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Abstract. The height of an algebraic number in the sense of Dio-
phantine geometry is a measure of arithmetic complexity. There is
a well-known relationship between the entropy of automorphisms
of solenoids and classical heights. We consider an elliptic analogue
of this relationship, which involves two novel features. Firstly,
the introduction of a notion of entropy for sequences of transfor-
mations. Secondly, the recognition of canonical local heights as
integrals over the closure of the torsion subgroup of the curve (an
elliptic Jensen formula).

A sequence of transformations is defined for which there is a
canonical arithmetically defined quotient whose entropy is the canon-
ical height, and in which the fibre entropy is accounted for by
canonical local heights at primes of singular reduction, yielding
a dynamical interpretation of singular reduction. This system is
related to local systems, whose entropy coincides with the canoni-
cal local height up to sign. The proofs use transcendence theory, a
strong form of Siegel’s theorem, and an elliptic analogue of Jensen’s
formula.
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1. Introduction

Let Q denote a finite rational point of the projective line P1. If
Q = [q, 1] corresponds to the rational number q = a/b where a and
b are relatively prime integers, then Q has an associated Diophantine
height h(Q) = log max{|a|, |b|}, a measure of the arithmetic complexity
of Q. The height can be written using Jensen’s formula as an integral,

(1) h(Q) = log max{|a|, |b|} =

∫

T

log |bx − a|dm,

where T is the unit circle and m is Haar measure. Moreover, if φn(x) =
xn − 1, the polynomial whose roots form the n-torsion subgroup of the
unit circle, then (1) may be written (assuming that a "= ±b)

(2) h(Q) = lim
n→∞

1

n

∑

ξ:φn(ξ)=0

log |bξ − a|.

On the other hand, the point Q has a naturally associated automor-
phism TQ : XQ → XQ, where TQ is a continuous map on an underlying
compact group XQ known as a solenoid (defined later). The topological
entropy of this dynamical system, an intrinsic invariant measuring or-
bit complexity, coincides with the Diophantine height h(Q) of Q. The
equation (2) is the Riemann sum approximation to an integral over the
closure of torsion points. The number of elements of XQ fixed by T n

Q is
|bnφn(a/b)| = |bn−an|, which is related to the torsion points expression
(2) by the identity

∑

ξ:φn(ξ)=0

log |bξ − a| = log |bn − an|.

The main point of reference is the approach taken in [17], where the
entropy is calculated by noting that the space XQ is covered by the
adeles and the dynamics lift nicely. The lifted map restricts to the local
components, and the local entropies agree with the local projective
heights. In this covering space, the periodic point data is destroyed
however.

The arithmetic meaning of (1) and (2) has a direct analogue in which
(roughly speaking) T is replaced by a complex elliptic curve, and the
projective height is replaced by the global canonical height, which is
known to decompose as a sum of canonical local heights. The cyclo-
tomic division polynomials carrying knowledge of torsion in the circle
are replaced by the elliptic division polynomials. Several attempts have
been made to find the fourth corner of this square of ideas, namely a
family of elliptic dynamical systems, whose topological entropy is given



ENTROPY AND THE CANONICAL HEIGHT 3

by the canonical height on the curve, and whose periodic point data is
given by expressions involving the elliptic division polynomial (see [5],
[11], [12]).

There are two main objectives in this paper. The first is to show
how the viewpoint afforded by (1) and (2) in an elliptic setting gives
new insights into the canonical height. The arithmetic dynamics of the
automorphism TQ gives concrete expression to the idea that the usual
Diophantine height is a natural measure of complexity by identifying it
with the topological entropy. The second objective is to show this has
an elliptic analogue. To achieve this, the usual concept of a dynam-
ical system is widened to include sequences of transformations which
are not necessarily the iterates of a single transformation. Dynamical
systems are constructed from rational points on elliptic curves which
interpret the known arithmetic properties of heights. In particular, the
analogous identification of the canonical height with a topological en-
tropy (a measure of the growth in orbit complexity) is achieved. The
results include a dynamical interpretation of the phenomenon of sin-
gular reduction. The maps constructed act on the adeles, just as in
[17]; they are built from the duplication map on the underlying elliptic
curve.

A technical issue that arises is that if the underlying space is compact
this places severe restrictions upon the volume growth rates in the
entropy calculations; thus the maps on the adeles are natural settings
to find the characteristic quadratic-exponential growth rates familiar
in elliptic curves.

The main result arrived at may be summarized as follows.

