
and the p-adic fields Qp.

Similarly, by [25, Theorem 4-30 (ii)] every place on Fp(t) is either the
infinite place ∞ defined by

∣∣∣∣
f

g

∣∣∣∣
∞

= pdeg f−deg g, where f, g ∈ Fp[t],

or the place r defined for an irreducible polynomial r ∈ Fp[t] by

(5.1)
∣∣∣∣
f

g
rk

∣∣∣∣
r

= q−k, where f, g ∈ Fp[t], r - fg, and q = pdeg r.

In this case the infinite place ∞ is determined by some choice of transcen-
dental element in Fp(t), and we choose this element to be t. Then | · |∞ is
defined by (5.1) where r = 1/t, and so we say that 1/t is the infinite prime
in Fp(t). The completion Fp(t)t of Fp(t) with respect to the place defined
by using r = t in (5.1) is isomorphic to the field Fp((t)) of Laurent series in t
defined by

Fp((t)) =
{ ∞∑

j=n

ajt
j : n ∈ Z, aj ∈ Fp

}
.

If r ∈ Fp[t] is irreducible, then Fp(t)r is isomorphic to Fq((u)), where q =
pdeg r, while Fp(t)∞ = Fp(t)t−1

∼= Fp((t−1)).
Let K be a global field, and let F be the field Q or Fp(t) according to the

characteristic of K. Let w be a place on K and let | · | be an absolute value
from w. The restriction of | · | to F defines an absolute value and therefore
a place v for F. We say that w lies above v. For each place on F, there is at
least one but only finitely many places lying above it. We put

P∞(K) = {w ∈ P(K) : w lies above ∞},
and call elements of P∞(K) the infinite places of K. We also define P0(K) =
P(K) r P∞(K), whose elements are the finite places of K. If charK = 0
then a place w lies above ∞ if and only if the corresponding local field Kw

is isomorphic to R or C, or, equivalently, w is archimedian. Note that when
charK > 0, all places, including ∞, are nonarchimedian.

Every local field is locally compact and nondiscrete. In fact, the classifica-
tion theorem [25, Thm. 4-12] shows that every nondiscrete locally compact
field is isomorphic to either a finite extension of R, or of Qp, or of Fp((t)).
Thus the class of nondiscrete locally compact fields coincides with that of
local fields.

Therefore a local field k has a Haar measure µk. For 0 6= a ∈ k the
automorphism x 7→ ax multiplies Haar measure by a fixed number denoted
modk(a), so that µk(aE) = modk(a)µk(E) for every compact set E ⊂ k.
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We define modk(0) = 0. It turns out that |a|k = modk(a) is an absolute
value on k, which is the one we will always use. This choice agrees with the
absolute values on Q and Fp(t) defined above. It also provides the correct
normalization of absolute values for the product formula for global fields K,
which asserts that

(5.2)
∏

v∈P(K)

|a|v = 1 for every a ∈ K×.

Let K be a global field and P(K) be its set of places. Define the adele
group AK of K to be

AK =
{
(av) ∈

∏

v∈P(K)

Kv : |av|v 6 1 for almost every v ∈ P0(K)
}
.

There is a restricted direct product topology on AK making it a locally
compact group with coordinate-wise operations [25, Sec. 5.1]. The diagonal
embedding i : K→ AK is defined by i(a)v = a for all v ∈ P(K). It turns out
that i(K) is discrete and cocompact in AK [25, Thm. 5-11]. This will be the
key to using adeles to determine the group XRd/p.

6. Structure theorem for prime actions

In this section we show that a prime action αRd/p of entropy rank one is
algebraically conjugate to a diagonal action β on a finite product of local
fields modulo a β-invariant discrete cocompact subgroup. This structure
results from the crucial observation that the quotient field K of Rd/p is a
global field, and then applying the adelic machinery described in the previous
section to the finite set Sp of places v on K for which Rd/p is unbounded
in Kv. The required conjugacy from αRd/p to β is then dual to the diagonal
embedding Rd/p → ∏

v∈Sp
Kv, and we invoke self-duality for local fields

to complete the description. Several examples show how this conjugacy
works for actions on tori and solenoids. In positive characteristic, it allows
us to locally decompose examples like Ledrappier’s into a direct product
of Laurent power series local fields over a finite field, leading to explicit
“eigenspaces” for such actions.

We first relate entropy rank one, Krull dimension, and global fields.

Proposition 6.1. Let p be a prime ideal in Rd and K be the quotient field
of Rd/p.

(1) kdimRd/p = 0 iff p is a maximal ideal in Rd iff Rd/p is a finite
field.

(2) kdimRd/p = 1 iff K is a global field.
(3) αRd/p has entropy rank one iff kdimRd/p = 0 or 1.

Proof. (1) The definitions show that kdimRd/p = 0 iff p is a maximal ideal
in Rd iff Rd/p is a field. Any field that is finitely generated as an algebra
over Z is finite, and any finite integral domain is a field.
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(2) First consider the case charRd/p = 0. By Proposition 5.1, kdimRd/p =
1 iff trdegQK = 0 iff K is global. Now assume that charRd/p = p > 0. Then
by Proposition 5.1, kdimRd/p = 1 iff trdegFp

K = 1, and Noether normaliza-
tion shows that the latter is equivalent to the existence of a transcendental
element u ∈ K such that K is a finite integral extension of Fp(u), which is
the same as K being global.

(3) The proof that kdimRd/p = 1 implies that αRd/p has entropy rank one
follows immediately from the adelic framework we will develop. However,
we give here a direct proof of both directions.

First consider the case charRd/p = p > 0. Then kdimRd/p = trdegFp
K.

If kdimRd/p > 2, there are distinct monomials um and un in Rd/p that
are algebraically independent. It follows that the subring N that they gen-
erate, considered as a module over Fp[u±n], is isomorphic to a direct sum
of countably many copies of Fp[u±n]. Thus αn

N is the product of infinitely
many p-shifts, and so h(αn

N ) = ∞. Since XN is a quotient of XRd/p, we see
that h(αn

Rd/p) = ∞, and so αRd/p does not have entropy rank one.
Continuing with the case charRd/p = p > 0, suppose that trdegFp

K 6 1.
Fix n ∈ Zd. If un is algebraic in K over Fp, then Rd/p is an increasing union
of finite subgroups, each invariant under multiplication by un. Therefore
XRd/p is the inverse limit of finite quotients by subgroups invariant under
αn

Rd/p, so that h(αn
Rd/p) = 0. Next, suppose that un is transcendental in

K over Fp. Since trdegFp
K 6 1, the image of every monomial uk in K is

algebraic over the subfield Fp(un). Hence K has finite dimension m over
Fp(un). Pick f1, . . . , fm ∈ Rd/p that are linearly independent over Fp(un),
and let N be the Fp[u±1]-submodule of K that they generate. Then αn

N is
isomorphic to a product of m copies of the full p-shift, so that h(αn

N ) = m ·p.
Now K is the increasing union of multiples Nj = ajN of N with finite
quotients Nj+1/Nj , so that h(αn

K) = m · p. Hence h(αn
Rd/p) 6 h(αn

K) < ∞,
showing that αRd/p has entropy rank one.

Next, consider the case charRd/p = 0, so that by Proposition 5.1 we
have trdegQK = kdimRd/p − 1. First suppose that kdimRd/p 6 1. The
case kdimRd/p = 0 cannot arise in characteristic zero, so assume that
kdimRd/p = 1. Then K is algebraic over Q. The images cj of uj in the
quotient field K can therefore be considered as algebraic numbers,

Rd/p ∼= Z[c±1
1 , . . . , c±1

d ] ⊂ K = Q(c1, . . . , cd),

and multiplication by un corresponds to multiplication by cn = cn1
1 · · · cnd

d
in K . Let k = dimQK and choose a basis for K over Q. Multiplication on
K by cn has a rational matrix A with respect to this basis. Then αn

Rd/p is a

quotient of the dual Â on K̂ ∼= Q̂k, and h(Â) < ∞ by [20]. Thus αRd/p has
entropy rank one.

