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Abstract

We use Gröbner bases and a theorem of Handelman to show that an ideal I of
R[x1, . . . , xk] contains a polynomial with positive coefficients if and only if no initial
ideal inv(I), v ∈ Rk, has a positive zero.

Let R = R[x1, . . . , xk], R+ = R+[x1, . . . , xk] and, considering Laurent polyno-
mials, let R̃ = R[x±

1 , . . . , x±
k ], R̃+ = R+[x±

1 , . . . , x±
k ]. For a = (a1, . . . , ak) ∈ Zk,

write xa = xa1

1 · · ·xak

k and denote the coefficient of xa in p ∈ R̃ by pa. Then
p =

∑
a∈Zk pax

a and the Newton polytope N(p) of p is the convex hull of the
finite set Log(p) = {a ∈ Zk : pa 6= 0}. For v ∈ Rk, let inv(p) be the sum of
pax

a over those a ∈ Log(p) for which the dot product a · v is maximal.

For an ideal I ⊂ R and v ∈ Rk we have the initial ideal inv(I) = 〈inv(p) :
p ∈ I〉 ⊂ R and the corresponding variety V(inv(I)) = {z ∈ Ck : inv(p)(z) =
0 ∀ p ∈ I}. Observe that in the case v = 0 the ideal inv(I) equals I. We write
R++ for the positive reals.

Theorem. An ideal I of R contains a nonzero element of R+ if and only if
(R++)k ∩ V(inv(I)) = ∅ for all v ∈ Rk.

It will be clear that there are analogous statements for ideals of R̃, as well as
for ideals of polynomial (or Laurent polynomial) rings over Q or Z instead of
R.

The question “When does a submodule M of Rn contain an element of (R+ \
{0})n ?” will be answered in a longer sequel. The present paper, in dealing with
the simpler case n = 1, highlights the utility of Gröbner bases in positivity
problems.
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One ingredient of our proof will be the following theorem of Handelman which
deals with the case of a principal ideal.

Handelman’s Theorem [3]. For p ∈ R the following are equivalent.

(a) There exists q ∈ R such that qp ∈ R+ \ {0}.

(b) We have inv(p)(z) 6= 0 for every v ∈ Rk and z ∈ (R++)k.

A short and self-contained account of the proof of Handelman’s theorem may
be found in [2].

The other ingredient we need is the basic theory of Gröbner bases. Everything
we use from this theory can be found in the first 50 pages of [1].

Monomials of R are in bijective correspondence with (Z+)k. A term order on
(Z+)k is a total order ≺ satisfying the following two conditions:

(i) 0 ≺ a for all nonzero a ∈ (Z+)k,

(ii) a ≺ b implies a + c ≺ b + c for all a, b, c ∈ (Z+)k.

Fix an ideal I ⊂ R. For a term order ≺ , we let in≺(p) denote the unique
initial (or leading) monomial of p ∈ R and have the initial ideal in≺(I) =
〈in≺(p) : p ∈ I〉 ⊂ R. Elements f1, . . . , fl ∈ I form a Gröbner basis for I with
respect to ≺ if and only if in≺(I) = 〈in≺(fi) : i = 1, . . . , l〉. Though there are
infinitely many term orders, it is shown on p. 1–2 of [4] that I has finitely
many initial ideals and, therefore, a universal Gröbner basis. That is, there
exist f1, . . . fl ∈ I which form a Gröbner basis of I with respect to every term
order. (The existence of universal Gröbner bases was originally established in
[5].)

Since we are interested in inv(I) for arbitrary v ∈ Rk, we need to work around
the fact that the dot product with v yields term orders on R only when v is
positive. One way to do this is to introduce new variables y1, . . . , yk and obtain
from I an ideal that is homogeneous in each pair xi, yi. We will take another
tack: Let δ = (δ1, . . . , δk) ∈ {−1, 1}k. Pick a ∈ Zk so that xaf1, . . . , x

afl ∈
R[xδ1

1 , . . . , xδk

k ], and let fδ,1, . . . , fδ,lδ be a universal Gröbner basis for the ideal
〈xaf1, . . . , x

afl〉 of R[xδ1
1 , . . . , xδk

k ]. List the union of fδ,1, . . . , fδ,lδ over δ ∈
{−1, 1}k as g1, . . . , gm. Let ≺ be an arbitrary term order on (Z+)k.

Lemma. Let p ∈ I and v ∈ Rk. There exist αi ∈ R̃ such that p =
∑m

i=1 αi gi

and
max(N(p) · v) = max

i
{max(N(αi gi) · v)}. (∗)
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Putting S(v) = {1 ≤ i ≤ m : max(N(αi gi) · v) = max(N(p) · v)}, we have

inv(p) =
∑

i∈S(v)

inv(αi) inv(gi) . (∗∗)

PROOF. The second statement follows easily from the first. For the first
statement, define δ ∈ {−1, 1}k by letting δj = 1 if vj ≥ 0 and δj = −1 if
vj < 0. For a, b ∈ (Z+)k, put (xδ1

1 )a1 · · · (xδk

k )ak ≺v (xδ1
1 )b1 · · · (xδk

k )bk if

(i)
k∑

j=1
vjδjaj <

k∑
j=1

vjδjbj , or

(ii)
k∑

j=1
vjδjaj =

k∑
j=1

vjδjbj and a ≺ b.

