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Abstract. We prove that a general class of expansive Zd-actions by
automorphisms of compact, abelian groups with completely positive en-
tropy has ‘symbolic covers’ of equal topological entropy. These symbolic
covers are constructed by using homoclinic points of these actions. For
d = 1 we adapt a result of Kenyon and Vershik in [7] to prove that
these symbolic covers are, in fact, sofic shifts. For d ≥ 2 we are able to
prove the analogous statement only for certain examples, where the ex-
istence of such covers yields finitary isomorphisms between topologically
nonisomorphic Z2-actions.

1. Introduction

Markov partitions of hyperbolic dynamical systems are a powerful techni-
cal tool and provide a crucial link between smooth and symbolic dynamics
(cf. [4], [20]). The first explicit examples of Markov partitions were obtained
for hyperbolic toral automorphisms in [1], and the construction of such par-
titions reflecting the algebraic structure of toral automorphisms continues
to be an area of active investigation: Markov partitions of certain toral au-
tomorphisms related to two-sided beta-expansions of Pisot numbers appear
in [3] and [13], and [7] describes a general method for finding sofic covers of
an arbitrary irreducible hyperbolic toral automorphism A by using certain
sets of algebraic integers in the number field generated by the eigenvalues
of A. A similar proof appeared subsequently in [8].

Markov partitions are also beginning to play a role in the investigation
of certain Z2-actions, e.g. of coupled map lattices (cf. [12] and [5]). How-
ever, since two-dimensional shifts of finite type tend to be considerably more
complicated than the classical one-dimensional ones, the advantage of con-
structing a Markov partition for a Z2-action is a priori less obvious than for
a Z-action unless the resulting shift of finite type has a particularly simple
form, as it does in [12], [5] and in the examples in Section 5. With this proviso
Markov partitions of Z2-action can be very useful, e.g. for the construction
of invariant measures or of finitary isomorphisms (cf. the Corollaries 5.1 and
5.2 and Remark 5.1).

In order to make precise the notion of a Markov (or, more generally, sofic)
partition of a continuous Zd-action T on a compact space X we assume that
d ≥ 1, A a finite set (the alphabet), and that ρ is the shift-action of Zd on

AZd
, defined by

(ρnz)m = zm+n (1.1)
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for every n ∈ Zd and z = (zm) ∈ AZd
. If Z ⊂ AZd

a closed, shift-invariant
set we write ρZ for the restriction of ρ to Z. A closed, shift-invariant set
Z ⊂ AZd

is a shift of finite type if there exists a finite set F ⊂ Zd with

Z = {z ∈ AZd
: πF (ρnz) ∈ πF (Z) for every n ∈ Zd}, (1.2)

where πF : AZd $−→ AF is the projection of each z ∈ AZd
onto its coordinates

in F (cf. [16]–[17]). By changing the alphabet A, if necessary, we can always
assume that

F = {0, 1}d ⊂ Zd. (1.3)

A closed, shift-invariant set Z ⊂ AZd
is sofic if there exists a finite set A′, a

shift of finite type Z ′ ⊂ A′Zd

, and a continuous, surjective map φ : Z ′ $−→ Z
with φ · ρ′n(z) = ρn · φ(z) for every z ∈ Z ′ and n ∈ Zd, where ρ′ is the

shift-action (1.1) of Zd on A′Zd

.
Now suppose that T : n $→ Tn is a continuous Zd-action on a compact

space X, A a finite set, ρ the shift-action of Zd on AZd
and Y ⊂ AZd

closed,
shift-invariant subset. Then Y (or, more precisely, (Y, ρY )) is a symbolic
cover of (X,T ) if there exists a continuous, surjective map φ : Y $−→ X with

φ · ρn
Y = Tn · φ (1.4)

for every n ∈ Zd. For later use we set

Y ′ = {y ∈ Y : {y} = φ−1({φ(y)})}, (1.5)

note that Y ′ ⊂ Y is a ρY -invariant Gδ-set, and that the restriction φ|Y ′ of
φ to Y is a homeomorphism of Y ′ onto the Gδ-set φ(Y ′) ⊂ X.

A symbolic cover Y ⊂ AZd
of (X,T ) is of equal entropy if the topologi-

cal entropies h(ρY ) and h(T ) coincide, finite if φ is bounded-to-one, and a
symbolic representation of (X,T ) if ν(Y ′) = 1 for every ρ-invariant proba-
bility measure with maximal entropy on Y (cf. (1.5)). A symbolic cover or
representation Y of (X,T ) is sofic or of finite type if Y is sofic or of finite

type. If Y ⊂ AZd
is a symbolic representation of (X,T ) which is sofic or

of finite type, and if [a]0 = {y = (yn) : y0 = a} for every a ∈ A, then
P = {φ([a]0) : a ∈ A} is called a sofic or Markov partition of (X,T ) (P is,
of course, not a partition of X).

In this note we restrict ourselves to Zd-actions by automorphisms of com-
pact, abelian groups; in order to simplify terminology we call such a Zd-
action algebraic. Suppose that d ≥ 1, and that α is an algebraic Zd-action
which is expansive, has completely positive entropy, and which is of the
special form described in Proposition 2.1 (the last restriction is not really
necessary for our investigation, but offers considerable notational and tech-
nical simplification; for a single automorphism A ∈ GL(n, Z) of the torus
Tn = Rn/Zn it means that A is the companion matrix of its characteristic
polynomial). In [10] it was shown that every such Zd-action has a ‘funda-
mental’ homoclinic point w∆ which generates all other homoclinic points
of the Zd-action. By using this fundamental homoclinic point we can write
the Zd-action α as a topological factor of the shift-action σ of Zd on the
full shift V = {0, . . . ,N}Zd

for some N ≥ 1, and we write ξ : V $−→ X for
the continuous factor map (cf. Corollary 2.1). In Theorem 3.1 we construct
a closed, shift-invariant subset V∗ ⊂ V which is a symbolic cover of equal
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entropy of (X,α). In particular, if d = 1, then the map ξ : V∗ $−→ X is
bounded-to-one.

For d = 1 one can adapt the ideas of Kenyon and Vershik in [7] to prove
that V∗ is a sofic shift (Theorem 4.1), but for d > 1 we are currently un-
able to prove that the resulting symbolic cover V∗ of (X,α) has such nice
properties. In Section 5 we present two examples of Z2-actions for which
V∗ is a symbolic representation of (X,α) which is of finite type and sofic,
respectively. These examples are of independent interest, since they yield
nontrivial finitary isomorphisms between certain topologically inequivalent
Z2-actions by automorphisms of compact, abelian groups.

The use of homoclinic points to construct sofic or Markov partitions offers
two advantages.

(1) For a hyperbolic toral automorphism α of the form described in
Proposition 2.1 the scalar multiples of the fundamental homoclinic
point provide an alphabet of the sofic cover of α which is perhaps
more (but certainly not completely) canonical than the alphabet
used in [7].

(2) The construction of the symbolic cover of equal entropy resulting
from this fundamental homoclinic point extends without any change
not only to automorphisms of solenoids, but also to the expansive
algebraic Zd-actions with completely positive entropy described in
Proposition 2.1.