Theorem (see Section 6) Let E denote an elliptic curve defined over Q,
and Q a rational point on E. Then Q generates a sequence of diagonal
transformations U on the adeles with the following properties.
1. If Q has non-singular reduction modulo p for all primes p then the

entropy h(U) = ĥ(Q), the global canonical height of Q.
2. Let S denote the set of primes p for which Q has singular reduction
modulo p; write QS =

∏

p∈S Qp, and US for the restriction of U to QS .

Then the quotient entropy h(U/US) = ĥ(Q).

Thus the sequences of maps constructed here give a direct connec-
tion between the canonical height on elliptic curves (and some of its
ramifications, like singular reduction) and growth in orbit complexity
of associated sequences of maps. The main results are in Sections 5
and 6, and these two sections may be read independently if standard
material on elliptic curves and some material on entropy is assumed.
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2. Background on heights and elliptic curves

Let E be an elliptic curve defined over the rationals, given by a
generalized Weierstrass equation

(3) y2 + c1xy + c3y = x3 + c2x
2 + c4x + c6,

where c1, . . . , c6 ∈ Z. For each rational prime p, there is a continuous
function λp : E(Qp)\{0} → R which satisfies the parallelogram law

(4) λp(Q + P ) + λp(Q − P ) = 2λp(Q) + 2λp(P ) − log |x(Q) − x(P )|p

for Q, P, Q ± P "= 0. If it is required that the expression λp(Q) −
1
2 log |x(Q)|p be bounded as Q −→ 0 (the identity of E), then there
is only one such map, called the canonical local height. Note that
in [22], local heights are normalized to make them invariant under
isomorphisms: this involves adding a constant which depends on the
discriminant of E, the local heights in [22] then satisfy a different form
of the parallelogram law. For a discussion of local heights in the form
used here, see [21]. On E(Q) the canonical (global) height ĥ can be
written as a sum of canonical local heights – see (9) below – or there is
a more direct definition using limits of projective heights. If 0 "= Q =
[x(Q), y(Q)] ∈ E(Q) has x(Q) = a

b where a and b are relatively prime
integers, define hE(Q) to be 1

2 log max{|a|, |b|}. Then hE(Q) coincides
with 1

2h([x(Q), 1]) in the usual sense of Diophantine geometry. Taking
the logarithmic height of the identity to be zero gives the alternative
definition

ĥ(Q) = lim
n→∞

4−nhE(2nQ).

There are explicit formulæ for each of the canonical local heights (see
[20], and [22]; [10] for an alternative approach). For a prime p where
Q has non-singular reduction,

(5) λp(Q) = 1
2 log+ |x(Q)|p.

Notice in particular that if x(Q) is integral at p and Q has non-singular
reduction at p then λp(Q) = 0. The singular reduction case is more
involved, and to avoid a major digression only the split multiplicative
reduction case is considered (see [22, p. 362] for details on this). The
results all hold more generally but require passage to extension fields.
In the split multiplicative case, the points on the curve are isomorphic
to the group Q∗

p/$
Z where $ ∈ Q∗

p has |$|p < 1. The explicit formulæ
for the x and y coordinates of a non-identity point on the Tate curve
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are given in terms of the parameter u ∈ Q∗
p by

x = xu =
∑

n∈Z

$nu

(1 − $nu)2
− 2

∑

n≥1

n$n

(1 − $n)2
,

y = yu =
∑

n∈Z

$2nu2

(1 − $nu)3
+

∑

n≥1

n$n

(1 − $n)2
.

It is clear that xu = xu# and xu = xu−1 . Suppose Q corresponds to
the point u ∈ Q∗

p and assume, by invariance under multiplication by
$, that u lies in the fundamental domain {u | p−k = |$|p < |u|p ≤ 1}.
Then (by [10] or [22]),

λp(Q) =

{

− log |1 − u|p if |u|p = 1,

−k
2

(

r
k −

(

r
k

)2
)

log p if |u|p = p−r < 1.

Notice that for |u|p = 1, the canonical local height is non-negative,
while if |u|p < 1 the canonical local height is negative. Also, these
formulæ extend to all of E(Ωp) by [22] (Ωp is the completion of a
fixed algebraic closure of Qp). In [5], [11] and [12], attempts have
been made to define dynamical systems whose topological entropy is
given by ĥ(Q), the global canonical height of Q. In the spirit of the
algebraic case, and to reflect the fact that the global canonical height
is a sum of canonical local heights, one looks to realize each canonical
local height as the entropy of a corresponding local component. In [5]
the elliptic adeles are used. D’Ambros [6] works over function fields
and assumes that the point Q has everywhere non-singular reduction.
In [5] a similar non-singular reduction assumption is made, together
with an assumption that Q lies in a neighbourhood of the identity;
there is also an artificiality in the construction. The extra freedom of
sequential actions allows a different approach to these problems, and
gives a clear dynamically motivated description of the global canonical
height and the phenomenon of singular reduction.