Finally, suppose that kdimRd/p > 2. Then some monomial un must
be transcendental. Hence Z[u±n] ⊂ Rd/p is invariant under α̂n

Rd/p, which
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means via duality that αn
Rd/p has a quotient that is the full shift on TZ, and

so h(αn
Rd/p) = ∞. ¤

Let p be a prime ideal in Rd such that kdimRd/p = 1. Then by the above
the quotient field K of Rd/p is a global field, and let P(K) denote its set of
places. Recall that for each v ∈ P(K) we choose the absolute value | · |v in
v defined by |a|v = modKv(a). For a given v ∈ P(K), we say that Rd/p is
v-unbounded if there is an a ∈ Rd/p for which |a|v > 1. Put

Sp = {v ∈ P(K) : Rd/p is v-unbounded}.
Since Rd/p is finitely generated, Sp is a finite subset of P(K), and it always
contains P∞(K).

Define the adele group of Rd/p to be

ARd/p =
∏

v∈Sp

Kv,

and the diagonal embedding i : K → ARd/p by i(a)v = a for all a ∈ K and
v ∈ Sp. Our goal is to show that i(Rd/p) is discrete and cocompact in ARd/p.

To do this, introduce

(6.1) Tp = {a ∈ K : |a|v 6 1 for all v ∈ P(K)r Sp},
sometimes called the ring of Sp-units in K.

Proposition 6.2. Let p be a prime ideal in Rd such that kdimRd/p = 1,
let K be the quotient field of Rd/p, and define the ring Tp of Sp-units in K
by (6.1).

(1) Tp is the integral closure of Rd/p in K.
(2) Tp is finitely generated over Rd/p.
(3) i(Tp) is discrete and cocompact in ARd/p, and therefore so is i(Rd/p).

Proof. Statement (1) follows from the characterization of integral closure
of a domain in terms of valuations [10, Thm. 10.8]. Statement (2) is a
consequence of the finiteness of the integral closure for affine domains (see
[5, Cor. 13.13], which also applies to finitely generated algebras over Z).

Let j : K→ AK denote the diagonal embedding of K into its adele group,
and retain the notation i : Rd/p → αRd/p for the restricted diagonal embed-
ding defined above. By [25, Thm. 5-11], j(K) is discrete and cocompact
in AK. Hence there is a compact set C ⊂ AK such that C + j(K) = AK.
Let BKv(r) denote the ball of radius r around 0 in Kv. By definition of the
restricted product topology on AK, there is a finite set F ⊃ P∞(K) of places
and an r > 0 such that

C ⊂
∏

v∈F

BKv(r) ×
∏

v∈P(K)rF

BKv(1).

The Approximation Theorem [25, Thm. 5-8] shows that there is an a ∈ K×
such that |a|v < 1/r for all v ∈ FrSp and |a|v 6 1 for all v ∈ P(K)r(F∪Sp).
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Hence there is an s > 0 such that

aC ⊂
∏

v∈Sp

BKv(s) ×
∏

v∈P(K)rSp

BKv(1),

and clearly aC + j(K) = AK. Put D =
∏

v∈Sp
BKv(s), which is obviously

compact. We claim it also has the property that i(Tp) + D = ARd/p. For
suppose that x = (xv)v∈Sp ∈ ARd/p. Extend x to an element y ∈ AK by
putting yv = xv for all v ∈ Sp and yv = 0 for all v /∈ Sp. Since aC +
j(K) = AK, there exists an element b ∈ K such that y − j(b) ∈ aC. Then
|b|v 6 1 for all v /∈ Sp, so that b ∈ Tp. Hence x − i(b) ∈ D, showing that
i(Tp) + D = ARd/p, as claimed.

Finally, since Tp is finitely generated over Rd/p, there is an b ∈ K× for
which bTp ⊂ Rd/p. Thus i(Rd/p) is trapped between the two cocompact
discrete subgroups i(bTp) and i(Tp), so itself must be discrete and cocompact.

¤

We next describe the self-duality of local fields.

Proposition 6.3. Let k be a local field, and for a ∈ k define φa : k→ k by
φa(x) = ax. There is a topological isomorphism identifying k̂ with k such
that the dual map φ̂a corresponds to φa.

Proof. Fix a nonzero character χ ∈ k̂. For b ∈ k define the character χb

by χb(a) = χ(ba). Then the correspondence b ↔ χb is a topological iso-
morphism between k and k̂ (see [31, Thm. II.5.3]). Clearly χb

(
φa(x)

)
=

χ(bax) = χφa(b)(x), so that φ̂a is identified with φa. ¤

Using Proposition 6.1, the following result implies Theorem 2.1, our main
result on the structure of prime actions of entropy rank one.

Theorem 6.4. Let p be a prime ideal of Rd such that kdimRd/p = 1. Then
there is a diagonal action β on the adele group ARd/p and a β-invariant
discrete cocompact subgroup Λ ⊂ ARd/p, such that αRd/p is algebraically
conjugate to the quotient action of β on ARd/p/Λ.

Proof. Abbreviate ARd/p by A. By Proposition 6.2, the image i(Rd/p) ⊂ A
is discrete and cocompact. Let Λ be the annihilator of i(Rd/p) in A. Then
Λ is also discrete and cocompact. The dual of the inclusion i : Rd/p → A is
the quotient Â→ Â/Λ ∼= ∏

v∈Sp
K̂v/Λ = XRd/p. Finally, by Proposition 6.3,

K̂v is identified with Kv, and under this identification αRd/p corresponds to
a diagonal action β on Â/Λ. ¤
Example 6.5. (Single toral automorphism) Let d = 1 and p = 〈u2

1−u1−1〉.
The roots of the generator for p are ξ = (1 +

√
5)/2 and ξ′ = (1 − √5)/2.

Hence R1/p ∼= Z[ξ], and its quotient field is K = Q(
√

5). Since ξ is an
algebraic unit, R1/p is v-bounded for all finite places on K. There are
exactly two infinite places ∞1 and ∞2 on K, corresponding to the two
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real embeddings of K. These are given by |a + b
√

5|∞1 = |a + b
√

5|R and
|a + b

√
5|∞2 = |a − b

√
5|R, where a, b ∈ Q and | · |R is the usual absolute

value. Thus here Sp = {∞1,∞2}, and so

AR1/p = K∞1 ×K∞2
∼= R2.

The diagonal embedding of R1/p into AR1/p has image corresponding to the
lattice Λ in R2 generated by (1, 1) and (ξ, ξ′). Thus αR1/p corresponds to

the Z-action on the torus AR1/p/Λ ∼= T2 generated by the matrix
[
0 1
1 1

]
.

Example 6.6. (Commuting toral automorphisms) Let d = 2 and p = 〈u2
1−

2u1 − 1, u2
2 − 4u2 + 1〉. The roots of the first polynomial are ξ = 1 +

√
2

and ξ′ = 1−√2, and those of the second are η = 2 +
√

3 and η′ = 2−√3.
All of these are algebraic units. Then R2/p ∼= Z[ξ, η] = Z[

√
2,
√

3], and
K = Q(

√
2,
√

3). As in the previous example, R2/p is v-bounded for all finite
places v on K. There are exactly four infinite places ∞σ on K, one for each
element σ in the Galois group G of K over Q, defined by |a|∞σ = |σ(a)|R.
Hence Sp = {∞σ : σ ∈ G}, and

AR2/p =
∏

σ∈G

K∞σ
∼= R4.

Then i(R2/p) is a lattice in AR2/p and the quotient is isomorphic to T4. Using
this lattice the Z2-action αR2/p is generated by the toral automorphisms A
and B given by

A =




0 0 1 0
0 0 0 1
1 0 2 0
0 1 0 2


 , B =




0 −1 0 0
1 4 0 0
0 0 0 −1
0 0 1 4


 .

Example 6.7. (Commuting solenoidal automorphisms) Let d = 2 and p =
〈u1 − 2, u2 − 3〉. Then R2/p ∼= Z[1/6], K = Q, and αR2/p is the natural
extension of the N2-action on T generated by multiplication by 2 and by 3.
Hence R2/p is unbounded exactly at the places 2, 3, and ∞ on Q, so that
Sp = {2, 3,∞} and AR2/p = Q2 × Q3 × R. Then XR2/p is the quotient of
AR2/p modulo the invariant lattice i(R2/p), and so is locally the product of
the 2-adics, the 3-adics, and the reals.