Homoclinic points of hyperbolic diffeomorphisms can be used to prove
very strong orbit-shadowing and specification properties which are inti-
mately connected with hyperbolicity and local product structure (cf. [2] and
Chapter 18 in [6]), as well as with the construction of Markov partitions. For
expansive algebraic Zd-actions with completely positive entropy there is no
local product structure if d > 1; however, the shadowing and specification
properties remain true (cf. Theorem 5.2 in [10]), and the examples in Section
5 suggest that the link between hyperbolic and symbolic Z-actions survives
the transition from d = 1 to d > 1 at least under some circumstances.

2. A class of algebraic Zd-actions and their homoclinic points

In this section we describe a class of Zd-actions which form the ‘building
blocks’ from which all expansive Zd actions by automorphisms of compact,
abelian groups with completely positive entropy are constructed (cf. [15] and
[18]).

Let d ≥ 1, T = R/Z, and let σ be the shift-action of Zd on TZd
, defined

as in (1.1) by

(σmx)n = xm+n

for every m ∈ Zd and x = (xn) ∈ TZd
. We denote by Rd = Z[u±1

1 , . . . , u±1
d ]

the set of Laurent polynomials with integer coefficients in the variables
u1, . . . , ud and write each h ∈ Rd as

h =
∑

n∈Zd

hnun (2.1)
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with hn ∈ Z and un = un1
1 · · · und

d for every n = (n1, . . . , nd) ∈ Zd, where
hn '= 0 for only finitely many n ∈ Zd. For every h =

∑

n∈Zd hnun ∈ Rd and

x ∈ TZd
we set

h(σ)(x) =
∑

n∈Zd

hnσnx (2.2)

and observe that ker(h(σ)) is a closed, shift-invariant subgroup of TZd
. The

following proposition was proved in [15], [11], [23] and [14] (cf. Theorems
6.5, 18.1, 19.5 and 20.8 in [18]).

Proposition 2.1. Let f ∈ Rd be a Laurent polynomial, and let α = αf be
the restriction to

X = Xf = ker(f(σ)) ⊂ TZd

of the shift-action σ of Zd on TZd
. The following conditions are equivalent.

(1) α is expansive;
(2) VC(f) ∩ Sd = ∅, where S = {s ∈ C : |s| = 1} and

VC(f) = {c ∈ (C " {0})d : f(c) = 0}.

If α is expansive then it is Bernoulli with respect to the normalised Haar
measure λX of X.

Denote by ‖ · ‖1 and ‖ · ‖∞ the norms on the Banach spaces )1(Zd, R) and
)∞(Zd, R) and write

)1(Zd, Z) ⊂ )1(Zd, R), )∞(Zd, Z) ⊂ )∞(Zd, R)

for the subgroups of integer-valued functions. By viewing every Laurent
polynomial h =

∑

n∈Zd hnun ∈ Rd as an element (hn) ∈ )1(Zd, Z) we can
identify Rd and )1(Zd, Z).

Consider the surjective map η : )∞(Zd, R) $−→ TZd
given by

η(v)n = vn (mod 1) (2.3)

for every v = (vn) ∈ )∞(Zd, R) and n ∈ Zd. Let σ̄ be the shift-action of Zd

on )∞(Zd, R), defined as in (1.1) by

(σ̄mv)n = vm+n

for every m ∈ Zd and v = (vn) ∈ )∞(Zd, R), and set, for every h =
∑

n∈Zd hnun ∈ Rd and v ∈ )∞(Zd, Z),

h̃ =
∑

n∈Zd

hnu−n,

h(σ̄)(v) =
∑

n∈Zd

hnσ̄nv.
(2.4)

Then
hh′ = h̃(σ̄)(h′),

η · h(σ̄) = h(σ) · η
(2.5)

for every h, h′ ∈ Rd (cf. (2.2)). Following [15] or Theorem 6.5 in [18] we can
characterise the expansiveness of α = αf in Proposition 2.1 also in terms of
the kernel of f(σ̄).
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Proposition 2.2. Let f ∈ Rd be a Laurent polynomial and let α = αf be the

Zd-action on X = Xf defined in Proposition 2.1. The following conditions
are equivalent.

(1) α is expansive;
(2) ker(f(σ̄)) = {0} ⊂ )∞(Zd, R).

For the remainder of this section we fix a Laurent polynomial f ∈ Rd

such that the Zd-action α = αf on X = Xf = ker(f(σ)) in the Propositions
2.1–2.2 is expansive and hence mixing.

According to the proof of Lemma 4.5 in [10] there exists a unique element
w∆ ∈ )∞(Zd, R) with the property that

f(σ̄)(w∆)n =

{

1 if n = 0,

0 otherwise.
(2.6)

The point w∆ also has the property that there exist constants c1 > 0, 0 <
c2 < 1 with

∣

∣w∆
n

∣

∣ ≤ c1c
‖n‖
2 (2.7)

for every n = (n1, . . . , nd) ∈ Zd, where

‖n‖ = max
i=1,...,d

|ni| (2.8)

(cf. Proposition 2.2 in [10]). In particular,

‖w∆‖1 =
∑

n∈Zd

|w∆
n | < ∞ (2.9)

From the properties of w∆ it is clear that

ξ̄(v) =
∑

n∈Zd

vnσ̄nw∆ (2.10)

is a well-defined element of )∞(Zd, R) for every v ∈ )∞(Zd, Z), and we denote
by

ξ̄ : )∞(Zd, Z) $−→ )∞(Zd, R), ξ = η · ξ̄ : )∞(Zd, Z) $−→ X (2.11)

the resulting group homomorphisms.

Proposition 2.3. For every v ∈ )∞(Zd, Z),

f(σ̄)(ξ̄(v)) = ξ̄(f(σ̄)(v)) = v,

‖ξ̄(v)‖∞ ≤ ‖w∆‖1‖v‖∞,

‖v‖∞ ≤ ‖f‖1‖ξ̄(v)‖∞.

(2.12)

Furthermore, ξ : )∞(Zd, Z) $−→ X is a surjective group homomorphism and

ξ · σ̄n = αn · ξ for every n ∈ Zd,

ker(ξ) = f(σ̄)()∞(Zd, Z)),

ker(ξ) ∩ )1(Zd, Z) = f(σ̄)()1(Zd, Z)) = f̃Rd.

(2.13)
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Proof. The statements (2.12) are immediate consequences of (2.6) and (2.9)–
(2.10). In order to see that ξ is surjective we fix x ∈ X and choose an element
w = (wn) ∈ η−1({x}) ⊂ )∞(Zd, R) with |wn| ≤ 1

2 for every n ∈ Zd. Since
f(σ)(x) = 0X according to the definition of X, v = f(σ̄)(w) ∈ )∞(Zd, Z),
and we claim that ξ(v) = x.

Indeed, f(σ̄)(ξ̄(v′)) = v′ by (2.12) for every v′ ∈ )∞(Zd, Z), and by ap-
plying this to v = f(σ̄)(w) we obtain that

f(σ̄)(w − ξ̄(v)) = 0.

Proposition 2.2 guarantees that w = ξ̄(v) and hence that η(w) = ξ(v) = x.
The first equation in (2.13) is clear from the definition of ξ. If v ∈

)∞(Zd, Z) satisfies that ξ(v) = 0X , then w = ξ̄(v) ∈ )∞(Zd, Z) and f(σ̄)(w)
= f(σ̄)(ξ̄(v)) = v by (2.12). Hence v ∈ f(σ̄)()∞(Zd, Z)), as claimed. Con-
versely, every v ∈ f(σ̄)()∞(Zd, Z)) is of the form v = f(σ̄)(w) for some
w ∈ )∞(Zd, Z), and ξ(v) = ξ(f(σ̄)(w)) = f(σ)(ξ(w)) = 0X . Finally, if
v ∈ ker(ξ) ∩ )1(Zd, Z) = ker(ξ) ∩ Rd, then h = ξ̄(v) ∈ )1(Zd, Z) = Rd and
f(σ̄)h = f̃h = v ∈ f̃Rd. !