3. Background on entropy

Most of the definitions and results below are straightforward mod-
ifications of well-known theory, so the results are simply stated. The
interest is in the later examples. Let X be a ‘space’: a standard prob-
ability space (X,B, µ), a compact metric space (X, ρ), or a locally
compact metric space (X, d). A sequential action on X is a sequence
T = (Tn)n≥1 of maps Tn : X → X with the property that each Tn is a
µ-preserving B-measurable map, a continuous map, or a uniformly con-
tinuous map respectively. One of the essential features of the elliptic
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phenomena we are trying to capture is that the volume grows at some
natural rate. Let r : N → R be non-decreasing with r(n) ↗ ∞. A finite
partition ξ of (X,B, µ) is a collection {A1, . . . , Ak} of B-measurable sets
with µ(

⋃k
i=1 Ai) = 1 and µ(Ai ∩ Aj) = 0 for all i "= j. The entropy of

such a partition is H(ξ) = −
∑k

i=1 µ(Ai) log µ(Ai) (with the convention
that 0 log 0 = 0), and the join of ξ with another finite partition η =
{B1, . . . , B#} is the partition ξ ∨ η = {Ai ∩ Bj | 1 ≤ i ≤ k, 1 ≤ j ≤ $}.
If T : X → X is a measurable map, then T−1ξ denotes the partition
{T−1A1, . . . , T−1Ak}.

Definition 3.1. The (measure-theoretic) sequential entropy of T on
(X,B, µ) is given by

hr
µ(T) = sup

ξ
lim sup

n→∞

1

r(n)
H

(

n
∨

j=1

T−1
j ξ

)

,

where the supremum is taken over all finite partitions.

Example 3.2. 1. Let r(n) = n, and let Tj = T j for all j ≥ 1 where T
is a single measure-preserving transformation. Then hr

µ(T) = hµ(T ),
the usual measure-theoretic entropy of T .
2. Let r(n) = n again, and let Tj = T aj for a fixed increasing se-
quence A = (a1, a2, . . . ). Then hr

µ(T) = hA(T ) the ‘A-entropy’ or
sequence-entropy introduced by Kushnirenko [16] as an invariant of
measure-preserving transformations not reducible to entropy or spec-
tral invariants unless T has positive entropy (see [15]).

Following Bowen, we next define a topological entropy and a volume-
growth entropy for the topological context. Let X be a compact metric
space (X, ρ), write N(U) for the least cardinality of a finite subcover of
an open cover U , and use ∨ to denote the common refinement of two
open covers.

Definition 3.3. The (topological) entropy of T on (X, ρ) is

hr
top(T) = sup

U
lim sup

n→∞

1

r(n)
log N

(

n
∨

j=1

T−1
j U

)

,

where the supremum is taken over all open covers U of X.

Example 3.4. 1. Let r(n) = n, and let Tj = T j for all j ≥ 1 where
T is a single continuous map on (X, ρ). Then hr

top(T) = htop(T ), the
topological entropy of T introduced in [1].
2. Let r(n) = n, and let Tj = T aj for a fixed increasing sequence
A = (a1, a2, . . . ). Then hr

top(T) = hA
top(T ) is the topological sequence

entropy (see [8]).
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3. The directional entropy introduced by Milnor coincides with the
entropy in this sense, with r(n) = n, for the sequence of transformations
seen in a strip along the chosen direction (see [18]).

Definition 3.3 is less than easy to work with, and the calculation of
topological entropy is facilitated by Bowen’s introduction of spanning
and separated sets, homogeneous measures, and volume growth. Let
now X be a locally compact metric space (X, d), and assume that each
Tj is uniformly continuous.

Definition 3.5. Let K ⊂ X be compact. A set E ⊂ K is (n, ε)-
separated under T if for any distinct points x, y in E, there is a j,
1 ≤ j ≤ n, for which d(Tjx, Tjy) > ε. A set F ⊂ X (n, ε)-spans K
if, for every x ∈ K there is a y ∈ F for which d(Tjx, Tjy) ≤ ε for
1 ≤ j ≤ n. Let rn(ε, K) (resp. sn(ε, K)) denote the largest (smallest)
cardinality of a separating (spanning) set for K under T. Then define

hr
Bowen(T) = sup

K
lim
ε↘0

lim sup
n→∞

1

r(n)
log rn(ε, K)

= sup
K

lim
ε↘0

lim sup
n→∞

1

r(n)
log sn(ε, K),

where the supremum is taken over all compact sets K ⊂ X, and the
coincidence of the two limits is shown as in [3, Lemma 1].

