When does a polynomial ideal contain a positive polynomial?

Manfred Einsiedler^a and Selim Tuncel^b

^aInstitut für Mathematik, Strudlhofgasse 4, A-1090 Vienna, Austria ^bDepartment of Mathematics, University of Washington, Seattle, WA 98195, USA

Abstract

We use Gröbner bases and a theorem of Handelman to show that an ideal I of $\mathbb{R}[x_1, \ldots, x_k]$ contains a polynomial with positive coefficients if and only if no initial ideal $in_v(I), v \in \mathbb{R}^k$, has a positive zero.

Let $R = \mathbb{R}[x_1, \ldots, x_k]$, $R^+ = \mathbb{R}^+[x_1, \ldots, x_k]$ and, considering Laurent polynomials, let $\tilde{R} = \mathbb{R}[x_1^{\pm}, \ldots, x_k^{\pm}]$, $\tilde{R}^+ = \mathbb{R}^+[x_1^{\pm}, \ldots, x_k^{\pm}]$. For $a = (a_1, \ldots, a_k) \in \mathbb{Z}^k$, write $x^a = x_1^{a_1} \cdots x_k^{a_k}$ and denote the coefficient of x^a in $p \in \tilde{R}$ by p_a . Then $p = \sum_{a \in \mathbb{Z}^k} p_a x^a$ and the Newton polytope N(p) of p is the convex hull of the finite set $\operatorname{Log}(p) = \{a \in \mathbb{Z}^k : p_a \neq 0\}$. For $v \in \mathbb{R}^k$, let $in_v(p)$ be the sum of $p_a x^a$ over those $a \in \operatorname{Log}(p)$ for which the dot product $a \cdot v$ is maximal.

For an ideal $I \subset R$ and $v \in \mathbb{R}^k$ we have the initial ideal $in_v(I) = \langle in_v(p) : p \in I \rangle \subset R$ and the corresponding variety $\mathcal{V}(in_v(I)) = \{z \in \mathbb{C}^k : in_v(p)(z) = 0 \forall p \in I\}$. Observe that in the case v = 0 the ideal $in_v(I)$ equals I. We write \mathbb{R}^{++} for the positive reals.

Theorem. An ideal I of R contains a nonzero element of R^+ if and only if $(\mathbb{R}^{++})^k \cap \mathcal{V}(in_v(I)) = \emptyset$ for all $v \in \mathbb{R}^k$.

It will be clear that there are analogous statements for ideals of \tilde{R} , as well as for ideals of polynomial (or Laurent polynomial) rings over \mathbb{Q} or \mathbb{Z} instead of \mathbb{R} .

The question "When does a submodule M of \mathbb{R}^n contain an element of $(\mathbb{R}^+ \setminus \{0\})^n$?" will be answered in a longer sequel. The present paper, in dealing with the simpler case n = 1, highlights the utility of Gröbner bases in positivity problems.

One ingredient of our proof will be the following theorem of Handelman which deals with the case of a principal ideal.

Handelman's Theorem [3]. For $p \in R$ the following are equivalent.

(a) There exists $q \in R$ such that $qp \in R^+ \setminus \{0\}$.

(b) We have $in_v(p)(z) \neq 0$ for every $v \in \mathbb{R}^k$ and $z \in (\mathbb{R}^{++})^k$.

A short and self-contained account of the proof of Handelman's theorem may be found in [2].

The other ingredient we need is the basic theory of Gröbner bases. Everything we use from this theory can be found in the first 50 pages of [1].

Monomials of R are in bijective correspondence with $(\mathbb{Z}^+)^k$. A term order on $(\mathbb{Z}^+)^k$ is a total order \prec satisfying the following two conditions:

(i) $0 \prec a$ for all nonzero $a \in (\mathbb{Z}^+)^k$,

(ii) $a \prec b$ implies $a + c \prec b + c$ for all $a, b, c \in (\mathbb{Z}^+)^k$.

Fix an ideal $I \subset R$. For a term order \prec , we let $in_{\prec}(p)$ denote the unique initial (or leading) monomial of $p \in R$ and have the initial ideal $in_{\prec}(I) = \langle in_{\prec}(p) : p \in I \rangle \subset R$. Elements $f_1, \ldots, f_l \in I$ form a Gröbner basis for I with respect to \prec if and only if $in_{\prec}(I) = \langle in_{\prec}(f_i) : i = 1, \ldots, l \rangle$. Though there are infinitely many term orders, it is shown on p. 1–2 of [4] that I has finitely many initial ideals and, therefore, a universal Gröbner basis. That is, there exist $f_1, \ldots, f_l \in I$ which form a Gröbner basis of I with respect to every term order. (The existence of universal Gröbner bases was originally established in [5].)