From (2.7)–(2.11) it is clear that the restriction of ξ̄ to every bounded sub-
set of )∞(Zd, Z) is continuous in the weak∗-topology. The following corollary
yields a bounded subset V ⊂ )∞(Zd, Z) with ξ(V) = X.

Corollary 2.1. For every h =
∑

n∈Zd hnun ∈ Rd we set

h+ =
∑

n∈Zd

max (0, hn)un, h− = −
∑

n∈Zd

min (0, hn)un,

‖h+‖′1 = max (‖h+‖1 − 1, 0), ‖h−‖′1 = max (‖h−‖1 − 1, 0),

‖h‖∗1 = ‖h+‖′1 + ‖h−‖′1.

Then the set

V = {v ∈ )∞(Zd, Z) : 0 ≤ vn ≤ ‖f‖∗1 for every n ∈ Zd} (2.14)

satisfies that ξ(V) = X.

Proof. We use the notation employed for the proof of Proposition 2.3 and
choose an element w ∈ η−1({x}) with 0 ≤ wn < 1 for every n ∈ Zd. If
v = f(σ̄)(w) ∈ )∞(Zd, Z) then ξ(v) = x and −‖f−‖′1 ≤ vn ≤ ‖f+‖′1 for
every n ∈ Zd. Hence ξ(V′) = X with

V
′ = {v ∈ )∞(Zd, Z) : −‖f−‖′1 ≤ vn ≤ ‖f+‖′1 for every n ∈ Zd}.

Finally we denote by y ∈ )∞(Zd, Z) the constant element with yn = ‖f−‖′1
for every n ∈ Zd and obtain that ξ(V′ + y) = ξ(V′) + ξ(y) = X. Since
V′ + y = V we have proved the corollary. !

The bound appearing in (2.14) need not be optimal, as the following
examples show.

Example 2.1. (1) Let d = 2 and f = 3 − u1 − u2 ∈ R2. Then ‖f‖∗1 = 3,
but the set

W = {v ∈ )∞(Z2, Z) : 0 ≤ vn ≤ 2} # V (2.15)

also satisfies that ξ(W) = X.
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In order to prove that ξ(W) = X we define V by (2.14) and set, for every
n ≥ 0, Qn = {−n, . . . , n}2 ⊂ Z2. Fix n ≥ 0 and put, for every v ∈ V,

hv
n =

{

1 if n ∈ Qn and vn = 3,

0 otherwise,

hv =
∑

n∈Z2

hv
nun.

Fix v ∈ V and define inductively v(0) = v and v(m+1) = v(m) − f̃hv(m)
for

every m ≥ 0, where f̃ is defined in (2.4). It is clear that there exists an M ≥
0 with v(m) = v(M) for every m ≥ M , since

∑

n∈Qn
v(m+1) <

∑

n∈Qn
v(m)

whenever m ≥ 0 and v(m+1) '= v(m).
We put w = v(M), note that 0 ≤ wn ≤ 2 for every n ∈ Qn, and claim

that 0 ≤ wn ≤ 8 for every n ∈ Z2 " Qn. Indeed, if ν is the measure on Z2

defined by

ν({m}) =

{

1/3 if m ∈ {(−1, 0), (0,−1)},
0 otherwise,

then

wk ≤ vk + 3
∑

{m∈Qn:vm=3}

∑

l≥1

ν∗l({k + m})

for every k ∈ Z2 " Qn, where ν∗l is the l-th convolution power of ν. As
∑

m∈Z2

∑

l≥1

ν∗l({m}) =
∑

l≥1

(2/3)l = 2

we obtain that 0 ≤ wn ≤ 8 for every n ∈ Z2 " Qn.
The elements v and w differ by an element of Rd = )1(Z2, Z) ⊂ )∞(Z2, Z)

which is a multiple of f̃ . Hence v − w ∈ f(σ)()∞(Z2, Z)), and Proposition
2.3 guarantees that ξ(w) = ξ(v).

We have proved the following: for every n ≥ 0 the set

Wn = {w ∈ )∞(Z2, Z) : 0 ≤ wn ≤ 2 for n ∈ Qn,

0 ≤ wn ≤ 8 for n ∈ Z2 " Qn}

satisfies that ξ(Wn) = X.
For every x ∈ X and n ≥ 1, the set

Cn(x) = ξ−1({x}) ∩ Wn

⊂ W
′ = {v ∈ )∞(Z2, Z) : 0 ≤ vn ≤ 8 for every n ∈ Z2}

is nonempty and compact in the weak∗-topology, and Cn(x) ⊃ Cn+1(x).
The intersection

C(x) =
⋂

n≥1

Cn(x) = ξ−1({x}) ∩ W

is thus nonempty for every x ∈ X, which proves that ξ(W) = X.

(2) The argument in example (1) yields the following more general result.
Suppose that d ≥ 1, and that f =

∑

n∈Zd fnun ∈ Rd is a Laurent polynomial
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with the property that there exists a m ∈ Zd with fm >
∑

n∈Zd!{m} |fn| and

fn ≤ 0 whenever m '= n ∈ Zd. Then αf is expansive, and the set

W = {v ∈ )∞(Zd, Z) : 0 ≤ vn < fm for every n ∈ Zd} (2.16)

satisfies that ξ(W) = Xf .

3. Covers with equal entropy

Let f ∈ Rd be a Laurent polynomial such that the Zd-action α = αf on
X = Xf is expansive (cf. Propositions 2.1–2.2), and define V ⊂ )∞(Zd, Z)
and ξ : V $−→ X as in Corollary 2.1. Then ξ(V) = X, but ξ may be far from
injective on V. The purpose of this section is to find closed, shift-invariant
subsets W ⊂ V with ξ(W) = X such that the restriction of σ̄ to W has the
same topological entropy as α.

Let W ⊂ V be a closed, shift-invariant subset with ξ(W) = X, and con-
sider the equivalence relations

RW = {(v, v′) ∈ W × W : ξ(v) = ξ(v′)},

∆W = {(v, v′) ∈ W × W : v − v′ ∈ )1(Zd, Z) = Rd},

∆′
W = {(v, v′) ∈ W × W : v − v′ ∈ f(σ̄)()1(Zd, Z)) = f̃Rd}

= RW ∩ ∆W.

(3.1)

The inverse lexicographic order on Zd can be used to define a total order ≺
on Rd = )1(Zd, Z) by setting h ≺ 0 if and only if hm < 0 for the lexicograph-
ically smallest m ∈ Zd with hm '= 0, and by saying that h ≺ h′ whenever
h − h′ ≺ 0. The order ≺ on Rd induces a total order (again denoted by
≺) on the equivalence classes of ∆W: if v ∈ W and v′, v′′ ∈ ∆W(v) then
v′ − v′′ ∈ )1(Zd, Z) = Rd, and v′ ≺ v′′ if v′ − v′′ ≺ 0.