This defines a term order ≺v on the monomials of R[xδ1
1 , . . . , xδk

k ]. Now consider
that a ∈ Zk involved in the definition of {fδ,1, . . . , fδ,lδ}. Find b ∈ Zk so
that xbp lies in the ideal 〈xaf1, . . . , x

afl〉 of R[xδ1
1 , . . . , xδk

k ]. Apply the division
algorithm [1] to xbp and the subset {fδ,1, . . . , fδ,lδ} of {g1, . . . , gm} to find
αi ∈ x−b R[xδ1

1 , . . . , xδk

k ] such that p =
∑m

i=1 αigi, we have αi = 0 if gi 6∈
{fδ,1, . . . , fδ,lδ}, and

in≺v
(xbp) = max{in≺v

(xbαigi) : i = 1, . . . , m}.

The last equation straightforwardly implies the desired equality (∗). �

Remark. It is evident from the definition of g1, . . . , gm that a monomial mul-
tiple of each gi lies in I. This fact and the above lemma imply that

V(inv(I)) \ {0} = {z ∈ Ck : z 6= 0 and inv(gi)(z) = 0 for i = 1, . . . , m}.

Hence, an equivalent formulation of the theorem is that I∩R+ contains a non-
trivial polynomial if and only if for every v ∈ Rk the set {inv(g1), . . . , inv(gm)}
has no common zero in (R++)k. One easily finds a finite set of vectors v which
is sufficient for checking the last condition. In fact, if we let G =

∏m
i=1 gi and

for each face F of W (G) pick a vector vF such that W (invF
(G)) = F , it

suffices to check the condition for the finite set of vectors {vF}.

Proof of the theorem. Suppose p ∈ I ∩ R+ and p 6= 0. For v ∈ Rk and
z ∈ (R++)k we have inv(p) ∈ R+ and, therefore, inv(p)(z) > 0. Considering
(∗∗), we see that inv(gi)(z) 6= 0 for some i ∈ S(v).

Conversely, suppose that inv(g1), . . . , inv(gm) do not have a common root in
(R++)k for any v ∈ Rk. Let g̃i be a monomial multiple of gi such that g̃i ∈ I.
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Then inv(g̃1), . . . , inv(g̃m) do not have a common root in (R++)k for any v ∈
Rk. Let hi be the sum of xa over all a in the set

Log




∏

j∈{1,...,m},
j 6=i

g̃2
j


 .

Note that, on (R++)k, each inv(hi g̃
2
i ) is nonnegative and has the same roots

as inv(g̃i). As N(hi g̃
2
i ) is independent of i, we conclude that p ≡

∑m
i=1 hi g̃

2
i

satisfies (b) of Handelman’s theorem. By Handelman’s theorem, qp ∈ R+ ∩
I for some nonzero q ∈ R. (In fact, letting f =

∑
a∈Log(p) xa, the proof of

Handelman’s theorem reveals that we can take q = fn for some positive integer
n.) �

We end the paper with some examples.

Examples. (i) Take k = 2, and write x = x1, y = x2 and w = (0, 1). Consider
p = 1 + y − 2xy + x2y, q = 1 + y − xy + x2y and the principal ideals I = 〈p〉,
J = 〈q〉. Note that inv(p) = inv(q) ∈ R+ for v 6= w, while inw(p) = (x − 1)2y
and inw(q) = ((x − 1)2 + x)y. By Handelman’s theorem, I ∩ R+ = {0}, while
J ∩ R+ contains a nonzero element. (For instance, (1 + x)q ∈ R+.)

(ii) Now take k = 3 and write x = x1, y = x2, z = x3. Consider p = 1 +
(2x + 2y)z + (1 − x)2(1 − y)2z2, q = 1 + (x + y)z + (1 − x)2(1 − y)2z2 and
s = 2 + x2 + y2 + (1 − x)2(1 − y)2z , and the ideals I = 〈p, s〉, J = 〈q, s〉. Let
D be the subset of R3 consisting of vectors of the form (0, a, b) and (a, 0, b)
for a ≥ 0, b > 0. Observe that we have inv(s)(x, y, z) > 0 for all x, y, z > 0,
provided v /∈ D. In the case of J and v ∈ D, the polynomial

inv(sz−q) = inv(−1+(1−x+x2+1−y+y2)z) = inv((1−x)2+(1−y)2+x+y)z

is (numerically) positive for all x, y, z > 0. By our theorem, J ∩R+ contains a
nonzero element. Turning to I, let w = (0, 0, 1) and consider the lexicographic
order ≺ with y ≺ x ≺ z. A Gröbner basis of I with respect to ≺ is given by

f = 5−6x−6y−2y3 + y4 −2x3 +x4 +4xy−4xy2 −4x2y +3x2y2 +5x2 +5y2,

g = −3 − x2 + 2y − 2y2 + (1 − y)4z,

h = −1 + ((1 − x)2 + (1 − y)2)z.

It follows (see the lemma above and its proof) that

inw(I) = 〈inw(f), inw(g), inw(h)〉.

Since inw(f) = f , inw(g) = (1 − y)4z and inw(h) = ((1 − x)2 + (1 − y)2)z
vanish when x = y = z = 1, we have I ∩ R+ = ∅.
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