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Abstract. We show that many algebraic actions of higher-rank
abelian groups on zero-dimensional compact abelian groups are
mutually disjoint. The proofs exploit differences in the entropy ge-
ometry arising from subdynamics and a form of Abramov–Rokhlin
formula for half-space entropies.

We discuss some mutual disjointness properties of algebraic actions
of higher-rank abelian groups on zero-dimensional compact abelian
groups. The tools used are a version of the half-space entropies in-
troduced by Kitchens and Schmidt [14] and adapted by Einsiedler [7],
a basic geometric entropy formula from [7], and the structure of ex-
pansive subdynamics for algebraic Zd-actions due to Einsiedler, Lind,
Miles and Ward [9]. We show that any collection of algebraic Zd-actions
on zero-dimensional groups with entropy rank or co-rank one that look
sufficiently different are mutually disjoint. The main results are the
following (here N(·) denotes the set of non-expansive directions; non-
expansive directions and mutual disjointness are defined in Section 1.)

Theorem 5.1. Let X1, . . . , Xn be a collection of irreducible algebraic
zero-dimensional Zd-actions, all with entropy rank one. If

N(αj)\
⋃

k>j N(αk) 6= ∅ for j = 1, . . . , n

then the systems are mutually disjoint.

The simplest illustration of Theorem 5.1 is the fact that Ledrappier’s
Example 2.3 and its mirror image are disjoint. This is shown directly in
Section 3 to illustrate how the Abramov–Rokhlin formula for half-space
entropies may be used.

Theorem 6.2. Let Y and Z be prime Zd-actions with entropy co-rank
one. If N(αY ) 6= N(αZ), then Y and Z are disjoint.
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Once again the simplest illustration of the meaning of this result
comes from an example of Ledrappier type: Example 6.3 is a three-
dimensional analogue of Ledrappier’s example. This is a Z3-action de-
fined by a ‘four-dot’ condition which has positive entropy Z2-subactions;
it and its mirror image are disjoint.

Surprisingly, it is not the familiar presence of different non-mixing
sets but the entropy and subdynamical geometry of the systems that
forces this high level of measurable difference of structure. The methods
should extend to entropy rank or co-rank greater than one, but the
notational and technical difficulties become more substantial. Related
work for Zd-actions by toral automorphisms has been done by Kalinin
and Katok [11], where more refined information is found about joinings
and the consequences of the presence of non-trivial joinings. Actions
by toral automorphisms automatically have entropy rank not exceeding
one.

Our purpose here is to begin to address some of the problems inher-
ent in understanding the joinings between algebraic Zd-actions. The
ultimate goal is to extend results like those of [11] to general algebraic
actions, just as the rigidity results have been extended from the toral
case in [13], to irreducible actions in [15]. In the rigidity theory, entropy
rank one also has a privileged position (see [3], [4] for the details of how
entropy rank influences rigidity).

A Zd-action is called irreducible if it has no closed invariant in-
finite proper subgroups. Irreducible actions on connected and zero-
dimensional groups are extensively studied because they exhibit rigidity
for d ≥ 2 (cf. [11], [12], [15]). The class of actions with entropy rank
one is a natural extension of the class of irreducible actions (see [8]).

Irreducible actions on zero-dimensional groups are a natural analogue
of irreducible actions on finite-dimensional tori and solenoids, see [8]. In
particular, both types of action allow a local description using locally
compact fields. While R,C and finite extensions of Qp are used for the
toral and solenoidal cases, for irreducible actions on zero-dimensional
groups locally compact fields of positive characteristic are used, namely
fields of Laurent series in one variable over a finite field (see [6] and [8]
for how this works). Using the local isometry to a product of local
fields, one can define Lyapunov exponents and foliations of the spaces
just as for the toral case. For our purpose it is simpler to use half-
space entropies instead of ultrametric Lyapunov exponents. Half-space
entropies were introduced in [14] and adapted to be defined via state
partitions in [7]. The notion of entropy geometry for actions of higher-
rank groups was introduced by Milnor in [17] in the setting of cellular
automata.
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A special case showing how the entropy geometry gives insight into
joinings is dealt with in Section 3, and this can be read independently of
the rest of the paper (up to accepting some plausible results on entropy
geometry proved elsewhere).