Theorem 3.1. Let f ∈ Rd be a Laurent polynomial such that the Zd-action
α = αf on X = Xf is expansive (cf. Propositions 2.1–2.2), and define

V ⊂ )∞(Zd, Z) and ξ : V $−→ X as in Corollary 2.1. Then there exists a
closed, shift-invariant subset V∗ ⊂ V with the following properties.

(1) If v ∈ V∗ and v′ ∈ ∆′
V
(v) then v / v′; in particular, V∗ intersects

each equivalence class ∆′
V
(v), v ∈ V, in at most one point;

(2) ξ(V∗) = X.

Proof. The set R
+
d = {h ∈ Rd : h 0 0} is an additive and multiplicative

semigroup and is in particular invariant under multiplication by un, n ∈ Zd.
Furthermore, since αf = α−f , we may replace f by −f , if necessary, and

assume that f̃ ∈ R
+
d (cf. (2.4)).

For every h ∈ R
+
d we set

Vh = V " (V + f̃h),

where V + f̃h = {v + f̃h : v ∈ V}. Since f̃h has only finitely many nonzero
coordinates, Vh is a closed subset of V and

V
∗ =

⋂

h∈R
+
d

Vh = V "
⋃

h∈R
+
d

(V + f̃h) (3.2)

is a closed, shift-invariant subset of V.
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From the definition of V∗ it is clear that v− f̃h /∈ V whenever v ∈ V∗ and
h ∈ R

+
d . In particular, if v ∈ V∗ and v′ ∈ ∆′

V
(v), then v′ 1 v, which proves

(1). In order to verify (2) we choose an enumeration {h(1), h(2), . . . } of R
+
d ,

consider the sets

V
∗
n =

n
⋂

k=1

Vh(k) = V "
n
⋃

k=1

(V + f̃h(k)), n ≥ 1,

and claim that ξ(V∗
n) = X for every n ≥ 1.

Indeed, fix n ≥ 1 and v ∈ V. We denote by

S(h) = {n ∈ Zd : hn '= 0} (3.3)

the support of an element h ∈ Rd, put Sn =
⋃n

k=1 S(f̃h(k)), and observe
that the set

{v′ ∈ ∆′
V(v) : S(v′ − v) ⊂ Sn}

is finite and contains a smallest element w with respect to the order ≺. As
∆′

V
⊂ RV, ξ(w) = ξ(v). Furthermore, w ∈ V∗

n since, for every k = 1, . . . , n,

w − f̃h(k) ≺ w and hence w − f̃h(k) /∈ V. This shows that there exists,
for every v ∈ V, an element w ∈ V∗

n with ξ(w) = ξ(v), and Corollary 2.1
guarantees that ξ(V∗

n) = X.
We conclude our proof as in Example 2.1 (1): for every x ∈ X and

n ≥ 1, the set Cn(x) = ξ−1({x})∩V∗
n is nonempty and closed in the weak∗-

topology on V. Since Cn(x) ⊃ Cn+1(x) for every n ≥ 1, the intersection
C(x) =

⋂

n≥1 Cn(x) = ξ−1({x}) ∩ V∗ is again nonempty, which proves that
ξ(V∗) = X. !

Corollary 3.1. Let τ be the restriction to V∗ ⊂ V ⊂ )∞(Zd, Z) of the shift-
action σ̄ of Zd on )∞(Zd, Z) (cf. Theorem 3.1). Then h(τ) = h(α), where
h(·) denotes topological entropy.

Proof. Since ξ : V∗ $−→ X is surjective and ξ · αn = τn · ξ for every n ∈ Zd

it is clear that h(α) ≤ h(τ).
Put Qn = {−n, . . . , n}d ⊂ Zd for every n ≥ 0. If A = {0, . . . , ‖f‖∗1} ⊂ Z

and πF : V = AZd $−→ AF denotes the projection onto a set of coordinates
F ⊂ Zd then

h(τ) = lim
n→∞

1

(2n + 1)d
log

∣

∣πQn(V∗)
∣

∣

= lim
n→∞

1

(2n + 1)d
sup

z∈πQn+m!Qn (V∗)
log

∣

∣πQn(π−1
Qm+n!Qn

(z))
∣

∣

(3.4)

for every m ≥ 1.
For every t ∈ T we set

|t| = min
n∈Z

|t − n| (3.5)

The expansiveness of the Zd-action α on X ⊂ TZd
guarantees that

ε =
1

2
inf

0)=x∈X
sup
n∈Zd

|xn| > 0. (3.6)
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According to (2.7) we can find an integer M ≥ 1 with
∑

m∈Zd!QM/2

|w∆
m| <

ε

10‖f‖∗1
,

max {‖n‖ : n ∈ Zd and fn '= 0} < M/2.

(3.7)

For every m ≥ 0 and v ∈ V we set

v(m)
m =

{

vm if m ∈ Qm,

0 if m ∈ Zd " Qm.

If v,w ∈ V∗ satisfy that πQn+M!Qn(v) = πQn+M!Qn(w) then we claim that
the following conditions are equivalent:

(i) v(n+M) = w(n+M),
(ii) ξ(v(n+M)) = ξ(w(n+M)),
(iii) |ξ(v)n − ξ(w)n| < ε for every n ∈ Qn.

The implications (i) ⇒ (ii) ⇒ (iii) are obvious. If (iii) is satisfied, then
the point z = (v − w)(n) = (v − w)(n+M) satisfies that |zn| ≤ ‖f‖∗1 for
every n ∈ Zd, and our choice of M guarantees that |ξ(z)n| < 6ε/5 for every
n ∈ Zd. According to the definition of ε this implies that z = 0, i.e. that (ii)
is satisfied. From (ii) and Proposition 2.3 we conclude that

z = v(n) − w(n) ∈ f(σ̄)()1(Zd, Z)) = f̃Rd.

If z 1 0 then this means that (v, v − z) ∈ ∆′
V

and v − z / v, and Theorem
3.1 implies that z = 0. Similarly we see that z = 0 whenever z 1 0. Hence
z = 0, which proves (i).

If we combine the equivalent statements (i)–(iii) with (3.7) we see that,
for every n ≥ 0 and v,w ∈ V∗ with πQn+M!Qn(v) = πQn+M!Qn(w), either

v(n) = w(n) and |ξ(v)n − ξ(w)n| < ε/5 for every n ∈ Qn, or v(n) '= w(n)

and |ξ(v)n − ξ(w)n| > 4ε/5 for some n ∈ Qn. We fix z ∈ πQn+m!Qn(V∗)
and choose, for every w′ ∈ πQn(π−1

Qm+n!Qn
(z)), an element w ∈ V∗ with

πQn(w) = w′. The resulting set S = {w : w′ ∈ πQn(π−1
Qm+n!Qn

(z))} ⊂ V∗

satisfies that

max
n∈Qn

|an − bn| > 4ε/5

whenever a = ξ(v), b = ξ(w) with v,w ∈ S, v '= w, and from Proposition
13.7 in [18] we obtain that h(τ) ≤ h(α). Hence the two entropies are equal,
as claimed. !

Corollary 3.2. Let f ∈ R1 be a Laurent polynomial such that the Z-action
α = αf on X = Xf is expansive, and define V ⊂ )∞(Zd, Z) and ξ : V $−→ X
as in Corollary 2.1. Then the restriction ξ∗ of ξ to the set V∗ ⊂ V in (3.2)
is bounded-to-one.