This local product structure for solenoids was first developed in [20] to
explain Yuzvinsky’s formula for the entropy of solenoidal automorphisms.
Shortly thereafter, Katok and Spatzier [14] used these ideas to, among other
things, give a geometric understanding of Rudolph’s result [26] about mea-
sures on T simultaneously invariant under ×2 and ×3.

Example 6.8. (Ledrappier’s example) Our adelic viewpoint allows us to
take apart Ledrappier’s example to see what makes it tick. Let d = 2 and
p = 〈2, 1 + u1 + u2〉. Then

(6.2) XR2/p
∼= {

x ∈ (Z/2Z)Z
2

: xi,j + xi+1,j + xi,j+1 = 0 for all i, j ∈ Z}
.
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Here charR2/p = 2. Then R2/p ∼= F2[t±1, (1 + t)−1], where the isomor-
phism is defined by u1 7→ t and u2 7→ 1 + t. The quotient field is K = F2(t).
The only places on K where R2/p is unbounded are the finite places cor-
responding to the polynomials t and 1 + t, together with the infinite place
corresponding to t−1, so that Sp = {t, 1 + t, t−1}. Thus

AR2/p = F2(t)t × F2(t)1+t × F2(t)t−1
∼= F2((t))× F2((1 + t))× F2((t−1)).

Each of these three completions of F2(t) induces a subgroup of XR2/p.
Let us first describe this subgroup explicitly for the place t. Since we are
in characteristic 2, it is convenient to write characters on F2((t)) additively
with values in F2, consistent with the isomorphism in (6.2). Define the ba-
sic character χ ∈ F2((t))̂ by χ

(∑∞
j=−n ajt

j
)

= a0 ∈ F2. For f ∈ F2((t))
define χf ∈ F2((t))̂by χf (g) = χ(fg). As in Proposition 6.3, the correspon-
dence f ↔ χf identifies F2((t)) with its dual group. Thus each f ∈ F2((t))
corresponds to a point we call xf ∈ XR2/p, defined by

(xf )(m,n) = χf (um
1 un

2 ) = χf (tm(1 + t)n) = χ(tm(1 + t)nf).

Note, for example, that when n < 0 we use the Laurent expansion (1+t)−1 =
1 + t + t2 + t3 + . . . in F2((t)) when defining xf . Explicitly, if f = a0 + a1t +
a2t

2 + . . . , a portion of the corresponding point xf is shown in Figure 1(a).
In Figure 1(b) we depict the overall structure of such points. There is a half-
space of 0’s on the right, bordered by a line of 1’s, and the double-hatched
half-line of coordinates, corresponding to the coefficients of f , determines
the rest of the point in the single-hatched half-space.

Figure 1. Points corresponding to the completion at the place t

Carrying out a similar analysis for the places 1+t and t−1 yields points in
XR2/p having structures depicted in Figure 2(a) and (b), respectively. For
each there is a half-space of 0’s, bordered by a line of 1’s, and the double-
hatched half-line of coordinates determines the rest of the coordinates.

This analysis shows that Ledrappier’s example has the same formal struc-
ture as a Z2-action by automorphisms of T3, except that the local field R has
been replaced by three isomorphic copies of the local field F2((t)). For exam-
ple, let Xt denote the image of F2((t))×0×0 ⊂ AR2/p in AR2/p/Λ. Similarly
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Figure 2. Points corresponding to the completions at the
places 1 + t and t−1

define X1+t and Xt−1 using the other two factors. Then XR2/p is locally the
direct product of these three subgroups, which play the role of “eigenspaces”
for the action. Explicitly, suppose that x ∈ XR2/p is close to 0, so that x
contains a large triangle of 0’s with the origin well within its interior. To
find the projection of x to Xt, use the coordinates x−n,0 of x for n > 0
together with the half-space of 0’s bordered by 1’s matching the left-hand
boundary of the triangle of 0’s, to construct a point πt(x) ∈ Xt having the
form shown in Figure 1(b). Construct similar projections π1+t(x) ∈ X1+t

and πt−1(x) ∈ Xt−1 . A simple verification shows that

x = πt(x) + π1+t(x) + πt−1(x)

is the local product decomposition of x. In addition, we can easily recover
the three directional homoclinic groups described in Example 9.5 of [6] as
the three intersections Xt ∩X1+t , Xt ∩Xt−1 , and X1+t ∩Xt−1 .

Example 6.9. (Action defined by a point) Let K be a global field, and
let c = (c1, . . . , cd) ∈ (K×)d. Define the evaluation map ηc : Rd → K by
ηc(f) = f(c). The image of ηc is the subring of Z[c±1

1 , . . . , c±1
d ] of K. We

denote the kernel of ηc by pc, which is prime since ηc maps to a field. Here

Ppc = {w ∈ P0(K) : |cj |w 6= 1 for some j} ∪ P∞(K)

When charRd/pc = 0, the adelic structure has already been used to
provide a description of the action (see [7] or [28, Section II.7]).

7. Characterizations of entropy rank one

This section contains a number of different characterizations of entropy
rank one for prime actions.

We begin with the connected case. Here Q denotes the algebraic closure
of Q.

Theorem 7.1. Suppose that p is a prime ideal in Rd with charRd/p = 0.
Then the following are equivalent.

(1) αRd/p has entropy rank one.
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(2) αRd/p is irreducible.
(3) dimXRd/p < ∞.
(4) There exists a finite product A = k(1)×· · ·×k(m) of local fields k(j) of

characteristic zero, a diagonal Zd-action β on A, and a β-invariant
cocompact discrete subgroup Λ of A, such that αRd/p is conjugate to
the action of β on A/Λ.

(5) kdimRd/p = 1.
(6) trdegQRd/p = 0.
(7) The quotient field K of Rd/p is global.
(8) The vector space Rd/p⊗Q is finite dimensional over Q.
(9) The variety VC(p) is finite.

(10) There exists c ∈ (
Q×

)d such that p = pc = {f ∈ Rd : f(c) = 0}.
If we assume furthermore that αRd/p is expansive, we have three more equiv-
alent conditions.

(11) αRd/p has expansive rank one.
(12) There exists a finite union U of hyperplanes in Rd such that αn

Rd/p

is expansive whenever n /∈ U .
(13) The set Nd−1(αRd/p) of nonexpansive hyperplanes is finite.

Proof. By Proposition 6.1, (1), (5) and (7) are equivalent, and by Proposi-
tion 5.1 (6) and (7) are equivalent. Standard algebraic arguments show that
(6), (8), (9), and (10) are equivalent. Equivalence of (1) and (2) follows from
[7, Thm. 4.4]. By [7, Thm. 3.4], (2) implies (4), which obviously implies (3)
since local fields have finite topological dimension. By [28, Cor. 7.4], (3) im-
plies (10), completing the proof that the first ten statements are equivalent.

Assume furthermore that αRd/p is expansive. Equivalence of (12) and (13)
follows from [4, Thm. 3.6], and clearly (12) implies (11). By Proposition 4.3,
(11) implies (1). Now assume that (4) holds. Let β be the diagonal action
on A having the form

(7.1) βn(a(1), . . . , a(m)) =
(
cna(1), . . . , cna(m)).

Since αRd/p is assumed expansive, and expansiveness for algebraic actions is
determined locally at 0, each vector

(7.2) v(j) =
(
log |c1|k(j) , . . . , log |cd|k(j)

) 6= 0.

Let H(j) be the orthogonal complement of v(j) in Rd. Then the union U of
the hyperplanes H(1), . . . , H(m) satisfies (12). ¤

In the case of positive characteristic some conditions in the previous
proposition do not make sense, but expansiveness is guaranteed. The case
when Rd/p is finite has already been dealt with in Proposition 6.1. In the
following we let Fp(t) denote the algebraic closure of Fp(t).

Theorem 7.2. Suppose that p is a prime ideal in Rd with charRd/p = p > 0
and |Rd/p| = ∞. Then the following are equivalent
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(1) αRd/p has entropy rank one.
(2) αRd/p is irreducible.
(3) There exists a finite product A = k(1) × · · · × k(m) of local fields k(j)

of characteristic p, a diagonal Zd-action β on A, and a β-invariant
cocompact discrete subgroup Λ of A, such that αRd/p is conjugate to
the action of β on A/Λ.