1. Introduction

An algebraic Zd-action is an action of Zd generated by d commuting
automorphisms of a compact abelian metrizable group X. Duality (in
the sense of Pontryagin) gives a one–to–one correspondence between
countable modules M, N, . . . over the ring Rd = Z[u±1

1 , . . . , u±1
d ] and

algebraic Zd-actions XM = (XM , αM), XN , . . . (see [19] for an overview
of how this correspondence has been used to study algebraic dynamical
systems). It is convenient to write monomials (units) in Rd in the form
un = un1

1 · · ·und
d .

An algebraic dynamical system X = (X,α) automatically preserves
the Haar measure λ = λX on X; we reserve λ for Haar measures and µ
for any α-invariant probability measure.

The results on expansive subdynamics we need come from [9]: If α
is a Zd-action by homeomorphisms of a compact metric space (X, ρ),
then N(α) denotes the set of non-expansive vectors v ∈ Rd\{0}. That
is, v ∈ N(α) if and only if for every ε > 0 there exists a pair of points
x 6= y in X with the property that

ρ (αnx, αny) ≤ ε for all n ∈ {m ∈ Zd | v ·m < 0}.
The whole action is called expansive if there is an ε > 0 with the
property that

ρ (αnx, αny) ≤ ε for all n ∈ Zd =⇒ x = y.

Let α be an expansive algebraic Zd-action on a zero-dimensional
group X. By [7], Lemma 7.1, such an action is automatically an alge-
braic Markov shift in the following sense: There are integers q and s
and a module of relations J ⊂ (Rd/(q))

s such that

(1) X ∼= J⊥ ⊂ ((Z/qZ)s)
Zd

,

where ∼= denotes an algebraic isomorphism of Zd-actions and J⊥ de-

notes the annihilator of the submodule J in the dual group ((Z/qZ)s)
Zd

of the Rd-module (Rd/(q))
s. Under the isomorphism in (1), the Zd-

action on X corresponds to the natural shift action on J⊥. Having
chosen such a presentation of the system, there is an associated (non-
canonical) state partition ξ = ξ(q, s, J) comprising the qs cylinder sets
obtained by specifying the 0 coordinate (some of these sets may be
empty).
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Given a Zd-action α by measure-preserving transformations on (X, µ)
and any measurable partition η of X, write

ηA =
∨

n∈A∩Zd

α−nη

for the join of η over any set A ⊂ Rd. The conditional entropy of A
given B with respect to η and µ is defined to be Hµ(ηA|ηB). For a
fixed η (for instance the state partition for a fixed presentation), we
simply write Hµ(A|B) for this conditional entropy.

The following terminology comes from [5] and (in this context) [9],
and the resulting condition for vanishing entropy, which holds for any
invariant measure µ, is the first key observation in our work. In the
system XM = (XM , αM), a set A ⊂ Rd codes B ⊂ Rd if for every
m ∈ B ∩ Zd there exists a polynomial

f(u) =
∑

n∈A∩Zd

fnu
n

such that (um − f)M = 0M . Viewing XM in the form (1), this means
that knowledge of the coordinates (xm)m∈A of a point x ∈ XM deter-
mines uniquely the coordinates (xm)m∈B. Notice that

• A codes B =⇒ Hµ(A|B) = 0;
• A codes B =⇒ A + n codes B + n for every n ∈ Zd;
• A codes B,A ∪B codes C =⇒ A codes B ∪ C.

A joining of a finite collection of Zd-actions

Xi = (Xi, µi, αi), 1 ≤ i ≤ n,

is a measure µ on X1 × · · · × Xn invariant under α1 × · · · × αn and
with the property that the projection of µ onto the ith coordinate
is µi for each i. Write J(X1, . . . , Xn) for the collection of all joinings of
X1, . . . , Xn. The systems are called mutually disjoint if the only joining
is the product measure, so J(X1, . . . , Xn) = {µ1 × · · · × µn}. For n = 2
this property is simply called disjointness.