Proof. We use the notation of the proof of Theorem 3.1. Set N = ‖f‖∗1
and V = {0, . . . ,N}Z, and use the continuity of ξ : V $−→ X to find an
integer K with |ξ(v)0 − ξ(v′)0| < ε/2 whenever v, v′ ∈ V and vj = v′j for
j = −K, . . . ,K, where | · | and ε are defined in (3.5) and (3.6). By increasing
K and multiplying f by a suitable power of ±u1, if necessary, we may also
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assume without loss in generality that f = f0 + · · · + fmum
1 with fm > 0,

f0 '= 0 and m < K.
If ξ∗ maps more than N2(2K+1) points of V∗ to the same element x ∈ X

then there exist, for some M ≥ 2K + 1, points v, v′ ∈ V∗ with vj = v′j for
j ∈ {−M − 2K, . . . ,−M + 2K} ∪ {M − 2K, . . . ,M + 2K}, vi '= v′i for some
i ∈ {−M + 2K + 1, . . . ,M − 2K − 1}, and ξ∗(v) = ξ∗(v′). Put

wj =

{

vj − v′j for j ∈ {−M, . . . ,M},
0 otherwise,

and assume without loss in generality that w ≺ 0 (otherwise interchange
v and v′). Our definition of K implies that |ξ(v)j − ξ(v − w)j | < ε/2 for
|j| ≥ M and |ξ(v′)j − ξ(v − w)j| = |ξ(v)j − ξ(v − w)j| < ε/2 for |j| ≤ M ,
and the definition of ε shows that ξ∗(v) = ξ∗(v − w). Since v ∈ V∗, w ≺ 0
and v − w ∈ V this violates the properties of V∗ in Theorem 3.1. Hence ξ∗

is at most N2(2K+1)-to-one. !

The next corollary is an immediate consequence of the proof of Theorem
3.1.

Corollary 3.3. Let f ∈ Rd be a Laurent polynomial such that the Zd-action
α = αf on X = Xf is expansive, and define V ⊂ )∞(Zd, Z) and ξ : V $−→ X
as in Corollary 2.1. If W ⊂ V is a closed, shift-invariant set with ξ(W) = X,
then the set

W
∗ = W "

⋃

h∈R
+
d

(W + f̃h) (3.8)

also satisfies that ξ(W∗) = X.

Remarks 3.1. (1) For different sets Wi ⊂ V, i = 1, 2, the sets W∗
1 and W∗

2
in Corollary 3.3 may be different: indeed, in Example 2.1 the fixed point
w = (wn) with wn = 3 for every n ∈ Z2 lies in V∗ " W∗.

(2) By applying the same argument as at the end of Example 2.1 (1) one
can show that there exist minimal, closed, shift-invariant subsets W ⊂ V

with ξ(W) = X. For such a minimal subset we obviously have that W∗ = W

(cf. Corollary 3.3).

(3) For the hyperbolic toral automorphism ( 0 1
1 1 ) the map ξ : V∗ $−→ X =

T2 described in (2.11) and Theorem 3.1 is essentially identical to the fibadic
expansion of real numbers appearing in [21].

4. Sofic covers and covers of finite type

Suppose that f ∈ Rd is a Laurent polynomial such that the Zd-action
α = αf on the compact, abelian group X = Xf is expansive. We define the
surjective map ξ : )∞(Zd, Z) $−→ X by (2.11), denote by σ̄ the shift-action
of Zd on )∞(Zd, Z), and recall that ξ · σ̄n = αn · ξ for every n ∈ Zd (cf.
(2.13)). As we saw in Theorem 3.1, one can find an equal entropy symbolic
cover V∗ ⊂ )∞(Zd, Z). We shall prove the following result (for terminology
we refer to the Introduction and Section 2).

Theorem 4.1. Let f ∈ R1 be a Laurent polynomial such that the Z-action
α = αf on X = Xf is expansive. Then (X,α) has a finite cover of finite
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type, and the set V∗ ⊂ V ⊂ )∞(Z, Z) in (2.14) and (3.2) is a finite sofic
cover of (X,α).

Proof. The proof of Theorem 4.1 is closely modelled on [7]. After multiplying
f by ±uk

1 for some k ∈ Z we may assume that f = f0 + · · · + fmum
1 with

f0 '= 0 and fm > 0. According to Corollary 2.1 there exists a positive integer
N ≤ ‖f‖∗1 such that the compact set W = {0, . . . ,N}Z ⊂ V ⊂ )∞(Z, Z)
satisfies that ξ(W) = X (cf. also Example 2.1). We denote by H′ ⊂ R1

the set of all elements of the form h = h−m+1u
−m−1
1 + · · · + h0 ∈ R1 with

|hk| ≤ M = N‖w∆‖1 for every k = −m + 1, . . . , 0. By identifying each
h ∈ H′ with the element (h−m+1, . . . , h0) ∈ {−M, . . . ,M}m we may put
H′ = {−M, . . . ,M}m. Finally we introduce an additional element 0∗ '= 0
and set H = H′ ∪ {0∗}.

The graphs G and G∗. Let G be the finite directed graph whose vertex set
VG is equal to H and whose edges are labelled by elements of E = {0, . . . ,N}.
If h, h′ ∈ VG = H and e ∈ E then there exists an edge

h
e−→ h′ (4.1)

if and only if at least one of the following conditions are satisfied:

(i) h = h′ = 0∗,
(ii) h = 0∗, h′ = (0, . . . , 0, h′

0), h′
0 > 0 and e − f0h0 ∈ E,

(iii) h = (h−m+1, . . . , h0), h′ = (h′
−m+1, . . . , h

′
0) ∈ H′, hj+1 = h′

j for
j = −m + 1, . . . ,−1, and

e − fmh′
−m+1 − · · · − f1h

′
0 − f0h0

= e − fmh′
−m+1 − fm−1h−m+1 − · · · − f0h0 ∈ E.

(4.2)

If (4.1) is satisfied we call h′ an e-follower of h. The set of all e-followers
of h is denoted by fe(h) ⊂ VG. Finally we denote by G∗ the subgraph of G
consisting of all vertices and edges which can be reached from the vertex 0∗,
write VG∗ for the vertex set of G∗, and observe that fe(h) ⊂ VG∗ for every
h ∈ G∗ and e ∈ E.

The graphs Γ and Γ∗. We define a second finite directed graph Γ, whose
set of vertices VΓ is the collection P(VG∗) of all subsets of VG∗ , and whose
edges are again labelled by elements of E. If γ, γ′ are vertices of Γ (i.e.
γ1, γ2 ⊂ VG∗) and e ∈ E, then there exists an edge

γ
e−→ γ′ (4.3)

if and only if

γ′ =
⋃

h∈γ

fe(h). (4.4)

The set Fe(γ) of e-followers of a vertex γ ∈ VΓ is defined as above. Note
that there exists, for each γ ∈ Γ and e ∈ E, a unique edge of Γ labelled e
which starts at γ, and that 0∗ ∈ γ for every γ ∈ Γ which can be reached
from the vertex {0∗}.