(4) αRd/p has expansive rank one.
(5) kdimRd/p = 1.
(6) trdegFp

Rd/p = 1.
(7) The quotient field K of Rd/p is global.
(8) There exists c ∈ (

Fp(t)
×)d such that p = {f ∈ Rd | f(c) = 0}.

(9) There exists a finite union U of hyperplanes in Rd such that αn
Rd/p

is expansive whenever n /∈ U .
(10) The set Nd−1(αRd/p) of non-expansive hyperplanes is finite.

Proof. When charRd/p > 0 we know by [6, Prop. 7.3] that entropy rank,
expansive rank, and Krull dimension coincide, so that (1), (4), and (5) are
equivalent. Proposition 5.1 and standard algebraic arguments show that (5),
(6), (7), and (8) are equivalent. Finite αRd/p-invariant subgroups of XRd/p

correspond via duality to ideals of finite index in Rd/p, so that Proposition
5.1 also shows that (2) and (5) are equivalent. Theorem 6.4 shows that (5)
implies (3). By [4, Thm. 3.6], (9) and (10) are equivalent, and (10) clearly
implies (4). Finally, assume (3). Then since αRd/p is expansive, the diagonal
action in (7.1) has nonzero vectors v(j) defined by (7.2), and the argument
that (10) follows is the same as there. ¤

8. Lyapunov vectors

The dynamical behavior of a toral automorphism is largely determined
by the logarithms of the absolute values of its eigenvalues, or its Lyapunov
exponents. For a Zd-action generated by d commuting toral automorphisms,
we need to know the d Lyapunov exponents in each eigenspace, which to-
gether form the components of a Lyapunov vector for the eigenspace. Using
our adelic machinery, we show that these notions make sense for all Noe-
therian algebraic Zd-actions of entropy rank one, and this can be used to
easily compute entropy for individual elements of the action.

Before we start, it is convenient to introduce the notion of list, which
is a collection of elements where multiplicity matters but order does not.
The list containing a1, . . . , an is denoted by 〈a1, . . . , an〉. Thus 〈0, 1, 1〉 =
〈1, 0, 1〉 6= 〈0, 1〉. The union of lists is defined in the obvious way, by joining
them together and preserving multiplicities.

Suppose that αRd/p is a prime action with entropy rank one. By Theorem
2.1, αRd/p is algebraically conjugate to a diagonal action β on a product
k(1) × · · · × k(m) of local fields modulo a β-invariant discrete cocompact
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subgroup. Let β have the form

βei(a(1), . . . , a(m)) = (ξ(1)
i a

(1)
, . . . , ξ

(m)
i a

(m)),

where ξ
(j)
i ∈ k(j). Define

v(j) =
(
log |ξ(j)

1 |k(j) , . . . , log |ξ(j)
d |k(j)

)
,

which we call the Lyapunov vector for β on k(j). Then the Lyapunov list
L(αRd/p) is defined to be

L(αRd/p) = 〈v(1), . . . ,v(m)〉.
If Rd/p is a field, we define L(αRd/p) = ∅.

Examples 8.1. (1) For the single toral automorphism in Example 6.5,
L(αR1/p) = 〈log |ξ|R, log |ξ′|R〉.

(2) For the commuting toral automorphisms in Example 6.6, the Lya-
punov list consists of four vectors (log |σ(ξ)|R, log |σ(η)|R) for σ in the Galois
group G.

(3) The action generated by ×2 and ×3 in Example 6.7 has Lyapunov list

L(αR2/p) = 〈(log |2|Q2 , log |3|Q2), (log |2|Q3 , log |3|Q3), (log |2|R, log |3|R)〉
= 〈(− log 2, 0〉, (0,− log 3), (log 2, log 3)〉.

(4) Ledrappier’s Example 6.8 has Lyapunov list

L(αR2/p) =
〈
(log |t|F2((t)), log |1 + t|F2((t))), (log |t|F2((1+t)), log |1 + t|F2((1+t))),

(log |t|F2((t−1)), log |1 + t|F2((t−1)))
〉

= 〈(− log 2, 0), (0,− log 2), (log 2, log 2)〉.
Suppose now that αM is a Noetherian algebraic Zd-action with entropy

rank one. Let

(8.1) 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mr−1 ⊂ Mr = M, Mj/Mj−1
∼= Rd/qj

be a prime filtration of M . If N is a submodule of M , it is easy to see that
asc(M) ⊂ asc(N) ∪ asc(M/N). Thus asc(M) ⊂ {q1, . . . , qr}. By Proposi-
tion 4.4, each αRd/qj

has entropy rank one. Thus we can define

L(αM ) =
r⋃

j=1

L(αRd/qj
).

Although the list of qj appearing in (8.1) is not necessarily unique, those
qj contributing nonempty lists to L(αM ) always appear, and with the same
multiplicity, in every prime filtration. This is a consequence of the following
algebraic result.

Lemma 8.2. Let M be a Noetherian Rd-module such that kdimRd/p 6 1 for
every p ∈ asc(M). Fix a minimal element p of asc(M). Then the quotient
Rd/p appears, and with the same multiplicity, in every prime filtration (8.1).
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Proof. This is proved in [19], but there is a simpler argument using local-
ization. Let p be a minimal element in asc(M). Localizing (8.1) at p and
using standard identifications, we obtain

0 = (M0)p ⊂ (M1)p ⊂ · · · ⊂ (Mr)p = Mp,

where
(Mj)p/(Mj−1)p

∼= (Mj/Mj−1)p
∼= (Rd/qj)p.

Letting K(p) denote the fraction field of Rd/p, minimality of p shows that

(Rd/qj)p =

{
K(p) if qj = p,
0 if qj 6= p.

Hence the number of j for which Rd/qj
∼= Rd/p equals dimK(p) M ⊗Rd

K(p),
and so is the same for every prime filtration of M . ¤
Proposition 8.3. Let M be a Noetherian Rd-module such that kdim Rd/p 6
1 for every p ∈ asc(M). If

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mr−1 ⊂ Mr = M, Mi/Mi−1
∼= Rd/pi,

0 = N0 ⊂ N1 ⊂ · · · ⊂ Ns−1 ⊂ Ns = M, Nj/Nj−1
∼= Rd/qj

are prime filtrations of M , then
r⋃

i=1

L(αRd/pi
) =

s⋃

j=1

L(αRd/qj
).

Proof. The minimal prime ideals p in asc(M) are the only ones for which
L(αRd/p) is nonempty, so the result follows from Lemma 8.2. ¤

Remark 8.4. The product formula for global fields (5.2) shows that if αRd/p

is a prime action of entropy rank one, then
∑

v∈L(αRd/p) v = 0. Hence for
a general Noetherian action of entropy rank one, the sum of its Lyapunov
vectors is 0.

We can use Lyapunov vectors to compute entropy of elements of an action.
The following result generalizes that classical formula that the entropy of a
toral automorphism with Lyapunov exponents log |λj | is

∑
j max{log |λj |, 0}.

Proposition 8.5. Let α be a Noetherian algebraic Zd-action of entropy rank
one, and let L(α) be its list of Lyapunov vectors. Then for every n ∈ Zd we
have that

(8.2) h(αn) =
∑

v∈L(α)

max{v · n, 0}

Proof. First consider a prime action αRd/p, and let β be the corresponding
diagonal action on k(1) × · · · × k(m). Then βn is uniformly continuous, and
Haar measure is homogeneous in the sense of Bowen [3]. It follows from
[3, Prop. 7] that h(βn) is given by the right side of (8.2), and therefore so
is h(αn

Rd/p). If α = αM is a Noetherian action, then the addition formula
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for entropy (see [19] or [28, Thm. 14.1]), applied to a prime filtration for M ,
shows that (8.2) holds. ¤

Remark 8.6. For an arbitrary topological Zd-action Milnor defined its di-
rectional entropy in the direction of a vector w ∈ Rd (see [22], and further
investigations in [4, Sec. 6]). An easy modification of the previous proof
shows that for a Noetherian algebraic Zd-action α of entropy rank one, its
entropy in direction w is given by

∑
v∈L(α) max{v · w, 0}, and is therefore

a continuous function of the direction. For more on continuity of direction
entropy for general actions Park’s article [23].

