When does a polynomial ideal contain a positive polynomial?

Manfred Einsiedler ${ }^{\text {a }}$ and Selim Tuncel ${ }^{\text {b }}$
${ }^{\text {a }}$ Institut für Mathematik, Strudlhofgasse 4, A-1090 Vienna, Austria
${ }^{\mathrm{b}}$ Department of Mathematics, University of Washington, Seattle, WA 98195, USA

Abstract

We use Gröbner bases and a theorem of Handelman to show that an ideal I of $\mathbb{R}\left[x_{1}, \ldots, x_{k}\right]$ contains a polynomial with positive coefficients if and only if no initial ideal $i n_{v}(I), v \in \mathbb{R}^{k}$, has a positive zero.

Let $R=\mathbb{R}\left[x_{1}, \ldots, x_{k}\right], R^{+}=\mathbb{R}^{+}\left[x_{1}, \ldots, x_{k}\right]$ and, considering Laurent polynomials, let $\widetilde{R}=\mathbb{R}\left[x_{1}^{ \pm}, \ldots, x_{k}^{ \pm}\right], \widetilde{R}^{+}=\mathbb{R}^{+}\left[x_{1}^{ \pm}, \ldots, x_{k}^{ \pm}\right]$. For $a=\left(a_{1}, \ldots, a_{k}\right) \in \mathbb{Z}^{k}$, write $x^{a}=x_{1}^{a_{1}} \cdots x_{k}^{a_{k}}$ and denote the coefficient of x^{a} in $p \in \widetilde{R}$ by p_{a}. Then $p=\sum_{a \in \mathbb{Z}^{k}} p_{a} x^{a}$ and the Newton polytope $N(p)$ of p is the convex hull of the finite set $\log (p)=\left\{a \in \mathbb{Z}^{k}: p_{a} \neq 0\right\}$. For $v \in \mathbb{R}^{k}$, let $i n_{v}(p)$ be the sum of $p_{a} x^{a}$ over those $a \in \log (p)$ for which the dot product $a \cdot v$ is maximal.

For an ideal $I \subset R$ and $v \in \mathbb{R}^{k}$ we have the initial ideal $i n_{v}(I)=\left\langle i n_{v}(p)\right.$: $p \in I\rangle \subset R$ and the corresponding variety $\mathcal{V}\left(i n_{v}(I)\right)=\left\{z \in \mathbb{C}^{k}: i n_{v}(p)(z)=\right.$ $0 \forall p \in I\}$. Observe that in the case $v=0$ the ideal $i n_{v}(I)$ equals I. We write \mathbb{R}^{++}for the positive reals.

Theorem. An ideal I of R contains a nonzero element of R^{+}if and only if $\left(\mathbb{R}^{++}\right)^{k} \cap \mathcal{V}\left(i n_{v}(I)\right)=\emptyset$ for all $v \in \mathbb{R}^{k}$.

It will be clear that there are analogous statements for ideals of \widetilde{R}, as well as for ideals of polynomial (or Laurent polynomial) rings over \mathbb{Q} or \mathbb{Z} instead of \mathbb{R}.

The question "When does a submodule M of R^{n} contain an element of ($R^{+} \backslash$ $\{0\})^{n}$?" will be answered in a longer sequel. The present paper, in dealing with the simpler case $n=1$, highlights the utility of Gröbner bases in positivity problems.

One ingredient of our proof will be the following theorem of Handelman which deals with the case of a principal ideal.

Handelman's Theorem [3]. For $p \in R$ the following are equivalent.
(a) There exists $q \in R$ such that $q p \in R^{+} \backslash\{0\}$.
(b) We have $\operatorname{in}_{v}(p)(z) \neq 0$ for every $v \in \mathbb{R}^{k}$ and $z \in\left(\mathbb{R}^{++}\right)^{k}$.

A short and self-contained account of the proof of Handelman's theorem may be found in [2].

The other ingredient we need is the basic theory of Gröbner bases. Everything we use from this theory can be found in the first 50 pages of [1].

Monomials of R are in bijective correspondence with $\left(\mathbb{Z}^{+}\right)^{k}$. A term order on $\left(\mathbb{Z}^{+}\right)^{k}$ is a total order \prec satisfying the following two conditions:
(i) $0 \prec a$ for all nonzero $a \in\left(\mathbb{Z}^{+}\right)^{k}$,
(ii) $a \prec b$ implies $a+c \prec b+c$ for all $a, b, c \in\left(\mathbb{Z}^{+}\right)^{k}$.