The graph Γ∗ is obtained from Γ by deleting all vertices of Γ which either
cannot be reached from {0∗} or which contain the element 0 ∈ VG, as well
as all edges of Γ leading into or coming out of such a vertex. The vertex set
of Γ∗ is denoted by VΓ∗ ⊂ P(VG " {0}).
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The shifts of finite type Ω and Ω∗. Each bi-infinite path in Γ can be written
as an element of (VΓ × E)Z by noting at each time k ∈ Z the vertex γk and

the label ek of the edge γk
ek−→ γk+1 traversed by the path, and the set

Ω ⊂ (VΓ ×E)Z of all bi-infinite paths in Γ is a shift of finite type. We write
σ̃ for the shift on Ω, define a continuous map θ : Ω $−→ EZ = W by sending
each path ω = (ωk) = ((γk, ek)) ∈ Ω to its bi-infinite sequence of edges
w = (ek) ∈ W, and observe that θ · σ̃ = σ̄ · θ. The map θ : Ω $−→ W is right
resolving (cf. [9]), and |θ−1(v)| = |VΓ| for every v ∈ V.

Let Ω∗ ⊂ Ω be the set of bi-infinite paths in Γ∗ and put

Ω+ = {ω = (ωn) ∈ Ω : ωn = ({0∗}, 0) for every n < 0},
Ω∗

+ = Ω∗ ∩ Ω+.

Then Ω and Ω∗ are the closures of
⋃

n∈Z
σ̃n(Ω+) and

⋃

n∈Z
σ̃n(Ω∗

+), respec-
tively, and Ω∗ is again a shift of finite type. In the notation of (3.8) we
assert that

θ(Ω∗) = W
∗. (4.5)

In order to prove (4.5) we set

W+ = {w = (wn) ∈ W : wn = 0 for n < 0},

W
∗
+ = W+ "

⋃

h∈R
+
1

(W+ + f̃h) ⊂ W
∗.

Then there exists, for every w ∈ W+, a unique element ω ∈ Ω+ with θ(ω) =
w: if ωn = (γn, wn) then the elements γn ∈ VΓ are determined inductively
by the equation

γn = Fen−1(γn−1)

for every n ≥ 0.
Suppose that ω ∈ Ω+ and θ(ω) = w. If w /∈ W∗

+ then there exists

a polynomial h = hkuk
1 + · · · + hk+Luk+L

1 ∈ R
+
1 with k ≥ 0 such that

v = w− gf̃ ∈ W+. According to the conditions (i)–(iii) characterising (4.1),

(0, . . . , 0, hk) ∈ γk = Fek−1(γk−1),

(0, . . . , 0, hk, hk+1) ∈ γk+1 = Fek(γk),

...

(hk+L, 0, . . . , 0) ∈ γk+L+m−1 = Fek+L+m−2(γk+L+m−2),

0 ∈ Fek+L+m−1(γk+L+m−1),

which violates the definition of Γ∗ in (4.3)–(4.4). Hence θ(Ω+) ⊂ W∗
+.

Conversely, if w ∈ W∗
+, then the above argument shows that the unique

element ω ∈ Ω+ with θ(ω) = w must lie in Ω∗
+. Hence θ(Ω∗

+) = W∗
+, and the

shift-invariance of θ(Ω∗) guarantees that θ(Ω∗) = W∗, as claimed in (4.5).
In particular, W∗ is a sofic shift, and Corollary 3.2 yields that W∗ is a finite
sofic cover of (X,α).

By construction, the map θ : Ω∗ $−→ W∗ is bounded-to-one, so that Ω∗ is a
finite cover of finite type of (X,α). By setting N = ‖f‖∗1 we have completed
the proof of Theorem 4.1. !

The following example illustrates the proof of Theorem 4.1.
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Example 4.1. Let f = 1 − 3u1 + u2
1 ∈ R

+
1 , X = Xf ⊂ TZ and α = αf .

The map ζ : X $−→ T2, defined by ζ(x) = (x0, x1) for every x = (xn) ∈ X,
is surjective and satisfies that

ζ · α · ζ−1 =
(

0 1
−1 3

)

.

A direct calculation shows that the point w∆ ∈ )∞(Z, R) in (2.6) is given by

w∆
n = −

1√
5
·
(

3 −
√

5

2

)|n|

for every n ∈ Z. Hence ‖w∆‖1 = 1. According to Example 2.1 we may put
W = {0, 1, 2}Z and M = N = 2.

In order to describe the graph G with vertex set VG = {−2, . . . , 2}2 ∪
{(0, 0)∗} and edges labelled by elements of E = {0, 1, 2} we assume that
(i, j), (i′, j′) ∈ {−2, . . . , 2}2 and e ∈ E and draw an edge

(i, j)
e−→ (i′, j′)

if and only if

j = i′ and e − i + 4j − j′ = e − i + 4i′ − j′ ∈ E.

The graph G has five further edges:

(0, 0)∗
0−→ (0, 0)∗,

(0, 0)∗
1−→ (0, 0)∗,

(0, 0)∗
2−→ (0, 0)∗,

(0, 0)∗
1−→ (0, 1),

(0, 0)∗
2−→ (0, 1).

Note that the only edge leading into any vertex of the form (±2, j′) are

(2, 2)
2−→ (2, 2),

(−2,−2)
0−→ (−2,−2),

so that VG∗ ⊂ {−1, 0, 1}2 (cf. Figure 1). From the graph G∗ one easily

(0,0) (0,1)(0,-1)

(-1,-1) (1,1)

(-1,0) (1,0)

12

012

2 0

2 0

12 2
1201

0

012 012

01

01

012

12 (0,0)*

Figure 1. The graph G∗

obtains the graph Γ∗ in Figure 2. As α is ergodic, there exists an irreducible
subshift of finite type Ω∗∗ ⊂ Ω∗ with ξ · θ(Ω∗∗) = X, and from Figure 2 we
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{(0,0)*,(0,−1),(1,0),(1,1)}{(0,0)*,(0,1)}

{(0,0)*,(1,1)}

0

0

0

{(0,0)*,(1,0),(1,1)}

0

12

2

{(0,0)*,(1,1),(0,1)}

1
0

1

2

12

0{(0,0)*}

Figure 2. The graph Γ∗

see that Ω∗∗ is the set of all bi-infinite paths in the graph Γ∗∗ in Figure 3.
From the existence of the magic word ‘0’ in Figure 3 it is clear that that the

{(0,0)*,(0,1)}

{(0,0)*,(1,1)}

02

{(0,0)*,(1,1),(0,1)}

1

1

2

12

Figure 3. The graph Γ∗∗

restriction of θ to the set of doubly transitive points in Ω∗∗ is injective.
We claim that the restriction of ξ to the set of doubly transitive points in

W∗ is again injective. If v ∈ θ(Ω∗∗) ⊂ W∗ contains the string ‘0112’ infinitely
often both in the past and in the future, then no nonzero y ∈ {0, 1,−1}Z

satisfies that v+f(σ̄)(y) ∈ W∗, so that ξ(v) '= ξ(v′) for every v′ ∈ W∗ "{v}.
Hence ξ is injective on the set of doubly transitive points in W∗, W∗ is a
sofic representation of (X,α), and Ω∗ and Ω∗∗ are representations of finite
type of (X,α).

5. Examples

We present two examples of sofic representations and representations of
finite type of expansive Z2-actions of the form (Xf , αf ) with f ∈ R2.