The major simplifying assumption we make is to restrict the entropy
rank: α has entropy rank one if there exists a cyclic subgroup of Zd with
positive entropy (viewed as a Z-action) but all rank two subgroups of Zd

act with zero entropy. Similarly, α has entropy rank k < d if there is
a rank k subgroup of Zd acting with positive entropy (when viewed as
a Zk-action) but all subgroups of rank (k + 1) act with zero entropy;
finally α has entropy rank d if it has positive entropy as a Zd-action.
Similarly, α has entropy co-rank k if it has entropy rank (d−k). Entropy
rank in this context comes from [9], Sect. 7, and the special properties
of rank one systems are studied in [8] and [10].
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2. Entropy geometry for d = 2

The results from [7] summarized and extended in this section require
the entropy co-rank to be one. On the other hand, many technical
simplifications are possible when the entropy rank is one. In order to
have both conditions, d = 2 in this section. We will see in Section 4 that
this does not restrict the applications to rigidity for larger values of d.
By [9], for such actions every element of the non-expansive set is a scalar
multiple of an integer vector. This is illustrated in Example 2.3 below,
where the non-expansive set is described explicitly for an example.

Definition 2.1. Let µ be an invariant measure on the zero-dimensional
expansive algebraic system X = (X,α) presented as in (1). Let v ∈
Z2\{0} be a vector with associated half-space Hv = {n ∈ Z2 | v·n < 0}.
The half-space entropy of v is

(2) hµ(v) = Hµ(ξv⊥|ξHv)

where ξ is the state partition (for a fixed presentation) and

v⊥ = {t ∈ Z2 | v · t = 0}.
If C is an α-invariant σ-algebra, then similarly define the conditional
half-space entropy of v to be

hµ(v|C) = Hµ(ξv⊥|ξHv ∨ C).

For a vector v ∈ Z2\{0}, let v∗ be a primitive vector in Z2 chosen
so that

Hv + v∗ = Hv ∪ v⊥ = {n ∈ Z2 | v · n ≤ 0}
and let `(v, r) be chosen so that

v⊥ + (−`(v, r), `(v, r))v∗ ⊇ v⊥ + B(r),

where B(r) denotes the closed Euclidean ball of radius r in R2 centered
at the origin.

The half-space entropy from [7] defined by (2) differs from the en-
tropies used in [14] in that it depends a priori on the choice of pre-
sentation (1) and only turns out after the event to be invariant under
algebraic isomorphism. The more robust half-space entropies in [14] are
automatically invariant under measurable isomorphism (under suitable
hypotheses rigidity makes measurable and algebraic isomorphism coin-
cide). For Haar measure the two entropies coincide.

Lemma 2.2. Let X = (X, α) be a zero-dimensional expansive alge-
braic Zd-action. The half-space entropy function hµ : Z2\{0} → R≥0
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is independent of the choice of the parameters q, s and the module of
relations J in the presentation

X ∼= J⊥ ⊂ ((Z/qZ)s)
Zd

of the system X.

Proof. Let (X,α) be an expansive zero-dimensional Z2-action and as-
sume that

X ∼= J⊥ ⊂ ((Z/qZ)s)
Z2

and

X ∼= I⊥ ⊂ (
(Z/rZ)t)Z2

are two presentations of the system giving corresponding state parti-
tions ξ and η with corresponding half-space entropy functions hξ

µ and
hη

µ. This means that there is an R2-module isomorphism between Rs
2/J

and Rt
2/I. Dual to this isomorphism of R2-modules there is a contin-

uous isomorphism of compact groups from I⊥ to J⊥: It follows that
there exists an r > 0 with the property that

ξB(r) ⊇ η and ηB(r) ⊇ ξ.

Standard properties of entropy and the inclusions

ξv⊥ ⊂ ηv⊥+B(r) and ξHv ⊃ ηHv−`(v,r)v∗

imply that

Hµ

(
ξv⊥

∣∣ξHv

)
≤ Hµ

(
ηv⊥+B(r)

∣∣ηHv−`(v,r)v∗
)

.

To obtain a sharper statement, notice that the invariance of the mea-
sure implies (or use [7], Prop. 8.3, for d = 2)

Hµ

(
ξv⊥

∣∣ξHv

)
=

1

N
Hµ

(
ξv⊥+[0,N)v∗

∣∣ξHv

)

≤ 1

N
Hµ

(
ηv⊥+(−`(v,r),N+`(v,r))v∗

∣∣ηHv−`(v,r)v∗
)

≤ N + 2`(v, r)

N
Hµ

(
ηv⊥

∣∣ηHv

)
.