Fix an ideal $I \subset R$. For a term order \prec, we let $i n_{\prec}(p)$ denote the unique initial (or leading) monomial of $p \in R$ and have the initial ideal $i n_{\prec}(I)=$ $\left\langle i n_{\prec}(p): p \in I\right\rangle \subset R$. Elements $f_{1}, \ldots, f_{l} \in I$ form a Gröbner basis for I with respect to \prec if and only if $i n_{\prec}(I)=\left\langle i n_{\prec}\left(f_{i}\right): i=1, \ldots, l\right\rangle$. Though there are infinitely many term orders, it is shown on p. 1-2 of [4] that I has finitely many initial ideals and, therefore, a universal Gröbner basis. That is, there exist $f_{1}, \ldots f_{l} \in I$ which form a Gröbner basis of I with respect to every term order. (The existence of universal Gröbner bases was originally established in [5].)

Since we are interested in $i n_{v}(I)$ for arbitrary $v \in \mathbb{R}^{k}$, we need to work around the fact that the dot product with v yields term orders on R only when v is positive. One way to do this is to introduce new variables y_{1}, \ldots, y_{k} and obtain from I an ideal that is homogeneous in each pair x_{i}, y_{i}. We will take another tack: Let $\delta=\left(\delta_{1}, \ldots, \delta_{k}\right) \in\{-1,1\}^{k}$. Pick $a \in \mathbb{Z}^{k}$ so that $x^{a} f_{1}, \ldots, x^{a} f_{l} \in$ $\mathbb{R}\left[x_{1}^{\delta_{1}}, \ldots, x_{k}^{\delta_{k}}\right]$, and let $f_{\delta, 1}, \ldots, f_{\delta, l_{\delta}}$ be a universal Gröbner basis for the ideal $\left\langle x^{a} f_{1}, \ldots, x^{a} f_{l}\right\rangle$ of $\mathbb{R}\left[x_{1}^{\delta_{1}}, \ldots, x_{k}^{\delta_{k}}\right]$. List the union of $f_{\delta, 1}, \ldots, f_{\delta, l_{\delta}}$ over $\delta \in$ $\{-1,1\}^{k}$ as g_{1}, \ldots, g_{m}. Let \prec be an arbitrary term order on $\left(\mathbb{Z}^{+}\right)^{k}$.

Lemma. Let $p \in I$ and $v \in \mathbb{R}^{k}$. There exist $\alpha_{i} \in \widetilde{R}$ such that $p=\sum_{i=1}^{m} \alpha_{i} g_{i}$ and

$$
\begin{equation*}
\max (N(p) \cdot v)=\max _{i}\left\{\max \left(N\left(\alpha_{i} g_{i}\right) \cdot v\right)\right\} \tag{*}
\end{equation*}
$$

Putting $S(v)=\left\{1 \leq i \leq m: \max \left(N\left(\alpha_{i} g_{i}\right) \cdot v\right)=\max (N(p) \cdot v)\right\}$, we have

$$
\begin{equation*}
i n_{v}(p)=\sum_{i \in S(v)} i n_{v}\left(\alpha_{i}\right) i n_{v}\left(g_{i}\right) \tag{**}
\end{equation*}
$$

PROOF. The second statement follows easily from the first. For the first statement, define $\delta \in\{-1,1\}^{k}$ by letting $\delta_{j}=1$ if $v_{j} \geq 0$ and $\delta_{j}=-1$ if $v_{j}<0$. For $a, b \in\left(\mathbb{Z}^{+}\right)^{k}$, put $\left(x_{1}^{\delta_{1}}\right)^{a_{1}} \cdots\left(x_{k}^{\delta_{k}}\right)^{a_{k}} \prec_{v}\left(x_{1}^{\delta_{1}}\right)^{b_{1}} \cdots\left(x_{k}^{\delta_{k}}\right)^{b_{k}}$ if
(i) $\sum_{j=1}^{k} v_{j} \delta_{j} a_{j}<\sum_{j=1}^{k} v_{j} \delta_{j} b_{j}$, or
(ii) $\sum_{j=1}^{k} v_{j} \delta_{j} a_{j}=\sum_{j=1}^{k} v_{j} \delta_{j} b_{j}$ and $a \prec b$.