9. Volume decrease in local fields

As a preliminary to computing fiber entropy in the next section, here we
compute the rate of fiber volume decrease for a skew product whose fiber is
a local field.

Let (Y, ν) be a measure space, and T : Y → Y be a measurable transfor-
mation preserving ν. Recall that a function f : Y → R is called T -ergodic if
the ergodic averages

f(y) + f(Ty) + · · ·+ f(Tn−1y)
n

→
∫

Y
f dν as n →∞

for ν-almost every y ∈ Y .
Let k be a local field with Haar measure µk and absolute value | · |k. Thus

µk(aE) = |a|kµk(E) for every a ∈ k and compact E ⊂ k. Let g : Y → k×
be measurable. The following result computes the rate of volume decrease
in fibers for the skew product transformation of Y × k defined by (y, a) 7→
(Ty, g(y)a).

Proposition 9.1. Let k be a local field with Haar measure µk and absolute
value | · |k. Let T be a measure-preserving transformation of (Y, ν), and
let g : Y → k× be measurable. Assume that log |g(y)|k is ν-integrable and
T -ergodic. For y ∈ Y and ε > 0 define

DN (ε, y) =
{

a ∈ k :
∣∣∣a

n∏

j=0

g(T jy)
∣∣∣
k

< ε for 0 6 n 6 N − 1
}
.

Then for every ε > 0 and almost every y ∈ Y we have that

lim
N→∞

− 1
N

log µk
(
DN (ε, y)

)
= max

{∫

Y
log |g|k dν, 0

}
.

For the proof we require the following elementary result.

Lemma 9.2. Let {an} be a sequence of real numbers such that an/n → a
as n →∞. Then

max
16n6N

an

N
→ max{a, 0} as n →∞.
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Proof. First suppose that a > 0. Fix ε > 0. There is an M > 0 such that
|an/n − a| < ε for all n > M . Hence max16n6N an/N > aN/N > a − ε for
N > M . Also, for M 6 n 6 N we have that an/N 6 an/n < a + ε, and for
N sufficiently large that an/N < a + ε for 1 6 n 6 M . This completes the
case a > 0.

Now suppose that a 6 0. Fix ε > 0. Clearly max16n6N an/N > a1/N >
−ε for large enough N . Since a 6 0, there is an M such that an/n < ε
for all n > M . If M 6 i 6 N and ai > 0, then ai/N 6 ai/i < ε, while if
an 6 0 then an/N < ε trivially. Thus for all N sufficiently large we see that
max16n6N an/N < ε. ¤
Proof of Proposition 9.1. Let B(r) denote the ball in k of radius r. Clearly

DN (ε, y) =
N−1⋂

n=0

B
(
ε

n∏

j=0

|g(T jy)−1|k
)

= B
(

min
06n6N−1

ε
n∏

j=0

|g(T jy)−1|k
)
.

Hence

µk
(
DN (ε, y)

)
= min

06n6N−1

{
µk

(
B(ε)

) n∏

j=0

|g(T jy)−1|k
}
,

and so

− 1
N

log µk
(
DN (ε, y)

)
= − 1

N
log µk

(
B(ε)

)
+ max

06n6N−1

1
N

n∑

j=0

log |g(T jy)|k.

Since log |g(y)|k is assumed to be T -ergodic, we have for almost every y that

1
n

n−1∑

j=0

log |g(T jy)|k →
∫

Y
log |g|k dν.

Then Lemma 9.2 with the sequence an =
∑n−1

j=0 log |g(T jy)|k shows that

− 1
N

log µk
(
DN (ε, y)

) → max
{∫

Y
log |g|k dν, 0

}

for every ε > 0 and almost every y ∈ Y . ¤

10. Fiber entropies

Let α be an algebraic Zd-action of entropy rank one on a compact abelian
group X. To define skew products with α, let T be a measure-preserving
transformation of (Y, ν) and s : Y → Zd be measurable. Define the skew
product T ×s α on Y ×X by (T ×s α)(y, x) =

(
Ty, αs(y)(x)

)
.

Our goal in the next two sections is to compute the measure entropy
hν×µ(T ×s α) and, in case T and s are continuous, the topological entropy
h(T ×s α).

According to a formula due to Abromov and Rohlin [1] and to Adler [2],
the measure entropy hν×µ(T ×s α) equals hν(T ) plus the integral over Y of
the measure fiber entropies of T ×s α on {y} × X. In this section we first
introduce various topological fiber entropies, and show that they coincide
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and equal the required measure fiber entropy. We then show how to compute
topological (and therefore measure) fiber entropy for prime actions from the
corresponding diagonal action on an adele, by controlling possible wrapping
in the adele modulo the invariant lattice.

In building up a general Noetherian rank one action from prime actions,
we are inevitably led to consider skew products with affine, rather than
automorphism, fiber maps. To describe these, let τ : Y → X be measurable.
Define the affine skew product T ×s

τ α by

(T ×s
τ α)(y, x) =

(
Ty, αs(y)(x) + τ(y)

)
.

Then
(T ×s

τ α)n(y, x) =
(
Tny, αsn(y)(x) + τn(y)

)
,

where
sn(y) = s(y) + s(Ty) + · · ·+ s(Tn−1y)

and

τn(y) =
n∑

j=1

αsn−j(T
jy)τ(T j−1y).

Thus
(T ×s

τ α)n = Tn ×sn
τn

α.

Define the affine maps An
y on X by

(10.1) An
y (x) = αsn(y)(x) + τn(y).

Then iterates of T ×s
τ α on a fiber {y}×X are effectively given by the maps

An
y on X, and it is these we use to define fiber entropies. We abbreviate the

notation for various fiber entropies h∗(T ×s
τ α, {y} ×X) to h∗(T ×s

τ α, y).
The following gives fiber analogues of standard definitions due originally

to Bowen [3].

Definition 10.1. Let the affine maps An
y : X → X for the skew product

T ×s
τ α on Y ×X be given by (10.1). Let ρ be a translation-invariant metric

on X compatible with its topology.
(1) A set E ⊂ X is (N, ε, y)-spanning for T ×s

τ α if for every x ∈ X there
is an x′ ∈ E such that ρ

(
An

y (x), An
y (x′)

)
< ε for 0 6 n 6 N − 1. Let rN (ε, y)

be the smallest cardinality of an (N, ε, y)-spanning set, and put

hspan(T ×s
τ α, y) = lim

ε→0
lim sup
N→∞

1
N

log rN (ε, y).

(2) A set F ⊂ X is (N, ε, y)-separated for T ×s
τ α if for distinct points

x, x′ ∈ F there is n with 0 6 n 6 N −1 for which ρ
(
An

y (x), An
y (x′)

)
> ε. Let

sN (ε, y) be the largest cardinality of an (N, ε, y)-separated set, and put

hsep(T ×s
τ α, y) = lim

ε→0
lim sup
N→∞

1
N

log sN (ε, y).
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(3) Let BX(ε) = {x ∈ X : ρ(x, 0X) < ε}, and put

DN (ε, y) =
N−1⋂

n=0

α−sn(y)(BX(ε)
)
.

Define the volume decrease fiber entropy for skew products with automor-
phisms by

hvol(T ×s α, y) = lim
ε→0

lim sup
N→∞

− 1
N

log µ
(
DN (ε, y)

)
.

Similarly, if β is a diagonal action on a finite product A of local fields, and
BA(ε) is the ε-ball in A, we define hvol(T ×s β, y) as above, with BA(ε)
replacing BX(ε).

Lemma 10.2. All of the topological fiber entropies in Definition 10.1 agree:

hspan(T ×s
τ α, y) = hsep(T ×s

τ α, y)

= hspan(T ×s α, y) = hsep(T ×s α, y) = hvol(T ×s α, y).

Proof. The equality of spanning set entropy for T ×s α and its affine coun-
terpart T×s

τ α follows because the metric ρ is translation-invariant; similarly
for separated set entropy.

If F is a maximal (N, ε, y)-separated for T ×s α, it is also (N, ε, y)-
spanning. Hence rN (ε, y) 6 sN (ε, y), and so hspan(T ×s α, y) 6 hsep(T ×s

α, y). Furthermore, the sets x + DN (ε/2, y) for x ∈ F are disjoint, so
sN (ε, y)µ

(
DN (ε/2, y)

)
6 1, proving that hsep(T ×s α, y) 6 hvol(T ×s α, y).