It follows that

hξ
µ(v) = Hµ

(
ξv⊥

∣∣ξHv

)
≤ Hµ

(
ηv⊥

∣∣ηHv

)
= hη

µ(v),

so by symmetry hξ
µ(v) = hη

µ(v). ¤
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A similar argument shows that the half-space entropy remains well-
defined when conditioned on an invariant σ-algebra: If C is a σ-algebra
in J⊥ (in the notation of the proof of Lemma 2.2) with C ′ its image
under the isomorphism, then

(3) hξ
µ(v|C) = hη

µ(v|C ′).
Example 2.3. The archetypal example of a zero-dimensional system
with entropy rank one is due to Ledrappier [16]: Let

X1 =
{
x ∈ FZ2

2 | xn + xn+e1 + xn+e2 = 0 for all n ∈ Z2
}
,

with α1 the Z2-action defined by the natural shift action, and λ = λX1

the Haar measure. Then (cf. [9], Ex. 5.6) v ∈ N(α1) if and only if v is
parallel to an outward normal of the convex hull of the set

L = {(0, 0), (0, 1), (1, 0)}.
Similarly, the half-space entropy hλ(v) is positive if and only if v is
parallel to an outward normal of the convex hull of the set L.

For a polynomial f ∈ R2 with f(u) =
∑

n∈Z2 fnu
n, the Newton

polygon N (f) of f is the convex hull of the support {n | fn 6= 0}.
In Example 2.3 it is not a coincidence that the set of points whose

convex hull determines the non-expansive directions is exactly the sup-
port of the polynomial 1 + u1 + u2 generating the module of relations.
The same holds more generally when the entropy co-rank is one – see [9]
for the details.

The following properties hold for any expansive Z2-action αM on a
zero-dimensional group XM with entropy rank one, presented as in (1),
and for any α = αM -invariant measure µ on XM . It is useful to talk in
terms of directions: a vector v ∈ R2\{0} defines a ray

r(v) = {tv | t ∈ [0,∞)};
vectors v and w are in the same direction if their rays coincide, and
a vector v is in a rational direction if there is a vector w ∈ Qd with
r(v) = r(w).

• There is an annihilating polynomial f ∈ Rd with the property
that fM = 0M and each vertex coefficient of f is coprime to q.

• For every direction v, hµ(v) < ∞.
• If v is not an outward normal vector to an edge of N (f), then

hµ(v) = 0.
• Hence, hµ(v) > 0 only for v in finitely many directions, all of

them rational.
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The entropy formula in Theorem 2.4 relates the half-space or geo-
metric entropies h(·) defined by (2) to the dynamical entropies h(·) of
individual elements. In the case of higher entropy rank, an analogous
formula relates the entropy of subactions of the appropriate rank to
geometric entropies of the same rank.

Theorem 2.4. Let (X, α) be a zero-dimensional algebraic Z2-action
with entropy rank one, let µ be any α-invariant measure on X, and
let C be any α-invariant σ-algebra. Then

(4) hµ(αn|C) =
∑

v·n>0

(v · n)hµ(v|C)

where the sum is taken over all primitive integer vectors v with v·n > 0.

The unconditioned version of this is proved in [7]; making the obvious
modifications to that proof shows Theorem 2.4. Notice that the left-
hand side is the usual dynamical (conditional) entropy of the measure-
preserving transformation αn while the right-hand side involves only
the half-space or geometrical (conditional) entropies.

The half-space entropies also obey a form of Abramov–Rokhlin en-
tropy addition formula (cf. [1], [20]). This result will only be needed
under the additional assumption that the map φ is a group homomor-
phism.

Theorem 2.5. Let φ : X → Y be a continuous surjective map between
zero-dimensional expansive entropy rank one algebraic Z2-systems. As-
sume that φ sends the invariant measure µ on X to the invariant mea-
sure ν on Y . Then, for any non-zero vector v ∈ Z2,

(5) hµ(v) = hν(v) + hµ(v|φ−1(BY ))

where BY denotes the Borel σ-algebra on Y .