This defines a term order \prec_{v} on the monomials of $\mathbb{R}\left[x_{1}^{\delta_{1}}, \ldots, x_{k}^{\delta_{k}}\right]$. Now consider that $a \in \mathbb{Z}^{k}$ involved in the definition of $\left\{f_{\delta, 1}, \ldots, f_{\delta, l_{\delta}}\right\}$. Find $b \in \mathbb{Z}^{k}$ so that $x^{b} p$ lies in the ideal $\left\langle x^{a} f_{1}, \ldots, x^{a} f_{l}\right\rangle$ of $\mathbb{R}\left[x_{1}^{\delta_{1}}, \ldots, x_{k}^{\delta_{k}}\right]$. Apply the division algorithm [1] to $x^{b} p$ and the subset $\left\{f_{\delta, 1}, \ldots, f_{\delta, l_{\delta}}\right\}$ of $\left\{g_{1}, \ldots, g_{m}\right\}$ to find $\alpha_{i} \in x^{-b} \mathbb{R}\left[x_{1}^{\delta_{1}}, \ldots, x_{k}^{\delta_{k}}\right]$ such that $p=\sum_{i=1}^{m} \alpha_{i} g_{i}$, we have $\alpha_{i}=0$ if $g_{i} \notin$ $\left\{f_{\delta, 1}, \ldots, f_{\delta, l_{\delta}}\right\}$, and

$$
\operatorname{in}_{\prec_{v}}\left(x^{b} p\right)=\max \left\{\operatorname{in}_{\prec_{v}}\left(x^{b} \alpha_{i} g_{i}\right): i=1, \ldots, m\right\} .
$$

The last equation straightforwardly implies the desired equality $(*)$.

Remark. It is evident from the definition of g_{1}, \ldots, g_{m} that a monomial multiple of each g_{i} lies in I. This fact and the above lemma imply that

$$
\mathcal{V}\left(i n_{v}(I)\right) \backslash\{0\}=\left\{z \in \mathbb{C}^{k}: z \neq 0 \text { and } i_{v}\left(g_{i}\right)(z)=0 \text { for } i=1, \ldots, m\right\}
$$

Hence, an equivalent formulation of the theorem is that $I \cap R^{+}$contains a nontrivial polynomial if and only if for every $v \in \mathbb{R}^{k}$ the set $\left\{i n_{v}\left(g_{1}\right), \ldots, i n_{v}\left(g_{m}\right)\right\}$ has no common zero in $\left(\mathbb{R}^{++}\right)^{k}$. One easily finds a finite set of vectors v which is sufficient for checking the last condition. In fact, if we let $G=\prod_{i=1}^{m} g_{i}$ and for each face F of $W(G)$ pick a vector v_{F} such that $W\left(i n_{v_{F}}(G)\right)=F$, it suffices to check the condition for the finite set of vectors $\left\{v_{F}\right\}$.

Proof of the theorem. Suppose $p \in I \cap R^{+}$and $p \neq 0$. For $v \in \mathbb{R}^{k}$ and $z \in\left(\mathbb{R}^{++}\right)^{k}$ we have $i n_{v}(p) \in R^{+}$and, therefore, $i n_{v}(p)(z)>0$. Considering $(* *)$, we see that $i n_{v}\left(g_{i}\right)(z) \neq 0$ for some $i \in S(v)$.

Conversely, suppose that $i n_{v}\left(g_{1}\right), \ldots, i n_{v}\left(g_{m}\right)$ do not have a common root in $\left(\mathbb{R}^{++}\right)^{k}$ for any $v \in \mathbb{R}^{k}$. Let \tilde{g}_{i} be a monomial multiple of g_{i} such that $\tilde{g}_{i} \in I$.

Then $i n_{v}\left(\tilde{g}_{1}\right), \ldots, i n_{v}\left(\tilde{g}_{m}\right)$ do not have a common root in $\left(\mathbb{R}^{++}\right)^{k}$ for any $v \in$ \mathbb{R}^{k}. Let h_{i} be the sum of x^{a} over all a in the set

$$
\log \left(\prod_{\substack{j \in\{1, \ldots, m\}, j \neq i}} \tilde{g}_{j}^{2}\right) .
$$

Note that, on $\left(\mathbb{R}^{++}\right)^{k}$, each $i n_{v}\left(h_{i} \tilde{g}_{i}^{2}\right)$ is nonnegative and has the same roots as $i n_{v}\left(\tilde{g}_{i}\right)$. As $N\left(h_{i} \tilde{g}_{i}^{2}\right)$ is independent of i, we conclude that $p \equiv \sum_{i=1}^{m} h_{i} \tilde{g}_{i}^{2}$ satisfies (b) of Handelman's theorem. By Handelman's theorem, $q p \in R^{+} \cap$ I for some nonzero $q \in R$. (In fact, letting $f=\sum_{a \in \log (p)} x^{a}$, the proof of Handelman's theorem reveals that we can take $q=f^{n}$ for some positive integer n.)