Finally, if E is (N, ε, y)-spanning, then
⋃

x∈E(x + DN (ε, y)) = X. Hence
rN (ε, y)µ

(
DN (ε, y)

)
> 1, so that hvol(T ×s α, y) 6 hspan(T ×s α, y). ¤

Next we turn to measure fiber entropy. Let Hµ(P ) denote the usual
entropy of a finite measurable partition P of X.

Definition 10.3. The measure fiber entropy of an affine skew product T×s
τ α

is defined by

hµ(T ×s
τ α, y) = sup

P
lim sup
N→∞

1
N

Hµ

(N−1∨

n=0

(An
y )−1(P )

)
,

where the supremum is taken over all finite measurable partitions of X.

The following proposition, which is a special case of results due to Abro-
mov and Rohlin [1] and to Adler [2], computes the entropy of T ×s

τ α in
terms of the base and measure fiber entropies.

Proposition 10.4. Let T be a measure-preserving transformation of (Y, ν),
s be ν-integrable, and τ : Y → X be measurable. Then

hν×µ(T ×s
τ α) = hν(T ) +

∫

Y
hµ(T ×s

τ α, y) dν(y).
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To make use of this result, we need to relate topological and measure fiber
entropy. The following fact, whose proof is exactly the same as in the proof
of Theorem 13.3 in [28], shows that they are within a universal constant of
each other. We use this later to show that they in fact agree.

Lemma 10.5. The topological and measure fiber entropies satisfy

hvol(T ×s α, y) 6 hµ(T ×s α, y) 6 hvol(T ×s α) + 1 + log 2.

The volume decrease fiber entropy is easy to compute for diagonal actions
on products of local fields.

Lemma 10.6. Let A = k(1) × · · · × k(m) be a product of local fields, and β
be a diagonal Zd-action on A with Lyapunov list 〈v(1), . . . ,v(m)〉. Let T be a
measure-preserving transformation of (Y, ν), and s : Y → Zd be ν-integrable
and T -ergodic with average value ν(s) ∈ Rd. Then for almost every y ∈ Y
we have that

(10.2) hvol(T ×s β, y) =
m∑

j=1

max{ν(s) · v(j), 0}.

Proof. Clearly we are free to choose a compatible metric on A when com-
puting hvol, and we use

(10.3) ρ
(
(a(j)), (b(j))

)
= max

16j6m
|a(j) − b(j)|k(j) .

Then BA(ε) = Bk(1)(ε)×· · ·×Bk(m)(ε). We can now apply Proposition 9.1 to
each factor k(j) separately, resulting in a contribution of max{ν(s) ·v(j), 0}.
Adding these together completes the proof. ¤

Suppose that α = αRd/p is a prime action on X = XRd/p of entropy rank
one. Let β be the corresponding diagonal action on the adele A = ARd/p,
with β-invariant cocompact discrete subgroup Λ ⊂ A such that A/Λ ∼= X. If
the skewing function s is assumed to be bounded, then the local isomorphism
between X and A shows that hvol(T×sα, y) = hvol(T×sβ, y) for every y ∈ Y .
This is effectively Bowen’s calculation of the entropy of a toral automorphism
from the entropy of the covering linear map [3, Cor. 16]. However, when s
is unbounded the intersections to compute hvol(T ×s α, y) can be much more
complicated than those for hvol(T ×s β, y) owing to wrapping phenomena in
X for sets α−s(T jy)

(
BX(ε)

)
when s(T jy) is very large. Marcus and Newhouse

[21] control this for Z-actions by inducing on a subset of Y defined by a first
exit time to reduce to the case of bounded s; however, this technique is not
available for Zd-actions.

Proposition 10.7. Let α be a prime action of entropy rank one, and β be
the corresponding diagonal action. Let T be a measure-preserving transfor-
mation of (Y, ν), and s : Y → Zd be ν-integrable. Then

hvol(T ×s α, y) = hvol(T ×s β, y)

for ν-almost every y ∈ Y .
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Proof. Let A = k(1) × · · · × k(m) and β be the diagonal action defined by

βn(
a(1), . . . , a(m)) =

(
cn
1 a(1), . . . , cn

ma(m)),
where cj ∈ (k(j))d. Let Λ be the β-invariant lattice in A such that X ∼= A/Λ.
We use the metric on A in (10.3), and its quotient metric on X. Thus the
quotient map φ : A → A/Λ = X is a local isometry. We normalize Haar
measure on A so that φ is also locally measure-preserving, and let µ denote
Haar measure on both A and X.

Define

DX
N (ε, y) =

N−1⋂

n=0

α−sn(y)(BX(ε)
)

and DA
N (ε, y) =

N−1⋂

n=0

β−sn(y)(BA(ε)
)
.

Since φ is a local isometry, for sufficiently small ε we have that φ
(
DA

N (ε, y)
) ⊂

DX
N (ε, y). Hence hvol(T ×s α, y) 6 hvol(T ×s β, y) for every y ∈ Y .
To prove the reverse inequality, we first claim that there is a constant

θ such that if rj > 1 and Q is the rectangle Bk(1)(r1) × · · · × Bk(m)(rm),
then |Q ∩ Λ| 6 θµ(Q). To see this, observe that since Λ is discrete there
is 0 < η < 1/2 such that ρ(a, b) > 2η for distinct a, b ∈ Λ. Hence the sets
BA(η) + a are disjoint for a ∈ Λ. Furthermore, since rj > 1 and η < 1/2,
there is a γ > 0 such that if a ∈ Q then µ

(
Q ∩ (BA(η) + a)

)
> γ. Hence

|Q ∩ Λ|γ 6 µ(Q), and so we can take θ = 1/γ to verify our claim.
Next, for n ∈ Zd and ε > 0, define fε(n) to be the number of lattice

points a ∈ Λ for which BA(ε) ∩ β−n
(
BA(ε) + a

) 6= ∅. Clearly, for fixed n
the function fε(n) decreases as ε decreases, and fε(n) → 1 as ε → 0.

If a ∈ Λ is such that BA(1) ∩ β−n
(
BA(1) + a

) 6= ∅, then

a ∈ βn(
BA(1)

)
+ BA(1) ⊂ Q =

m∏

j=1

Bk(j)
(
1 + ‖cn

j ‖k(j)
)
,

where ‖ · ‖k(j) is the sup norm on
(
k(j)

)d. Using obvious estimates on the
measures of balls in k(j) together with the inequality |Q ∩ Λ| 6 θµ(Q) from
the previous paragraph, we see that there are constants C > 0 and λ > 1
such that

(10.4) fε(n) 6 f1(n) 6 θµ(Q) 6 Cλ‖n‖.

Next, observe that for ε small enough, α−s(y)
(
BX(ε)

) ∩ BX(ε) is made
up of at most fε(s(y)) pieces, one for each lattice point a ∈ Λ for which
BA(ε)∩β−s(y)

(
BA(ε)+a

) 6= ∅, and each piece is contained in a translate of
φ
(
BA(2ε) ∩ β−s(y)BA(2ε)

)
. Continuing inductively, we see that

DX
N (ε, y) = BX(ε) ∩ α−s1(y)(BX(ε)

) ∩ · · · ∩ α−sN−1(y)(BX(ε)
)

is the union of at most

pN (ε, y) =
N−1∏

n=1

fε
(
s(Tny)

)
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pieces, each contained in a translate of φ
(
DA

N (2ε, y)
)
. Hence

(10.5) µ
(
DX

N (ε, y)
)

6 pN (ε, y) · µ(
DA

N (2ε, y)
)
.