Proof. Assume that X and Y have been presented in the form (1), with
corresponding state partitions ξ and η. In (5), hµ(·), hν(·) are defined
using ξ, η respectively. Since the half-space entropies are independent
of the chosen presentation of the system we can assume without loss
of generality that φ−1η ⊂ ξ. Then

hµ(v) =
1

N
Hµ

(
ξv⊥+[0,N)v∗

∣∣ξHv

)

=
1

N
Hµ

(
(φ−1η)v

⊥+[0,N)v∗
∣∣ξHv

)

+
1

N
Hµ

(
ξv⊥+[0,N)v∗

∣∣ξHv ∨ (φ−1η)v
⊥+[0,N)v∗

)
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=
1

N

N−1∑
n=0

Hµ

(
(φ−1η)v

⊥+nv∗
∣∣ξHv ∨ (φ−1η)v

⊥+[0,n)v∗
)

+
1

N

N−1∑
n=0

Hµ

(
ξv⊥+nv∗

∣∣ξHv∪(v⊥+[0,n)v∗) ∨ (φ−1η)v
⊥+[0,N)v∗

)
.

Now

1

N

N−1∑
n=0

Hµ

(
(φ−1η)v

⊥+nv∗
∣∣ξHv ∨ (φ−1η)v

⊥+[0,n)v∗
)

≤ 1

N

N−1∑
n=0

Hµ

(
(φ−1η)v

⊥+nv∗
∣∣(φ−1η)Hv ∨ (φ−1η)v

⊥+[0,n)v∗
)

= Hµ

(
(φ−1(η)v

⊥∣∣(φ−1η)Hv

)

= Hν

(
ηv⊥

∣∣ηHv

)

= hν(v).

On the other hand, for fixed n

Hµ

(
ξv⊥+nv∗

∣∣ξHv∪(v⊥+[0,n)v∗) ∨ (φ−1η)v
⊥+[0,N)v∗

)

→ Hµ

(
ξv⊥

∣∣ξHv ∨ φ−1(BY )
)

as N →∞ by Martingale convergence. It follows that

1

N

N−1∑
n=0

Hµ

(
ξv⊥+nv∗

∣∣ξHv∪(v⊥+[0,n)v∗) ∨ (φ−1η)v
⊥+[0,N)v∗

)

→ Hµ

(
ξv⊥

∣∣ξHv ∨ φ−1(BY )
)

= hµ(v|φ−1(BY )).

This shows that

(6) hµ(v) ≤ hν(v) + hµ(v|φ−1(BY )).

On the other hand, by the classical Abramov–Rokhlin entropy addition
formula,

(7) hµ(αn) = hν(α
n) + hµ(αn|φ−1(BY )).

Equation (4) for the trivial σ-algebra and the σ-algebra C = φ−1BY

together with (6) and (7) show that

hµ(v) = hν(v) + hµ(v|φ−1(BY )).

¤
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3. A simple example

In this section we show how to use the entropy geometry of Section 2
to prove that Ledrappier’s Example 2.3,

X1 =
{
x ∈ FZ2

2 | xn + xn+e1 + xn+e2 = 0 for all n ∈ Z2
}
,

and its close sibling

X2 =
{
x ∈ FZ2

2 | xn + xn+e1 + xn−e2 = 0 for all n ∈ Z2
}
,

are disjoint. That is, if αi denotes the natural shift action on Xi, and
Xi = (Xi, αi), then J(X1, X2) = {λX1 × λX2}. Let X = X1 × X2, and
write α for the Cartesian product of the two Z2 shift actions. Let µ be
a joining of the two systems.

A polynomial which annihilates the module corresponding to X is
the product

(1 + u1 + u2)(1 + u1 + u−1
2 ) = u−1

2 + u1u
−1
2 + u2

1 + u2 + u1u2,

with Newton polygon shown in Figure 1. Write Bi for the Borel σ-

e1 + e2

e2

N (f)

6

¡
¡

¡¡µ

r r

r

rr

¡
¡

¡¡

@
@

@@

Figure 1. The Newton polygon of the annihilating polynomial

algebra and Ni for the trivial σ-algebra on Xi, ξi for the state partition
in Xi for i = 1, 2, and ξ = ξ1 × ξ2 for the state partition in X.

Part of our purpose here is to show how the half-space entropies and
the Abramov–Rokhlin formula for half-space entropies in Theorem 2.5
allow joinings to be understood. The first proof below uses the classical
Abramov-Rokhlin formula and the entropy formula Theorem 2.4. The
second, much shorter, proof uses Theorem 2.5.

3.1. Proof of disjointness using Theorem 2.4. By Section 2,

(8) hµ(αe2) = hµ(e2) + hµ(e1 + e2).