As in the usual case, it may be shown that hr
Bowen(T) = hr

top(T)
(see [4], [23, Sect. 7.2]) when (X, d) is compact, and that hr

Bowen(T)
depends only on the uniform equivalence class of the metric d (see [3,
Prop. 3]).

Definition 3.6. Assume that each Tj is a uniformly continuous map
on the locally compact metric space (X, d); write

Dn(x, ε,T) =
n

⋂

k=1

T−1
k Bε(Tkx)

with Bε a metric open ball of radius ε. Just as in [3, Def. 6], call a
Borel measure µ on X homogeneous for T if µ is finite on compact
sets, positive on some compact set, and, for every ε > 0 there exist a
δ > 0 and a C > 0 such that µ

(

Dn(y, δ,T)
)

≤ Cµ
(

Dn(x, ε,T)
)

for all
n ≥ 1 and x, y ∈ X. For such a measure, the volume-growth entropy
is defined to be

lim
ε↘0

lim sup
n→∞

−
1

r(n)
log µ

(

Dn(x, ε,T)
)

,

which is independent of x by homogeneity, and (see [3], mutatis mu-
tandis) it coincides with hr

Bowen(T).
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Simple estimates show that if the underlying space is of finite mea-
sure (or compact), then the measure-theoretic (resp. topological) en-
tropy hr can only be positive if r(n) grows linearly or sub-linearly.
Example 7.1 shows that other rates are possible: the point is that in
those examples the underlying space is not compact. This restriction
in rate is characteristic of Z-actions (and their sequential analogues).
It is possible that an approach via Z2-actions, which share a natu-
ral quadratic-exponential behaviour with canonical heights on elliptic
curves, may be possible on compact spaces.

4. Solenoids

Suppose first that Q = [q, 1] ∈ P1(Q̄) is a finite point on the algebraic
projective line. Then the map x ,→ qx on Z[q] or Z[q±1] determines a
dual map TQ : XQ → XQ on the compact abelian dual group. Identify
XQ with the dual of a subgroup of Qd for some d; then TQ becomes the
map dual to a rational d×d matrix A. The topological entropy of TQ is
given by Yuzvinskii’s formula, htop(TQ) = log |s| +

∑

i log+ |λi|, where
s is the g.c.d. of the denominators of the coefficients of the character-
istic polynomial of A, and {λi} are the eigenvalues of A counted with
multiplicity (see [14] for the original derivation of this result). A more
suggestive ‘local-to-global’ formulation of this result is given in [17]:
htop(TQ) =

∑

p≤∞

∑

i log+ |λi,p|p, where the inner sum is taken over the
eigenvalues of A in the algebraic closure of Qp, and | · |p denotes the
usual extension of the p-adic valuation.

Example 4.1. In each case the solenoid XQ is described, and peri-
odic points – points whose orbit under the map TQ is finite – are also
discussed.
1. If q ∈ Z\{−1, 0, 1}, then Z[q] = Z, so the dual group XQ is the
circle T. The map TQ is x ,→ qx mod 1, and it is easy to see that
htop(T ) = log |q|. Writing fn(TQ) = {x | T n

Q(x) = x} for the set of
points of period n under TQ gives |fn(TQ)| = |qn − 1| = |φn(q)|, where
φn(x) = xn − 1 is the nth division polynomial on the circle. Notice
that (1/n) log |fn(TQ)| → htop(TQ).
2. If q is an algebraic integer (non unit-root) of degree d whose minimal
polynomial has constant coefficient ±1, then XQ is the d-torus Td, and
A can be chosen to be the companion matrix to the minimal polynomial
of q. A similar argument shows that htop(TQ) =

∑

i log+ |λi|, and
|fn(T )| =

∏

i |λ
n
i − 1|. It is still the case that (1/n) log |fn(TQ)| →

htop(TQ), but this is non-trivial because of the possibility of eigenvalues
with unit modulus (see [12] for a detailed discussion).
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3. If q = a/b is a rational in lowest terms, and XQ is dual to the group
Z[q±1] = Z[ 1

ab ], then htop(TQ) =
∑

p≤∞ log+ |ab |p = log max{|a|, |b|} is
the usual projective height of the point [q, 1]. Here fn(TQ) = |an−bn| =
|bnφn(a/b)|, and again (1/n) log |fn(TQ)| → htop(TQ).