5.1. The Z2-action defined by the polynomial f = 3−u1 −u2 ∈ R2 .

Proposition 5.1. Let f = 3 − u1 − u2 ∈ R2, X = Xf , α = αf (cf.
Proposition 2.1),

W = {0, 1, 2}Z2
⊂ )∞(Z2, Z),

ξ : W $−→ X the continuous, surjective map (2.11), and let τ be the restric-
tion to W of the shift-action σ̄ of Z2 on )∞(Z2, Z). Then W is a symbolic
representation of finite type of (X,α) and νξ−1 = λX , where ν is the equidis-
tributed Bernoulli measure on W.
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Proof. From Example 2.1 (1) we know that that ξ(W) = X, and Example
4.6 in [10] shows that the fundamental homoclinic point w∆ of α in (2.6) is
given by

w∆
m =

{

3m1+m2−1
(−m1−m2

−m2

)

if m1 ≤ 0, m2 ≤ 0,

0 otherwise,

for every m = (m1,m2) ∈ Z2. In particular, ‖w∆‖1 = 1.
Put Y = {−2, . . . , 2}Z2

and assume that v,w ∈ W and ξ(v) = ξ(w). Then
(2.11) shows that v−w = f(σ̄)(y) for some y ∈ )∞(Z2, Z), and (2.12) implies
that

‖y‖∞ = ‖ξ̄ · f(σ̄)(y)‖ ≤ ‖w∆‖1‖f(σ̄)(y)‖∞ = ‖f(σ̄)(y)‖∞ ≤ 2.

We wish to prove that the set

N = {v ∈ W : ξ−1(ξ(v)) '= {v}}
= {v ∈ W : v + f(σ̄)(y) ∈ W for some nonzero y ∈ Y }

has ν-measure zero. As we can cover N with countably many shifts of the
sets

N+
2 = {v ∈ W : there exists a nonzero y ∈ Y with y(0,0) = ‖y‖∞ = 2

and v + f(σ̄)(y) ∈ W},
N−

2 = {v ∈ W : there exists a nonzero y ∈ Y with − y(0,0) = ‖y‖∞ = 2

and v + f(σ̄)(y) ∈ W},
N+

1 = {v ∈ W : there exists a nonzero y ∈ Y with y(0,0) = ‖y‖∞ = 1

and v + f(σ̄)(y) ∈ W},
N−

1 = {v ∈ W : there exists a nonzero y ∈ Y with − y(0,0) = ‖y‖∞ = 1

and v + f(σ̄)(y) ∈ W},

we only have to prove that the sets N+
2 ,N−

2 ,N+
1 ,N−

1 have ν-measure zero.
We start with N+

2 (the case N−
2 is completely analogous). Take v, y as in

the definition of N+
2 and observe that

v(0,0) + 3 · 2 − y(1,0) − y(0,1) ≤ 2,

which can only be satisfied if y(1,0) = y(0,1) = 2 and v(0,0) = 0. The same
argument holds for the coordinates (n, 0) with n > 1. Hence

N+
2 ⊂ {v ∈ W : v(n,0) = 0 for every n ≥ 0}

and ν(N+
2 ) = 0.

Now take v ∈ N+
1 and y ∈ Y as in the definition of N+

1 . As v +f(σ̄)(y) ∈
W we get that

v(0,0) + (f(σ̄)(y))(0,0) = v(0,0) + 3 − y(1,0) − y(0,1) ≤ 2.

There are two possibilities: either y(1,0) = y(0,1) = 1 and v(0,0) ∈ {0, 1}, or
one of the two values y(1,0), y(0,1) is equal to zero and v(0,0) = 0. We define
inductively a map p = py : N $−→ N2 with p(0) = (0, 0). If p(i) for is defined
for i < l, l ≥ 1, such that yp(i) = 1 for i = 0, . . . , l we set p(l+1) = p(l)+(1, 0)
if yp(l)+(1,0) = 1 and p(l + 1) = p(l) + (0, 1) otherwise.
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This shows that there exists, for every point v ∈ N+
1 , an element y ∈ Y

and a map p = py : N $−→ N2 with p(0) = (0, 0) such that (f(σ̄)(y))p(i) ≥ 1,
p(i + 1) − p(i) ∈ {(1, 0), (0, 1)}, and hence vp(i) ≤ 1 for every i ≥ 0.

For every path p : N $−→ N2 with p(0) = (0, 0) and p(i + 1) − p(i) ∈
{(1, 0), (0, 1)} for all i ≥ 0, and for every l ≥ 1, we can estimate the ν-
measure of the sets

N+
p (l) = {v ∈ W : there exists a y ∈ Y with v + y ∈ W

and p(i) = py(i) for every i = 0, . . . , l},
N−

p (l) = {v ∈ W : there exists a y ∈ Y with v − y ∈ W

and p(i) = py(i) for every i = 0, . . . , l},

as follows. Let 0 ≤ i < l−1 be an integer such that p(i+1) = p(i)+(1, 0). If
vp(i) = 1 then (f(σ̄)(y))p(i) = 1, yp(i)+(1,0) = yp(i)+(0,1) = 1, and vp(i)+(0,1) ∈
{0, 1}. If vp(i) = 0 then (f(σ̄)(y))p(i) may be equal to 2 and yp(i)+(0,1)

may be equal to 0. If, on the other hand, p(i + 1) = p(i) + (0, 1) then
yp(i)+(1,0) = 0, (f(σ̄)(y))p(i) = 2 and vp(i) = 0. It follows that, if k is the
number of horizontal steps of p at the times 0, . . . , l − 1, i.e. the number of
i ∈ {0, . . . , l − 1} when p(i + 1) = p(i) + (1, 0), then

ν(Np(l)) ≤
(

5

9

)k(1

3

)l−1−k

.

As there are exactly
(

l−1
k

)

such paths of length l we obtain that

ν(N+
1 ) ≤ lim

l→∞

l−1
∑

k=0

(

l − 1

k

)(

5

9

)k(1

3

)l−1−k

= lim
l→∞

(

5

9
+

1

3

)l−1

= 0.

Similarly we see that ν(N−
1 ) = 0.

By using the shift-invariance of ν we conclude that ν(N) = 0 and that W

is a representation of finite type of (X,α). Finally we note that ν and λX

are the unique measures of maximal entropy for the Z2-actions τ on W and
λX on X (cf. [11]). As hν(τ) = hλX (α) = log 3 (the latter again by [11]), we
obtain that λX = νξ−1. !

Corollary 5.1. Let f1 = 3− u1 −u2, f2 = 3− u−1
1 −u2, f3 = 3−u1 −u−1

2 ,

f4 = 3 − u−1
1 − u−1

2 , and define Xi = Xfi , αi = αfi as in Proposition 2.1
for i = 1, . . . , 4. Then the Z2-actions αi and αj are metrically and almost
topologically conjugate for 1 ≤ i < j ≤ 4.

Proof. Proposition 5.1 can be adapted to show that each of the actions αi

is metrically and almost topologically conjugate to the full two-dimensional
three-shift with equidistributed Bernoulli measure. Hence any two of these
actions are metrically and almost topologically conjugate. !