On the other hand, projecting onto X1 gives a factor of α, so by the
Abramov–Rokhlin formula and Theorem 2.4

hµ(αe2) = hλ1(α
e2
1 ) + hµ(αe2|B1 ×N2)
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= hλ1(α
e2
1 ) + hµ(e2|B1 ×N2) + hµ(e1 + e2|B1 ×N2).(9)

Since ξ
R×(−∞,0)
1 = B1,

hµ(e2|B1 ×N2) = Hµ(ξR×{0}|ξR×(−∞,0) ∨ B1 ×N2)

= Hµ(ξR×{0}|ξR×(−∞,0))

= hµ(e2).

Similarly,

(10) hµ(e1 + e2|B1 ×N2) = 0,

and so by comparing (8), (9) and (10),

(11) hλ1(α
e2
1 ) = hµ(e1 + e2).

Projecting onto X2 gives a different factor of α and a similar argument
shows that

(12) hλ2(α
e2
2 ) = hµ(e2).

Theorem 2.4, (11) and (12) together show that

hµ(αe1+e2) = hµ(e2) + hµ(e1 + e2)

= hλ2(α
e2
2 ) + hλ1(α

e2
1 )

= log 4

= hλ(α
e1+e2).

That is, the joining measure µ is a measure of maximal entropy for the
transformation αe1+e2 . Since αe1+e2 is itself an ergodic automorphism
of a compact group with finite entropy, it follows from [2] that

µ = λ = λX1 × λX2 .

Thus the systems X1 and X2 are disjoint.

3.2. Proof of disjointness using Theorem 2.5. By the Abramov–
Rokhlin formula for half-space entropies,

hµ(e2) = hλ2(e2) + hµ(e2|N1 × B2) ≥ log 2,

where we use the fact that hλ2(e2) = hλ2(α
e2) = log 2. Similarly

hµ(e1 + e2) = hλ1(e1 + e2) + hµ(e1 + e2|B1 ×N2) ≥ log 2,

so by Theorem 2.4 the entropy of the map αe2 satisfies

hµ(αe2) = hµ(e2) + hµ(e1 + e2) ≥ log 4 = hλ(α
e2).

That is, the joining measure µ is maximal for the transformation αe2 .
Since αe2 is itself an ergodic automorphism of a compact group with
finite entropy, it follows again from [2] that µ = λ = λX1 × λX2 . Thus
the systems X1 and X2 are disjoint.
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4. Reduction step

In this section we give a corollary to the considerations in Section 2,
allowing mutual disjointness for entropy rank one examples to be shown
inductively. Recall that an algebraic Zd-action on a zero-dimensional
group is expansive if and only if the corresponding Rd-module is Noe-
therian (see [19]). Throughout this section X will be an expansive sys-
tem.

Recall from [5] and [9], Sect. 2, the notion of expansiveness for sub-
sets, and more specifically for half-spaces Hv. Parameterize half-spaces
by the outward normal vector v, and write N(α) for the finite set
(see [9], Th. 4.9 and [8], Th. 7.2) of non-expansive half-spaces.

Theorem 4.1. Let Y = (Y, αY , λY ) and Z = (Z, αZ , µZ) be expansive
zero-dimensional algebraic Zd-actions with entropy rank one, and let µ
be in J(Y, Z). If there is an integer vector v ∈ N(αY )\N(αZ), then µ
is invariant under translation by an infinite subgroup Y0 ⊂ Y . In the
case d = 2,

Y0 = {y ∈ Y | yn = 0 for n ∈ Hv}.
Translation in X = Y × Z by an element y′ ∈ Y means translation

of the form (y, z) 7→ (y + y′, z). Notice that µZ is any αZ-invariant
measure, not necessarily Haar measure.