By (10.4), 0 6 log fε(s(y)) 6 log C + ‖s(y)‖ log λ, so that log fε(s(y)) is
ν-integrable on Y since s(y) is. Also,

1
N

log pN (ε, y) =
1
N

N−1∑

n=1

log fε(s(Tny))

is an ergodic average of log fε(s(y)). By the ergodic theorem, there is an
integrable function gε > 0 with

∫
Y gε(y) dν(y) =

∫
Y log fε(s(y)) dν(y) such

that N−1 log pN (ε, y) → gε(y) as N → ∞ for almost every y. Clearly gε

decreases as ε decreases. Since log fε(s(y)) → 0 as ε → 0, it follows from
the monotone convergence theorem that

∫

Y
lim
ε→0

gε(y) dν(y) = lim
ε→0

∫

Y
gε(y) dν(y) = lim

ε→0

∫

Y
log fε(s(y)) dν(y)

=
∫

Y
lim
ε→0

log fε(s(y)) dν(y) = 0.

Hence limε→0 gε(y) = 0 for almost every y.
Finally, from (10.5) we see that

hvol(T ×s α, y) > hvol(T ×s β, y)− lim
ε→0

lim
N→∞

1
N

log pN (ε, y)

= hvol(T ×s β, y)− lim
ε→0

gε(y) = hvol(T ×s β)

for ν-almost every y, concluding the proof. ¤

To prove our entropy formula for actions built up from prime actions, we
need the following simple inequality.

Lemma 10.8. Let K ⊂ X be a compact α-invariant subgroup, and denote
the restriction of α to K by αK and the resulting action on the quotient
X/K by αX/K . Then

hvol(T ×s α, y) > hvol(T ×s αK , y) + hvol(T ×s αX/K , y)

for every y.

Proof. Let π : X → X/K be the natural projection map. We may assume
that the metric on X induces the metrics on K and on X/K.

Fix N and ε > 0. Define sets DX
N (ε, y), DK

N (ε, y), and D
X/K
N (ε, y) us-

ing these metrics and the actions α, αK , and αX/K , respectively. Clearly

π
(
DX

N (ε, y)
) ⊂ D

X/K
N (ε, y). If x, x′ ∈ DX

N (ε, y) and x − x′ ∈ K, then
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x− x′ ∈ DK
N (2ε, y). By Fubini’s Theorem,

µX

(
DX

N (ε, y)
)

=
∫

X/K
µK

(
DX

N (ε, y)− x
)
dµX/K(x)

6
∫

D
X/K
N (ε,y)

µK

(
DK

N (2ε, y)
)
dµX/K(x)

6 µX/K

(
D

X/K
N (ε, y)

)
µK

(
DK

N (2ε, y)
)
.

The result now follows using Definition 10.1(3). ¤

11. Entropy of skew products

Our fiber entropy results of the previous section provide the basis for com-
puting the measure and topological entropy of skew products with Noether-
ian algebraic Zd-actions of entropy rank one. The following result includes
Theorem 2.2.

Theorem 11.1. Let α be a Noetherian algebraic Zd-action of entropy rank
one and Lyapunov vector list L(α). Let T be a measure-preserving transfor-
mation of (Y, ν). Suppose that s : Y → Zd is T -ergodic and ν-integrable with
average value ν(s), and that τ : Y → X is measurable. Then the measure
fiber entropy of T ×s

τ α is given by

(11.1) hµ(T ×s
τ α, y) = hvol(T ×s α, y) =

∑

v∈L(α)

max{ν(s) · v, 0}

for ν-almost every y. Hence the measure entropy of T ×s
τ α is

(11.2) hν×µ(T ×s
τ α) = hν(T ) +

∑

v∈L(α)

max{ν(s) · v, 0}.

Proof. Consider first the case of a prime action α = αRd/p. Put

h = h(s) =
∑

v∈L(α)

max{ν(s) · v, 0}.

By Lemmas 10.5 and 10.6 and Proposition 10.7,

h 6 hµ(T ×s
τ α, y) 6 h + 1 + log 2

for almost every y. By Proposition 10.4,

(11.3) hν(T ) + h 6 hν×µ(T ×s
τ α) 6 hν(T ) + h + 1 + log 2.

Now (T ×s
τ α)n = Tn ×sn

τn
α. Since

ν(sn) =
n−1∑

j=0

ν(s ◦ T j) = n ν(s),

then h(sn) = nh(s) = nh. Applying (11.3) to (T ×s
τ α)n gives

hν(Tn) + h(sn) 6 hν×µ
(
(T ×s

τ α)n)
6 hν(Tn) + h(sn) + 1 + log 2,

or
n hν(T ) + nh 6 n hν×µ(T ×s

τ α) 6 n hν(T ) + nh + 1 + log 2.
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Dividing by n and letting n →∞ proves (11.2) in this case.
By Lemma 10.5, h = hvol(T ×s α, y) 6 hµ(T ×s

τ α, y) for almost every y,
and by the above

∫
Y hµ(T ×s

τ α, y) dν(y) = h, which establishes (11.1) in this
case as well.

We prove the general Noetherian action case by induction on the length
of a prime filtration, the above establishing the result for filtrations of length
one.

Suppose that K is a compact α-invariant subgroup of X, that αK is a
prime action, and that (11.1) and (11.2) hold for αK and for αX/K . We
represent T ×s

τ α as a succession of two skew products to which our results
apply, as follows.

By [24, I.5.1], there is a Borel cross-section σ : X/K → X to the natural
quotient map π : X → X/K such that π ◦ σ is the identity on X/K. This
induces a measurable isomorphism φ : X → (X/K) × K, given by φ(x) =(
x, b(x)

)
, where x = x + K ∈ X/K and b(x) = x − σ(x). Under this

isomorphism Haar measure µ on X corresponds to the product µX/K × µK

on X/K and on K. Furthermore, αn is conjugated to the map (x, k) 7→(
αn

X/K(x), αn
K(k) + b(αnσ(x))

)
for (x, k) ∈ (X/K)×K.

Define τ : Y → X/K by τ(y) = τ(y) = τ(y) + K. Consider the skew
product S = T×s

τ αX/K on Y ′ = Y ×(X/K). From our induction hypothesis,
we know that

(11.4)

hν×µX/K
(S) = hν×µX/K

(T ×s
τ αX/K)

= hν(T ) +
∑

v∈L(αX/K)

max{ν(s) · v, 0}.

Consider next the skew product S×s′
τ ′αK on Y ′×K, where s′(y, x) = s(y)

and τ ′(y, x) = b
(
αs(y)σ(x) + τ(y)

)
. Observe that since s′ depends only on

the first coordinate, and agrees with s there, it follows that s′ is S-ergodic
with respect to ν × µX/K , and that (ν × µX/K)(s′) = ν(s). Since αK is
prime, our earlier work shows that

(11.5) h(ν×µX/K)×µK
(S ×s′

τ ′ αK) = hν×µX/K
(S) +

∑

v∈L(αK)

max{ν(s) · v, 0}.

Now IdY ×φ conjugates T ×s
τ α to

(T ×s
τ αX/K)×s′

τ ′ αK = S ×s′
τ ′ αK .

Putting together (11.4) and (11.5), and recalling that L(α) = L(αX/K) ∪
L(αK), we obtain (11.2) for α.

Let

hK =
∑

v∈L(αK)

max{ν(s) · v, 0} and hX/K =
∑

v∈L(αX/K)

max{ν(s) · v, 0}.

By our induction hypothesis, we know that

hvol(T ×s αK , y) = hK and hvol(T ×s αX/K , y) = hX/K
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for ν-almost every y. By our calculation of h(T ×s
τ α) and Proposition 10.4,

we have that ∫

Y
hµ(T ×s

τ α, y) dν(y) = hK + hX/K .

Finally, by Lemmas 10.5 and 10.8,

hµ(T ×s
τ α, y) > hvol(T ×s α, y)

> hvol(T ×s αK , y) + hvol(T ×s αX/K) = hK + hX/K .

It follows that hµ(T ×s
τ α, y) = hK + hX/K for almost every y, completing

the proof. ¤

We next compute topological entropy for continuous skew products. For
this, suppose that Y is a compact metric space, and that T : Y → Y ,
s : Y → Zd, and τ : Y → X are continuous. Thus T ×s

τ α is a continu-
ous transformation of the compact metric space Y ×X, whose topological
entropy we denote by h(T ×s

τ α). The topological fiber entropies from Defi-
nition 10.1 we denote by h(T ×s

τ α, y). We let P(f, T ) denote the topological
pressure of a continuous real-valued function f on Y with respect to T . The
following includes Theorem 2.3.