Notice that the topological entropy in each case is given by an inte-
gral over the circle by Jensen’s formula. Yuzvinskii’s formula is proved
in [17] using an adelic covering space: Example 4.1.3 is a natural quo-
tient of the map x ,→ qx on the Q-adeles QA, and the entropy may
be calculated in the adelic covering space using the following results.
Firstly, the topological entropy of the action of A ∈ Md(Q) on Qd

p

is given by hBowen(A) =
∑

i log+ |λi,p|p, where the sum is taken over
the eigenvalues of A in the algebraic closure of Qp. Secondly, the
covering map has the same topological entropy as the quotient map:

hr
Bowen(Qp

×q
→ Qp) = hr

top(XQ
×q
→ XQ).

We therefore pursue an elliptic analogue of Yuzvinskii’s formula by
considering actions on the adele ring.

5. Duplication on elliptic curves

To fix notation, let E be given in generalized Weierstrass form as
in (3). From the shape of this equation, the denominator of the x-
coordinate of any rational point is a square. Write x(2nQ) = θn =
an/b2

n, bn > 0 as a rational in lowest terms.

Theorem 5.1. Let r(n) = 4n, X = R, and Tj(x) = bjx for j > 1 with

the sequence (bn) defined by x(2nQ) = an/b2
n. Then hr

Bowen(T) = ĥ(Q)
for non-torsion Q.

Proof. By a strong form of Siegel’s theorem (see [20, p. 250]),

(6) lim
n→∞

log |an|

2 log |bn|
= 1.

Also,

(7) lim
n→∞

1

r(n)
log

1

2
max{|an|, |b

2
n|} = ĥ(Q)

by [20, Chap. VIII, Sect. 9]. Thus |bn| → ∞ and limn→∞
1

r(n) log bn =

ĥ(Q) by (6) and (7). It follows that

log µ

(

n
⋂

j=1

T−1
j Bε

)

= − log max
1≤j≤n

{|bj|} + log 2ε.
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For any real sequence (dn) with d(n)
r(n) −→ ω ≥ 0,

(8)
max1≤j≤n{d(j)}

r(n)
−→ ω ≥ 0.

It follows that 1
r(n) log max1≤j≤n{|bj |} → ĥ(Q) as required. !

More subtle arithmetic volume growth is visible on the ring of adeles
(see [25, Chap. IV] for details on the adele ring). Write elements
of the adele ring QA as x = (x∞, x2, x3, . . . ), then define (for α ∈
Q) αx = (αx∞,αx2,αx3, . . . ). Let µp be the Haar measure on Qp

(p ≤ ∞) normalized to have µp(Zp) = 1 (p < ∞) and µ∞([0, 1)) = 1,
and write µ =

∏

p≤∞ µp. It is enough to consider the neighbourhood
B = (−1, 1) ×

∏

p<∞ Zp in Theorem 5.2, Section 6 and Example 7.1
since any ε-ball around the identity contains the image of B under an
automorphism of QA.

Theorem 5.2. Let r(n) = 4n, X = QA, and Tn(x) = θnx where

θn = an/b2
n = x(2nQ). Then hr

Bowen(T) = 2ĥ(Q) for non-torsion Q.

Proof. At the infinite place, a bound on max1≤n≤N{|θn|} is provided
by elliptic transcendence theory (see [7]). The minimum distance of
nQ from the identity on C/L is bounded below by n−A for some A =
A(E, Q) > 0. The size of the x-coordinate is approximately the inverse
square of this quantity. Since we are running through the powers of 2
only, this gives an upper bound for max1≤n≤N{|θn|} of the shape CN .
Thus, if

N
⋂

j=1

T−1
j B = BN,∞ ×

∏

p<∞

BN,p,

the measure of BN,∞ is O(CN). For the finite places, the sequence (bn)
– and hence (b2

n) – has a very strong divisibility property: bi|bi+1 for
all i ≥ 1 (by the duplication formula). Thus

µ (BN,p) = µ

(

N
⋂

n=1

(

an/b2
n

)−1
Zp

)

= min
1≤n≤N

{

∣

∣an/b2
n

∣

∣

−1

p

}

= |bN |2p.
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It follows that

log µ

(

N
⋂

j=1

T−1
j B

)

= 2 log
∏

p<∞

|bN |p + O(log CN)

= −2 log |bN | + O(N).

So hr
Bowen(T) = 2ĥ(Q) as in the proof of Theorem 5.1. !