Proof. The first step is to restrict the action to a Z2-subaction without
losing the hypotheses. By [9], Prop. 7.3, there exists an element αn

which acts expansively on X = Y × Z. Let m ∈ Zd be linearly inde-
pendent to n, and write P for the plane in Rd spanned by m and n.
Write β for the Z2-subaction generated by αk with k ∈ P ∩ Zd. Simi-
larly, write βY , βZ for the two factors of β on Y and on Z. Then β, βY

and βZ are each expansive Z2-actions. We claim the normal vectors
to non-expansive half-spaces for β are obtained by projecting the nor-
mal vectors to non-expansive half-spaces for α onto the plane P along
the orthogonal complement. Thus a half-space in the plane P is non-
expansive if and only if it is contained in a non-expansive half-space
for α. This can be seen by a coding argument similar to the proof
of [5], Th. 3.6 (replacing subspaces by half-spaces). Perturbing the
plane P slightly does not affect the expansiveness of the subaction
by [5], Lemma 3.4. By a small perturbation, one can ensure that those
pairs of normal vectors in the finite set N(α) which define different
half-spaces do so in the plane as well. This ensures that there is a vec-
tor v ∈ N(βY )\N(βZ). So, without loss of generality assume now that
α is a Z2-action.
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Write πY : X → Y and πZ : X → Z for the canonical projection
maps. Then (writing as before BW , NW , ξW for the Borel σ-algebra,
trivial σ-algebra and state partition in W = Y or W = Z respectively)

hµ(v) = hλY
(v) + hµ(v|π−1

Y (BY ))

= hµZ
(v) + hµ(v|π−1

Z (BZ)).

Now
hµ(v|π−1

Y (BY )) = 0 and hµZ
(v) = 0

since v /∈ N(αZ). It follows that

hλY
(v) = hµ(v|π−1

Z (BZ)),

so

(13) HλY

(
ξv⊥
Y |ξHv

Y

)
= Hµ

(
ξv⊥
X |ξHv

X ∨ π−1
Z (BZ)

)
.

We will show that this is the maximal possible value for this half-space
entropy, and deduce the desired translation invariance property.

Let
Y0 = {y ∈ Y | yn = 0 for n ∈ Hv}

and write π : Y0 → ((Z/qZ)s)
v⊥∩Z2

for the projection map onto the
coordinates in v⊥ ∩ Z2 (Y is presented in the form (1) with state par-
tition ξY as usual). Let

(14) ηY = ξHv
Y and ζY = ξHv∪v⊥

Y .

For a measure ν and partition κ write [x]κ for the atom of the par-
tition κ containing x, and νx,κ for the associated conditional measure
(characterised by

∫
fdνx,κ = Eν(f |κ)(x) for f ∈ L1(µ)). By definition

of ηY and ζY the atom [y]ηY
is a union of atoms [y +y0]ζY

with y0 ∈ Y0,
where

π(y0) = π(y′0) =⇒ [y + y0]ζY
= [y + y′0]ζY

.

For the Haar measure λY all those ζY -atoms have the same weight with
respect to λy,ηY

, so that

HλY
(ζY |ηY ) = log |π(Y0)|

is finite. The finiteness follows from entropy rank one, see Section 2.
We return to the study of µ on X = Y ×Z. Let ηX and ζX be defined

similarly to (14), using the state partition ξX = ξY × ξZ . Let

η = ηX ∨ π−1
Z BZ and ζ = ζX ∨ π−1

Z BZ .

Then each atom [x]η is a finite union of atoms [x + y0]ζ with y0 ∈ Y0,
where the sum is defined by x + y = x + (y, 0). As before,

π(y0) = π(y′0) =⇒ [x + y0]ζ = [x + y′0]ζ .
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By definition, the information function is

Iµ(ζ|η) = − log µx,η[x]ζ

and the entropy is its integral

Hµ(ζ|η) =

∫
Iµ(ζ|η)dµ

=

∫ ∑

y0∈π(Y0)

−µx,η([x + y0]ζ) log µx,η([x + y0]ζ)dµ.

The maximum value of the integral is log |π(Y0)|, which is achieved
by (13). This happens only when µx,η restricted to the partition

{[x + y0]ζ | y0 ∈ Y0}
of the atom [x]η is a uniform distribution almost surely. Since transla-
tion by y0 ∈ Y0 permutes the ζ-atoms inside a fixed η-atom, we deduce
that µ(A) = µ(A + y) for any A ∈ ζ and y ∈ Y0. This argument may
be repeated for the next layers, using

η′ = η and ζ ′ = ξHv+n
X ,

for some n ∈ Zd\Hv. As before a restricted version of translation in-
variance for any A ∈ ζ ′ can be shown. Since this holds for all n ∈ Zd,
it follows that µ is invariant under translation by any y ∈ Y0. Since
v ∈ N(αY ), the subgroup Y0 is infinite and the theorem follows. ¤