Theorem 11.2. Let α be a Noetherian algebraic Zd-action of entropy rank
one with Lyapunov vector list L(α). Let Y be a compact metric space, and
assume that T : Y → Y , s : Y → Zd, and τ : Y → X are continuous. For
every E ⊂ L(α) define fE(y) =

∑
v∈E s(y) · v. Then

(11.6) h(T ×s
τ α) = max

E⊂L(α)
P(fE , T ).

Proof. Let π : Y ×X → Y be projection to the first coordinate. Fix an arbi-
trary T -invariant ergodic measure ν on Y . The relative variational principle
of Ledrappier and Walters [17] asserts that

sup
λ∈π−1(ν)

hλ(T ×s
τ α) = hν(T ) +

∫

Y
h(T ×s

τ α, y) dν(y),

where the supremum is taken over all measures λ invariant under T ×s
τ α

that project to ν. By Theorem 11.1

h(T ×s
τ α, y) =

∑

v∈L(α)

max{ν(s) · v, 0}

= sup
E⊂L(α)

∑

v∈E

ν(s) · v = sup
E⊂L(α)

∫

Y
fE dν.

By the usual variational principle, we can compute h(T ×s
τ α) as the

supremum of hλ(T ×s
τ α) over all ergodic measures λ on Y × X. Such a
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measure projects under π to a T -invariant ergodic measure on Y . Hence

h(T ×s
τ α) = sup

ν

{
sup

λ∈π−1(ν)
hλ(T ×s

τ α)
}

= sup
ν

{
hν(T ) + sup

E⊂L(α)

∫

Y
fE dν

}

= sup
E⊂L(α)

sup
ν

{
hν(T ) +

∫

Y
fE dν

}
= sup

E⊂L(α)
P(fE , T ),

where in the last line we use the variational principle for the pressure of fE

with respect to T . ¤

For example, if T is a shift of finite type, then s depends on only finitely
many coordinates, and each of the pressures P(fE , T ) can be computed
explicitly.

Example 11.3. Let α be a Z2-action of entropy rank one with Lyapunov
vectors (v1, w1), . . . , (vm, wm). Let Y2 = {1, 2}Z and T2 be the 2-shift on
Y2. Define s : Y2 → Z2 be s(y) = ey0 . An easy calculation of pressure shows
that

(11.7) h(T2 ×s α) = max
E⊂{1,...,m}

log
[
exp

(∑

j∈E

vj

)
+ exp

(∑

j∈E

wj

)]
.

Note that taking E = ∅ gives log 2 on the right side, corresponding to the
fact that h(T2 ×s α) must be at least as large as the entropy ′h(T2) = log 2
of the base.

12. Relational entropy for commuting group automorphisms

In [8] Friedland studies a general notion of entropy for relations, defined
as follows. Let Z be a compact metric space and R be a closed subset of
Z × Z, or relation on Z. Put

X(R) = {x ∈ ZN : (xi, xi+1) ∈ R for all i ∈ N}.
Let σX(R) denote the one-sided shift on X(R). Define the relational entropy
hrel(R) of R to be the topological entropy h(σX(R)).

As Friedland notes, if T : Z → Z is continuous and RT = {(z, Tz) : z ∈ Z}
is the graph of T , then hrel(RT ) reduces to the usual topological entropy h(T )
of T . In this sense relational entropy generalizes topological entropy.

Using these ideas, Geller and Pollicott [9] introduced the relational en-
tropy e(S, T ) of a pair S, T of commuting transformations. They put
RS,T = RS∪RT , the union of the graphs of S and of T , and defined e(S, T ) =
hrel(RS,T ). This definition has an obvious extension to e(T1, . . . , Td) for d
commuting maps Tj by using the relation RT1,...,Td

= RT1 ∪ · · · ∪ RTd
.

One of their main results is that if Z = T, S is multiplication by p, and T
is multiplication by q 6= p, then e(S, T ) = log(p + q), verifying a conjecture
of Friedland. They considered pairs of transformations that are commuting
automorphisms of a compact abelian group, and conjectured a formula for
e(A,B) where A and B are commuting toral automorphisms.
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Let A1, . . . , Ad be commuting automorphisms of a compact abelian
group X with Haar measure µ. Denote by α the algebraic Zd-action they
generate via αej = Aj . Assume that the Aj are essentially distinct, namely
that they satisfy the condition µ({x ∈ X : Ai(x) = Aj(x)}) = 0 for all
i 6= j, corresponding to the condition p 6= q above. Then we can compute
e(A1, . . . , Ad) using our previous results on skew products, in this case using
the full d-shift as base. The following result contains Theorem 2.4 as the
case d = 2.

Theorem 12.1. Let A1, . . . , Ad be commuting automorphisms of a compact
abelian group X with Haar measure µ. Assume that the algebraic Zd-action
they generate is Noetherian, and that µ({x ∈ X : Ai(x) = Aj(x)}) = 0
for all i 6= j. Let Yd = {1, . . . , d}Z and Td be the d-shift on Yd. Define
s : Yd → Zd by s(y) = ey0. Then

e(A1, . . . , Ad) = h(Td ×s α),

where the right side is computed according to Theorem 11.2.

Proof. Define φ : Yd ×s X → X(RA1,...,Ad
) by

φ(y, x) =
(
x,Ay0(x), Ay1Ay0(x), Ay2Ay1Ay0(x), . . .

)
.

Clearly φ is continuous, surjective, and intertwines Td×s α with the shift on
X(RA1,...,Ad

). Therefore e(A1, . . . , Ad) 6 h(Td ×s α).
To prove the reverse inequality, recall that since Td is a shift of finite

type, Td ×s α has a measure of maximal entropy of the form ν × µ. We
claim that φ is one-to-one on a set of full ν × µ measure. For suppose that
φ(y, x) = φ(y′, x′) with (y, x) 6= (y′, x′). By definition of φ we have x = x′.
Choose n minimal so that yn 6= y′n. Then

Ayn

(
Ayn−1 . . . Ay0(x)

)
= Ay′n

(
Ayn−1 . . . Ay0(x)

)
,

so that
x ∈ A−1

y0
A−1

y1
. . . A−1

yn−1
(kerA−1

yn
Ay′n).

But µ(kerA−1
yn

Ay′n
) = 0 by hypothesis, and so x lies is a countable union of

µ-null sets, verifying our claim. Therefore

h(Td ×s α) = hν×µ(Td ×s α) = hφ∗(ν×µ)(σX(RA1,...,Ad
))

6 h(σX(RA1,...,Ad
)) = e(A1, . . . , Ad),

completing the proof. ¤
We remark that some condition about distinctness of the Aj is needed.

For example, if A1 = A2 = A, then e(A,A) = h(A), while h(T2 ×s α) =
h(A) + log 2. The discrepancy arises here because the map φ of the proof is
no longer essentially one-to-one.

Examples 12.2. (1) Let Z = T, A be multiplication by p, and B be
multiplication by q 6= p. Here the local fields are Qp, Qq, and Q∞ = R,
with corresponding Lyapunov vectors for the generated Z2-action being
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(− log p, 0), (0,− log q), and (log p, log q). Theorem 12.1 then shows that
e(A,B) = log(p + q), agreeing with Theorem 2 of [9].

(2) Let A and B be commuting automorphisms of Tr, and suppose for
simplicity that all eigenvalues are real, say they are ξj and ηj on the jth
eigenspace. Then the Lyapunov vectors for the Z2-action they generate are
(log |ξj |, log |ηj |), and so by Example 11.3 we see that

e(A,B) = max
E⊂{1,...,r}

log
( ∏

j∈E

|ξj |+
∏

j∈E

|ηj |
)
.

This shows that the formula conjectured by Geller and Pollicott in [9, 5(3)]
is not correct.

(3) Let α be the Ledrappier Z2 action from Example 6.8, and A =
αe1 , B = αe2 . Here the Lyapunov vectors are (log 2, 0), (0, log 2), and
(− log 2,− log 2). Hence by Theorem 12.1, we find that e(A, B) = log 4, not
the value log(2 +

√
2) reported in [9, Sec. 3]. Unfortunately, this means

that their claim that e can be used to differentiate between Ledrappier-type
examples defined using shapes with the same convex hull is not correct. In
particular, Theorem 3 of [9] is false.
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