6. A dynamical interpretation of singular reduction

The systems described in Example 4.1 have local entropies which sum
to the global topological entropy. Example 7.1 shows that the entropy
of simple examples of sequences of transformations on the adeles may
not add up in an analogous way. In pursuit of the connection between
heights and entropy on elliptic curves, a more substantial problem ap-
pears, preventing Theorems 5.1 and 5.2 from decomposing into local
contributions. On the height side, it is still the case that the canonical
global height is a sum of local canonical heights,

(9) ĥ(Q) =
∑

p≤∞

λp(Q),

(see [20, App. C, Sect. 18]). When p is a prime of singular reduction
for the curve, or p = ∞, it is possible for the canonical local height
λp(Q) to be strictly negative. This means that it certainly cannot
represent the topological entropy of anything, even in the sense of Def-
inition 3.1. In [5], an approach to interpreting the global height as the
entropy of a dynamical system is presented. Roughly speaking, since
(9) decomposes into an expression for the global canonical height as the
difference of two non-negative quantities, it was suggested there that
a global system on the adeles might have a canonical factor, whose
quotient has the canonical height as entropy, and whose fibres carry
the other component of the entropy.

If P = [x(P ), y(P )] denotes a generic point on the curve E, described
by a generalized Weierstrass equation as before, then x(nP ) is a rational
function of x and y. In particular, the denominator of that rational
function is a polynomial which vanishes on the n-torsion of E. This
polynomial can be used to generate a sequence of transformations with
more arithmetical subtlety. Let ψn denote the nth division polynomial
of E for n ≥ 1 (see [12, App. C], [20]). Thus, ψn is an integral
polynomial of degree n2 − 1 and leading coefficient n2 whose roots are
exactly the x-coordinates of all the non-identity points of order dividing
n on E. It is well-known that ψn(x) is always the square of a polynomial
in both x and y and, for odd n, it is the square of a polynomial in x
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alone (see [20, p. 105]). Writing q = a/b = xQ as a rational in lowest
terms with b > 0 for the x-coordinate of a fixed rational point Q, recall
that b must be a perfect square and define

qn = |bn2−1ψn(a/b)| ∈ Z.

The remarks above show that qn is a square for all n ≥ 1. Additionally,
the sequence (qn) is a divisibility sequence in the usual sense: m|n
implies qm|qn. These elliptic divisibility sequences were studied in an
abstract setting by Morgan Ward in a sequence of papers - see [24] for
the details. Shipsey’s thesis [19] contains more recent applications of
these sequences.

Define a sequence of non-negative integers by u2
n = q2n . If Q is not a

torsion point then the terms of the sequence (un) are always non-zero.
The divisibility of the sequence (qn) implies that

u1|u2|u3| . . . .

Define a sequence of transformations on QA by

(10) Uj(x) = u−1
j x

for j ≥ 1. To motivate this definition, notice that in Theorems 5.1 and
5.2 the denominator of θn is responsible for the volume growth, and
hence the entropy. These denominators may be thought of as evalua-
tions of the division polynomial (though in practice a large amount of
cancellation takes place). Let S denote the set of primes for which
the point Q has singular reduction, and define the S-adeles to be
QS =

∏

p∈S Qp. Write US for restriction of U to QS. The canoni-
cal local height of Q is non-positive for each prime in S, while for any
prime p dividing b, Q has non-singular reduction and the canonical
local height there is −1

2 log |b|p.

Theorem 6.1. For the sequence of transformations (10) and r(n) =
4n,
1. hr

Bowen(U) = λ∞(Q) + 1
2 log |b|,

2. hr
Bowen(US) = −

∑

p∈S λp(Q) ≥ 0, and

3. hr
Bowen(Ū) = ĥ(Q) = λ∞(Q)+ 1

2 log |b|+
∑

p∈S λp(Q) where Ū is the

quotient sequence of transformations induced by U on QA/QS.

Notice that the first formula is an analogue of Yuzvinskii’s formula.
Theorem 6.1 will be proved later.

Corollary 6.2. If Q has everywhere non-singular reduction then

hr
Bowen(U) = ĥ(Q).
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If Q has singular reduction at p ∈ S then, with Ū as before,

hr
Bowen(Ū) = ĥ(Q).

Define εp(Q) to be 1 if λp(Q) ≥ 0 and −1 if λp(Q) < 0. This map
has the following properties.
1. If Q is integral, then ε∞(Q) = 1 (see comments after (11)).
2. The set of primes p for which εp(Q) = −1 is finite.
3. There is a finite-index subgroup in E(Q) on which εp(Q) = 1 for all
p ∈ S (and therefore for all finite p) – see [12, Sect. 6.2] or [5, Sect. 5].
4. For all Q in a neighbourhood of the identity, εp(Q) = 1.