Since we are interested in $in_v(I)$ for arbitrary $v \in \mathbb{R}^k$, we need to work around the fact that the dot product with v yields term orders on R only when v is positive. One way to do this is to introduce new variables y_1, \ldots, y_k and obtain from I an ideal that is homogeneous in each pair x_i, y_i . We will take another tack: Let $\delta = (\delta_1, \ldots, \delta_k) \in \{-1, 1\}^k$. Pick $a \in \mathbb{Z}^k$ so that $x^a f_1, \ldots, x^a f_l \in$ $\mathbb{R}[x_1^{\delta_1}, \ldots, x_k^{\delta_k}]$, and let $f_{\delta,1}, \ldots, f_{\delta,l_{\delta}}$ be a universal Gröbner basis for the ideal $\langle x^a f_1, \ldots, x^a f_l \rangle$ of $\mathbb{R}[x_1^{\delta_1}, \ldots, x_k^{\delta_k}]$. List the union of $f_{\delta,1}, \ldots, f_{\delta,l_{\delta}}$ over $\delta \in$ $\{-1, 1\}^k$ as g_1, \ldots, g_m . Let \prec be an arbitrary term order on $(\mathbb{Z}^+)^k$.

Lemma. Let $p \in I$ and $v \in \mathbb{R}^k$. There exist $\alpha_i \in \widetilde{R}$ such that $p = \sum_{i=1}^m \alpha_i g_i$ and

$$\max(N(p) \cdot v) = \max_{i} \{\max(N(\alpha_i g_i) \cdot v)\}.$$
(*)

Putting $S(v) = \{1 \le i \le m : \max(N(\alpha_i g_i) \cdot v) = \max(N(p) \cdot v)\}, we have$

$$in_v(p) = \sum_{i \in S(v)} in_v(\alpha_i) in_v(g_i) . \qquad (**)$$

PROOF. The second statement follows easily from the first. For the first statement, define $\delta \in \{-1,1\}^k$ by letting $\delta_j = 1$ if $v_j \ge 0$ and $\delta_j = -1$ if $v_j < 0$. For $a, b \in (\mathbb{Z}^+)^k$, put $(x_1^{\delta_1})^{a_1} \cdots (x_k^{\delta_k})^{a_k} \prec_v (x_1^{\delta_1})^{b_1} \cdots (x_k^{\delta_k})^{b_k}$ if

(i)
$$\sum_{j=1}^{k} v_j \delta_j a_j < \sum_{j=1}^{k} v_j \delta_j b_j$$
, or
(ii) $\sum_{j=1}^{k} v_j \delta_j a_j = \sum_{j=1}^{k} v_j \delta_j b_j$ and $a \prec b$

This defines a term order \prec_v on the monomials of $\mathbb{R}[x_1^{\delta_1}, \ldots, x_k^{\delta_k}]$. Now consider that $a \in \mathbb{Z}^k$ involved in the definition of $\{f_{\delta,1}, \ldots, f_{\delta,l_{\delta}}\}$. Find $b \in \mathbb{Z}^k$ so that $x^b p$ lies in the ideal $\langle x^a f_1, \ldots, x^a f_l \rangle$ of $\mathbb{R}[x_1^{\delta_1}, \ldots, x_k^{\delta_k}]$. Apply the division algorithm [1] to $x^b p$ and the subset $\{f_{\delta,1}, \ldots, f_{\delta,l_{\delta}}\}$ of $\{g_1, \ldots, g_m\}$ to find $\alpha_i \in x^{-b} \mathbb{R}[x_1^{\delta_1}, \ldots, x_k^{\delta_k}]$ such that $p = \sum_{i=1}^m \alpha_i g_i$, we have $\alpha_i = 0$ if $g_i \notin$ $\{f_{\delta,1}, \ldots, f_{\delta,l_{\delta}}\}$, and

$$\operatorname{in}_{\prec_v}(x^b p) = \max\{\operatorname{in}_{\prec_v}(x^b \alpha_i g_i) : i = 1, \dots, m\}.$$

The last equation straightforwardly implies the desired equality (*).

Remark. It is evident from the definition of g_1, \ldots, g_m that a monomial multiple of each g_i lies in I. This fact and the above lemma imply that

$$\mathcal{V}(in_v(I)) \setminus \{0\} = \{z \in \mathbb{C}^k : z \neq 0 \text{ and } in_v(g_i)(z) = 0 \text{ for } i = 1, \dots, m\}.$$

Hence, an equivalent formulation of the theorem is that $I \cap R^+$ contains a nontrivial polynomial if and only if for every $v \in \mathbb{R}^k$ the set $\{in_v(g_1), \ldots, in_v(g_m)\}$ has no common zero in $(\mathbb{R}^{++})^k$. One easily finds a finite set of vectors v which is sufficient for checking the last condition. In fact, if we let $G = \prod_{i=1}^m g_i$ and for each face F of W(G) pick a vector v_F such that $W(in_{v_F}(G)) = F$, it suffices to check the condition for the finite set of vectors $\{v_F\}$.

Proof of the theorem. Suppose $p \in I \cap R^+$ and $p \neq 0$. For $v \in \mathbb{R}^k$ and $z \in (\mathbb{R}^{++})^k$ we have $in_v(p) \in R^+$ and, therefore, $in_v(p)(z) > 0$. Considering (**), we see that $in_v(g_i)(z) \neq 0$ for some $i \in S(v)$.