We end the paper with some examples.

Examples. (i) Take $k=2$, and write $x=x_{1}, y=x_{2}$ and $w=(0,1)$. Consider $p=1+y-2 x y+x^{2} y, q=1+y-x y+x^{2} y$ and the principal ideals $I=\langle p\rangle$, $J=\langle q\rangle$. Note that $i n_{v}(p)=i n_{v}(q) \in R^{+}$for $v \neq w$, while $i n_{w}(p)=(x-1)^{2} y$ and $i n_{w}(q)=\left((x-1)^{2}+x\right) y$. By Handelman's theorem, $I \cap R^{+}=\{0\}$, while $J \cap R^{+}$contains a nonzero element. (For instance, $(1+x) q \in R^{+}$.)
(ii) Now take $k=3$ and write $x=x_{1}, y=x_{2}, z=x_{3}$. Consider $p=1+$ $(2 x+2 y) z+(1-x)^{2}(1-y)^{2} z^{2}, q=1+(x+y) z+(1-x)^{2}(1-y)^{2} z^{2}$ and $s=2+x^{2}+y^{2}+(1-x)^{2}(1-y)^{2} z$, and the ideals $I=\langle p, s\rangle, J=\langle q, s\rangle$. Let D be the subset of \mathbb{R}^{3} consisting of vectors of the form $(0, a, b)$ and $(a, 0, b)$ for $a \geq 0, b>0$. Observe that we have $i n_{v}(s)(x, y, z)>0$ for all $x, y, z>0$, provided $v \notin D$. In the case of J and $v \in D$, the polynomial
$i n_{v}(s z-q)=i n_{v}\left(-1+\left(1-x+x^{2}+1-y+y^{2}\right) z\right)=i n_{v}\left((1-x)^{2}+(1-y)^{2}+x+y\right) z$
is (numerically) positive for all $x, y, z>0$. By our theorem, $J \cap R^{+}$contains a nonzero element. Turning to I, let $w=(0,0,1)$ and consider the lexicographic order \prec with $y \prec x \prec z$. A Gröbner basis of I with respect to \prec is given by

$$
\begin{gathered}
f=5-6 x-6 y-2 y^{3}+y^{4}-2 x^{3}+x^{4}+4 x y-4 x y^{2}-4 x^{2} y+3 x^{2} y^{2}+5 x^{2}+5 y^{2} \\
g=-3-x^{2}+2 y-2 y^{2}+(1-y)^{4} z \\
h=-1+\left((1-x)^{2}+(1-y)^{2}\right) z .
\end{gathered}
$$

It follows (see the lemma above and its proof) that

$$
i n_{w}(I)=\left\langle i n_{w}(f), i n_{w}(g), i n_{w}(h)\right\rangle .
$$

Since $i n_{w}(f)=f, i n_{w}(g)=(1-y)^{4} z$ and $i n_{w}(h)=\left((1-x)^{2}+(1-y)^{2}\right) z$ vanish when $x=y=z=1$, we have $I \cap R^{+}=\emptyset$.

We thank Klaus Schmidt and the Erwin Schroedinger Institute, Vienna for their hospitality, and Doug Lind and Bernd Sturmfels for discussions. We were partially supported by FWF grant P12250-MAT and NSF grant DMS9622866, respectively.

References

[1] W. Adams and P. Loustaunau, An Introduction to Gröbner Bases, Amer. Math. Soc., Providence, R. I., 1994.
[2] V. De Angelis and S. Tuncel, Handelman's theorem on polynomials with positive multiples, to appear in Codes, Systems, and Graphical Models, IMA Volumes in Mathematics and its Applications, Springer.
[3] D. Handelman, Positive polynomials and product type actions of compact groups, Mem. Amer. Math. Soc., vol. 320, 1985.
[4] B. Sturmfels, Gröbner Bases and Convex Polytopes, Amer. Math. Soc., Providence, R. I., 1996.
[5] V. Weispfenning, Contructing universal Gröbner bases, in Proceedings AAECC 5, Menorca 1987, Springer Lecture Notes in Computer Science 356, pp. 408-417.