Theorem 6.3. For the sequence of transformations on Qp defined by

Tj(x) = q
εp(Q)
j x for j ≥ 1, where Q ∈ E(Q) is a non-torsion point, q =

x(Q), q2
j = |ψj(q)|, qj > 0, and r(n) = n2, hr

Bowen(T) = εp(Q)λp(Q).

Proof. There are three cases to consider. If p = ∞, we claim firstly
that

(11) lim
N→∞

N−2 log |ψN(q)| = 2λ∞(Q).

Notice that this explains the first of the properties of ε∞ above: if Q
is integral, then the left-hand side of (11) is non-negative for all N .
Formula (11) was proved in [12, Theorem 6.18]; the proof is sketched
here because it is similar to the singular reduction case. Take G = E(C)
and consider the elliptic Jensen formula

(12)

∫

G

log |x(P ) − x(Q)|dµG(P ) = 2λ∞(Q)

where µG is the normalized Haar measure on G (see [9]). The points of
N -torsion are dense and uniformly distributed in E(C) as N → ∞, so
the limit sum over the torsion points will tend to the integral when the
integrand is continuous. The only potential problem arises from torsion
points close to Q: by [7], for x = x(P ) with NP = 0, |x−x(Q)| > N−C

for some C > 0 which depends on E and Q only. This inequality is
enough to imply that the Riemann sum given by the N -torsion points
for log |x(P )−x(Q)| converges, which gives (11). Now q2

n = |ψn(q)|, so

log µ

(

N
⋂

j=1

T−1
j Bε

)

= − log eN + log ε,

where eN = max1≤j≤N{q
ε∞(Q)
j }, so using (11) gives

lim
N→∞

N−2 log eN = ε∞(Q)λ∞(Q).
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Assume that p is a prime of singular reduction. If |x(Q)|p > 1 then Q
has non-singular reduction at p and the result follows from the final case
below. Assume therefore that |x|p ≤ 1, and use the parametrisation of
the curve described in Section 2. The explicit formulæ of that section
show that the canonical local height is non-positive. The points of
order dividing N on the Tate curve are precisely those of the form
ζ i$j/N , 1 ≤ i, j ≤ N , where ζ ∈ Ωp denotes a fixed, primitive Nth root
of unity in Ωp. We claim that

(13) lim
N→∞

N−2 log |ψN(q)|p = 2λp(Q);

this gives another proof that the canonical local height is non-positive
at a point which is p-integral, where p is a prime of singular reduction.
Let G denote the closure of the torsion points: G is not compact,
so the p-adic elliptic Jensen formula cannot be used. Instead we use
a variant of the Shnirelman integral: for f : E(Ωp) → R define the
elliptic Shnirelman integral to be

∫

G

f(Q)dQ = lim
N→∞

N−2
∑

Nτ=0;τ *=0

f(τ)

whenever the limit exists.
We claim firstly that for any P ∈ E(Qp), the Shnirelman integral

(14)

∫

G

λp(P + Q)dQ = S(E) exists and is independent of P .

First assume that P is the identity. Using the explicit formula for the
canonical local height gives

(15) −N−2
N−1
∑

i=1

log |1 − ζ i|p − N−2
N−1
∑

i=0

N−1
∑

j=1

k

2

(

j

N
−

(

j

N

)2
)

log p.

Since
∏N−1

i=1 (1−ζ i) = N in Ωp, the first sum is − log |N |p
N2 , which vanishes

in the limit; the second sum converges to − k
12 log p.

For the general case, let P correspond to the point v on the multi-
plicative Tate curve. If for some large N no j has |$j/Nv|p = 1 then
the analogous sum to (15) is close to − k

12 log p by the same argument.
Assume therefore that there is a j with this property. Then the first
sum in (15) is replaced by

(16) −N−2
N−1
∑

i=1

log |1 − $j/Nvζ i|p − N−2 log |1 − ($rv)N |p,

where r = j/N only depends on v. By p-adic elliptic transcendence
theory (see [7]), there is a lower bound for log |1− ($rv)N |p of the form
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−(log N)A, where A depends on E and v = v(P ) only. It follows that
the first sum vanishes in the limit as before. The second sum in (15)
is simply rearranged under rotation by v, so converges to − k

12 log p as
before. This proves (14).