Conversely, suppose that $in_v(g_1), \ldots, in_v(g_m)$ do not have a common root in $(\mathbb{R}^{++})^k$ for any $v \in \mathbb{R}^k$. Let \tilde{g}_i be a monomial multiple of g_i such that $\tilde{g}_i \in I$.

Then $in_v(\tilde{g}_1), \ldots, in_v(\tilde{g}_m)$ do not have a common root in $(\mathbb{R}^{++})^k$ for any $v \in \mathbb{R}^k$. Let h_i be the sum of x^a over all a in the set

$$\operatorname{Log}\left(\prod_{\substack{j\in\{1,\dots,m\},\j\neq i}} \tilde{g}_j^2\right).$$

Note that, on $(\mathbb{R}^{++})^k$, each $in_v(h_i \tilde{g}_i^2)$ is nonnegative and has the same roots as $in_v(\tilde{g}_i)$. As $N(h_i \tilde{g}_i^2)$ is independent of i, we conclude that $p \equiv \sum_{i=1}^m h_i \tilde{g}_i^2$ satisfies (b) of Handelman's theorem. By Handelman's theorem, $qp \in \mathbb{R}^+ \cap$ I for some nonzero $q \in \mathbb{R}$. (In fact, letting $f = \sum_{a \in \text{Log}(p)} x^a$, the proof of Handelman's theorem reveals that we can take $q = f^n$ for some positive integer n.)

We end the paper with some examples.

Examples. (i) Take k = 2, and write $x = x_1, y = x_2$ and w = (0, 1). Consider $p = 1 + y - 2xy + x^2y$, $q = 1 + y - xy + x^2y$ and the principal ideals $I = \langle p \rangle$, $J = \langle q \rangle$. Note that $in_v(p) = in_v(q) \in R^+$ for $v \neq w$, while $in_w(p) = (x - 1)^2 y$ and $in_w(q) = ((x - 1)^2 + x)y$. By Handelman's theorem, $I \cap R^+ = \{0\}$, while $J \cap R^+$ contains a nonzero element. (For instance, $(1 + x)q \in R^+$.)

(ii) Now take k = 3 and write $x = x_1, y = x_2, z = x_3$. Consider $p = 1 + (2x + 2y)z + (1 - x)^2(1 - y)^2z^2$, $q = 1 + (x + y)z + (1 - x)^2(1 - y)^2z^2$ and $s = 2 + x^2 + y^2 + (1 - x)^2(1 - y)^2z$, and the ideals $I = \langle p, s \rangle$, $J = \langle q, s \rangle$. Let D be the subset of \mathbb{R}^3 consisting of vectors of the form (0, a, b) and (a, 0, b) for $a \ge 0, b > 0$. Observe that we have $in_v(s)(x, y, z) > 0$ for all x, y, z > 0, provided $v \notin D$. In the case of J and $v \in D$, the polynomial

$$in_v(sz-q) = in_v(-1 + (1-x+x^2+1-y+y^2)z) = in_v((1-x)^2 + (1-y)^2 + x+y)z$$

is (numerically) positive for all x, y, z > 0. By our theorem, $J \cap R^+$ contains a nonzero element. Turning to I, let w = (0, 0, 1) and consider the lexicographic order \prec with $y \prec x \prec z$. A Gröbner basis of I with respect to \prec is given by

$$\begin{split} f &= 5 - 6x - 6y - 2y^3 + y^4 - 2x^3 + x^4 + 4xy - 4xy^2 - 4x^2y + 3x^2y^2 + 5x^2 + 5y^2, \\ g &= -3 - x^2 + 2y - 2y^2 + (1-y)^4z, \\ h &= -1 + ((1-x)^2 + (1-y)^2)z. \end{split}$$

It follows (see the lemma above and its proof) that

$$in_w(I) = \langle in_w(f), in_w(g), in_w(h) \rangle.$$

Since $in_w(f) = f$, $in_w(g) = (1-y)^4 z$ and $in_w(h) = ((1-x)^2 + (1-y)^2) z$ vanish when x = y = z = 1, we have $I \cap R^+ = \emptyset$. We thank Klaus Schmidt and the Erwin Schroedinger Institute, Vienna for their hospitality, and Doug Lind and Bernd Sturmfels for discussions. We were partially supported by FWF grant P12250-MAT and NSF grant DMS-9622866, respectively.

References

- W. Adams and P. Loustaunau, An Introduction to Gröbner Bases, Amer. Math. Soc., Providence, R. I., 1994.
- [2] V. De Angelis and S. Tuncel, Handelman's theorem on polynomials with positive multiples, to appear in *Codes, Systems, and Graphical Models*, IMA Volumes in Mathematics and its Applications, Springer.
- [3] D. Handelman, Positive polynomials and product type actions of compact groups, Mem. Amer. Math. Soc., vol. 320, 1985.
- [4] B. Sturmfels, Gröbner Bases and Convex Polytopes, Amer. Math. Soc., Providence, R. I., 1996.
- [5] V. Weispfenning, Contructing universal Gröbner bases, in Proceedings AAECC 5, Menorca 1987, Springer Lecture Notes in Computer Science 356, pp. 408–417.