5.2. The Z2-action defined by the polynomial f = 5−u1 −u−1
1 −u2 ∈

R2 . First we consider the Laurent polynomial g = u−1
1 − 5 + u1 ∈ R1 and

denote by β = αg the expansive automorphism of Y = Xg
∼= T2 defined

in Proposition 2.1. From Example 2.1 (2) we know that ξ(V) = Y , where
V = {0, . . . , 4}Z ⊂ )∞(Z, Z) and ξ : )∞(Z, Z) $−→ X is defined by (2.11).
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From Theorem 4.1 we know that the closed, shift-invariant subset V∗ ⊂ V

defined in (3.2) is a finite-to-one sofic cover of (Y, β), and by modifying the
argument of Example 4.1 appropriately one observes that V∗ is, in fact, a
sofic representation of (Y, β). By continuing as in Example 4.1 we obtain
the directed graph Γ∗∗ in Figure 4 and the corresponding shift of finite type
Ω∗∗ ⊂ {0, 1, 1′, 2, 3, 4}Z .

1234 1'
0

234
••

Figure 4. The graph Γ∗∗

If we represent the Ω∗∗ by the transition matrix




0 1 0 1 1 1
0 1 0 1 1 1
1 0 1 1 1 1
1 0 1 1 1 1
1 0 1 1 1 1
1 0 1 1 1 1





then the measure ν of maximal entropy of Ω∗∗ is given by the stochastic
matrix

P =





0 a 0 b b b
0 a 0 b b b
c 0 a a a a
c 0 a a a a
c 0 a a a a
c 0 a a a a



 , where
a = 5

2 − 1
2

√
21,

b = −1
2 + 1

6

√
21,

c = −9 + 2
√

21,

with its positive left eigenvector
(

−3
2 + 5

14

√
21, 2 − 3

7

√
21, 1

2 − 1
14

√
21, 1√

21
, 1√

21
, 1√

21

)

.

By identifying the symbols 1 and 1′ of Ω we obtain a sofic shift V∗∗ ⊂ V∗ ⊂
{0, . . . , 4}Z ⊂ )∞(Z, Z) and a measure ν with maximal entropy on V∗∗ which
is a sofic representation of (Y, β): ξ(V∗∗) = Y , νξ−1 = λY , ξ is injective ν-
a.e. on V∗∗, and β · ξ(v) = ξ · σ̄(v) for every v ∈ U, where σ̄ is the shift on
V∗∗ ⊂ )∞(Z, Z)).

Proposition 5.2. Let f = 5 − u1 − u−1
1 − u2 ∈ R2 and let α = αf be the

expansive Z2-action on X = Xf defined in Proposition 2.1. Put

U = {v = (vn) ∈ {0, . . . , 4}Z2
: (v(m,n), m ∈ Z) ∈ V

∗∗ for every n ∈ Z}
∼= (V∗∗)Z,

and let τ be the shift-action (1.1) of Z2 on U. If µ = νZ is the τ -invariant
product measure on U ∼= (V∗∗)Z, and if ξ : U $−→ X is the map defined in
(2.11), then ξ(U) = X, µξ−1 = λX , ξ is injective µ-a.e. on U, and αn ·ξ(v) =
ξ · τn(v) for every v ∈ V. In particular, (U, τ) is a sofic representation of
(X,α).

Proof. First we show that ξ(U) = X. From Example 2.1 we know that the
set W = {0, .., 4}Z2

satisfies ξ(W) = X. In order to show that x ∈ ξ(U)
for some fixed x ∈ X we prove inductively that there exists, for each n ∈
N, a v(n) ∈ ξ−1({x}) ∩ {−1, .., 5}Z2

with πZ×[−n,0](v
(n)) ∈ πZ×[−n,0](U) =

(V∗∗)[−n,0]. Take an element w ∈ W ∩ ξ−1({x}) and put w′ = πZ×{0}(w) ∈
)∞(Z, N). Since πZ×{0}(X) = Y = Xg ⊂ TZ and ξ(V∗∗) = Y there exists a
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y(0) ∈ )∞(Z, Z) with w′+y(0)g̃ ∈ V∗∗ (for notation we refer to the paragraph
preceding the statement of this proposition). As

0 ≤ w′
l ≤ 4 and 0 ≤ w′

l + (y(0)g̃)l ≤ 4

for all l ∈ Z we obtain from an elementary calculation that ‖y(0)‖∞ ≤ 1.
We regard g̃ as an element of R2 ⊂ )∞(Z2, Z) and set v(0) = w + y(0)f̃ .

Suppose that we have found v(l) ∈ ξ−1({x}) ∩ {−1, . . . , 5}Z2
for l =

0, . . . , k. Put

w′ = πZ×{k+1}(v
(k)) ∈ πZ×{k+1}(ξ

−1({x}))

and regard w′ as an element of {−1, . . . , 5}Z. Then the above argument
allows us to find an element y(k+1) ∈ )∞(Z, Z) with ‖y(k+1)‖∞ ≤ 1 and
w′ + y(k+1)g̃ ∈ V∗∗. By setting

v(k+1) = v(k) + y(k+1)u−k+1
2 f̃ ∈ ξ−1({x}) ∩ {−1, . . . , 5}Z2

we have completed the induction step.
Having constructed a sequence (v(n)) with the above properties we con-

clude as in Example 2.1 that the set ξ−1({x}) ∩ U is nonempty for every
x ∈ X and hence that ξ(U) = X.

We furnish the space U = (V∗∗)Z with the product measure µ = νZ.
Then µ is the unique measure of maximal entropy on U, and a more com-
plicated version of the percolation-type argument in Proposition 5.1 shows
the following.

(1) The set

N = {v ∈ U : there exists a nonzero y ∈ )∞(Z2, Z) with v + yf̃ ∈ V}
has µ-measure zero;

(2) If U′ = U " N , then ξ−1(ξ(U′)) ∩ U = U′;
(3) µξ−1 = λX .

Modulo some slightly unpleasant details this completes the proof of Propo-
sition 5.2. !

Corollary 5.2. Let f1 = 5 − u1 − u−1
1 − u2 ∈ R2, f2 = 5 − u1 − u−1

1 −
u−1

2 ∈ R2, and let αi = αfi be the expansive Z2-action on Xi = Xfi defined

in Proposition 2.1, where i = 1, 2. Then the Z2-actions α1 and α2 are
metrically and almost topologically conjugate.

Proof. Proposition 5.2 and symmetry show that (U, τ) is a sofic represen-
tation of (X1, α1) and (X2, α2). If we regard U as a closed, shift-invariant
subset of )∞(Z2, Z) as in Proposition 5.2 and define ξi : )∞(Z2, Z) $−→ Xi

by (2.11) for i = 1, 2. If we consider, for i = 1, 2, the Gδ U′
i ⊂ U defined

by (1.5) with ξi replacing φ and set U′ = U′
1 ∩ U′

2, X ′
i = ξi(U′) ⊂ Xi, then

µ(U′) = 1, and ξ2 · ξ−1
1 : ξ1(U′) $−→ ξ2(U′) is a Haar measure preserving

homeomorphism which sends α1 to α2. !

Remark 5.1. In Proposition 5.1 we obtain a symbolic representation of the
expansive algebraic Z2-action α by a two-dimensional full shift. The repre-
sentation of the Z2-action α in Proposition 5.2 is in terms of a sofic shift, but
it is easy to see that the two-dimensional shift of finite type (Ω∗∗)Z, where
Ω∗∗ is the shift of finite type represented by the graph Γ∗∗ in Figure 4, is
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again a representation of finite type. In both cases the shift of finite type
representing α is of a particularly simple form: it is a cartesian product over
Z of one-dimensional shifts of finite type. One can use these representations
to construct, for example, explicit α-invariant probability measures with a
variety of specific properties (such as a chosen value for the entropy and/or
suitable decay properties).
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