The claimed limit (13) now follows by taking the elliptic Shnirelman
integral of both sides of the parallelogram law (4) and noting that
equation (14) shows that three terms cancel to leave the required limit,
so

∫

G

log |x(P ) − x(Q)|dP = 2λp(Q)

which implies (13). Consider

log µ

(

N
⋂

j=1

T−1
j Bε

)

= − log fN + log ε,

where fN = max1≤j≤N{|qj|
εp(Q)
p }. Dividing by N2 and taking the limit

gives the result as in the case p = ∞.
Finally, assume that Q has non-singular reduction at p: In this case,

λp(Q) ≥ 0 so εp(Q) = 1. If |x(Q)|p = |q|p > 1, then

log µ

(

N
⋂

j=1

T−1
j Bε

)

= − log fN + log ε,

where fN = max1≤j≤N{|qj|p}.
If (p, n) = 1 then |ψn(q)|p = |q|n

2−1
p . If (p, n) "= 1 then (p, n−1) = 1.

It follows that

|q|(N−1)2−1
p ≤ f 2

N ≤ |q|N
2−1

p .

Therefore

− lim
N→∞

N−2 log µ

(

N
⋂

j=1

T−1
j Bε

)

=
1

2
log |q|p = λp(Q)

by the explicit formula (5). If |q|p ≤ 1 then q is a p-adic integer and thus
λp(Q) = 0. In this case

⋂N
j=1 T−1

j Bε = Bε, so there is no contribution
to the entropy. !

Proof. (of Theorem 6.1) For p = ∞ there can be no entropy contribu-
tion for the sequence Uj(x) = u−1

j x, since un is an integer sequence.
For p finite, recall that u1|u2|u3| . . . . It follows that

N
⋂

j=1

U−1
j

(

∏

p<∞

Zp

)

= uN

(

∏

p<∞

Zp

)

,
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which has measure u−1
N . The first result follows, since log uN = 1

2(4
N −

1) log |b| + 1
2 log |ψ2N (q)|, by (11). The second follows at once by us-

ing QS and (13). For the third part of the theorem, the calculation
is the same except that we are adrift by

∑

p∈S,(p,b)=1 log |uN |p. It fol-
lows from the proof of Theorem 6.3 that the entropy is adjusted by
the contribution of the canonical local heights where Q has singular
reduction. !

7. Examples on sequence entropy

To see Definition 3.6 in an arithmetic setting, let X be the locally
compact ring QA. The following examples illustrate some of the ways
in which local and global volume growths can interact. Recall that B
is the open ball (−1, 1) ×

∏

p<∞ Zp.

Example 7.1. 1. Let p1, p2, p3, . . . be the rational primes in their usual
order, let Tj(x) = p1 . . . pjx, and let r(n) = n log n. Then it is clear
that

(17) µ

(

n
⋂

j=1

T−1
j B

)

=
1

p1 . . . pn
,

so hr
Bowen(T) = 1 (this follows from the estimate n log n . pn . n log n

in [2, Theorem 4.7]).
2. Let r(n) = n log n and Tj(x) = (1/p1 . . . pj)x. Then (17) holds
again, so hr

Bowen(T) = 1 as before. However, in this example each
‘local’ entropy contribution

lim sup
n→∞

−
1

r(n)
log µp

(

n
⋂

j=1

T−1
j Ap

)

,

where Ap = Zp for p < ∞ and A∞ = (−1, 1), is zero. This should be
contrasted with the usual setting, where the local entropies sum to the
global entropy (see [17]).
3. Let Tj(x) =

∏

p≤j px, where the product is over all primes less than
or equal to j and r(n) = n. As before,

µ

(

n
⋂

j=1

T−1
j B

)

=
1

∏

p≤n p
,

so hr
Bowen(T) is positive and no larger than 2 log 2 (see [13, Theorem

414]).
4. Let Tj(x) = jx, and r(n) = log n. Then it is easy to see that
hr

Bowen(T) = 1.
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5. Let Tj(x) = j!x and r(n) = n log n; then in a similar way one sees
that hr

Bowen(T) = 1 by Stirling’s formula.
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[9] G. R. Everest and Bŕıd Nı́ Fhlathúin. The elliptic Mahler measure. Math. Proc.
Cambridge Philos. Soc., 120(1):13–25, 1996.

[10] Graham Everest. Explicit local heights. New York J. Math., 5:115–120 (elec-
tronic), 1999.

[11] Graham Everest and Thomas Ward. A dynamical interpretation of the global
canonical height on an elliptic curve. Experiment. Math., 7(4):305–316, 1998.

[12] Graham Everest and Thomas Ward. Heights of Polynomials and Entropy in
Algebraic Dynamics. Springer-Verlag London Ltd., London, 1999.

[13] G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers.
The Clarendon Press Oxford University Press, New York, fifth edition, 1979.
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