5. Applications to disjointness

The results of Section 4 suggest the following approach to mutual
disjointness for systems of this kind. Given a joining µ ∈ J(X1, . . . , Xn)
of several algebraic systems X1, . . . , Xn, look for a vector v that is non-
expansive for X1 but expansive for X2 × · · · × Xn. The proof of Theo-
rem 4.1 gives an equality between two half-space entropies, and then
shows that µ is invariant under translation by a subgroup. If the group
is large enough, this may be enough to deduce that for almost every
x ∈ X2×· · ·×Xn, the conditional measure µx is Haar measure λX1 . This
shows that µ = λX1×µ1 for some Borel probability µ1 on X2×· · ·×Xn.
If the process can be repeated with µ1, then it shows that the systems
are mutually disjoint.

This approach needs two things to happen. First, the non-expansive
sets of the systems must differ enough to keep producing suitable can-
didate vectors v. Second – a more subtle problem – the translation
invariance provided by Theorem 4.1 may only give partial information
about the measures. To avoid the latter problem we assume that the
systems are irreducible.
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Theorem 5.1. Let X1, . . . , Xn be a collection of irreducible algebraic
zero-dimensional Zd-actions, all with entropy rank one. If

N(αj)\
⋃

k>j

N(αk) 6= ∅ for j = 1, . . . , n

then the systems are mutually disjoint.

Proof. Let µ ∈ J(X1, . . . , Xn) be a joining. Assume by induction that
for some r ≥ 1 we know that

µ = λX1 × · · · × λXr−1 × µr,

and let v be a vector in N(αr)\
⋃

k>r N(αk). Then µr ∈ J(Xr, . . . , Xn).
Apply Theorem 4.1 with Y = Xr and Z =

∏
j 6=r Xj. Since the actions

are irreducible, the subgroup Y0 is dense, so the translation invariance
shows that each fibre of µ along Y must be Haar measure on Y . That
is, µr = λXr × µr+1, and

µ = λX1 × · · · × λXr × µr+1,

showing that µ =
∏

j λXj
by induction. ¤

Since there is a large collection of irreducible polynomials in R2/(p)
for any fixed prime number p, Theorem 5.1 gives the following corollary.

Corollary 5.2. There is an infinite family of algebraic Z2-actions (on
zero-dimensional groups) with the property that the members of any
finite subcollection are mutually disjoint.

Recall that a system X = (X,α) is irreducible if X has no infinite
closed α-invariant subgroups. An irreducible component of a system Y
is a closed infinite irreducible invariant subgroup.

Theorem 5.3. Let Y = (Y, αY ) and Z = (Z, αZ) be ergodic expansive
Zd-actions with entropy rank one on zero-dimensional groups. Assume
that for any irreducible component of Y, there is a vector that is non-
expansive on that component, but expansive for αZ. Then Y and Z are
disjoint.

Proof. Let X = Y × Z and let µ ∈ J(Y, Z). Define

HY = {y ∈ Y | µ is invariant under translation by y}.
Notice that HY is a closed α-invariant subgroup of Y since µ is an α-
invariant Borel measure. If HY = Y , the measure µ must be the trivial
joining. So assume HY 6= Y and consider the factors Y ′ = Y/HY and
Y ′ × Z of Y and X respectively; the factor measure µ′ is a joining be-
tween the Haar measure λY ′ and λZ . Since Y ′ is non-trivial and carries
an action of entropy rank one, it must be infinite and therefore contains
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a non-trivial irreducible component of entropy rank one. Furthermore,
the irreducible components of Y ′ are also irreducible components of Y .
So the assumptions of the theorem remain valid. However, by construc-
tion the subgroup

HY ′ = {y ∈ Y ′ | µ′ is invariant under translation by y}
must be trivial. Without loss of generality, we may pick a vector v ∈ Zd

that is non-expansive for αY ′ but expansive for αZ . By Theorem 4.1
the measure µ is invariant under translation by an infinite subgroup
Y0 ⊂ Y ′. This contradiction concludes the proof. ¤

6. Entropy co-rank one in higher dimensions

In this section we assume that the actions have entropy co-rank one,
allow d ≥ 2, and show disjointness for such actions. The following re-
placement for the property of irreducibility is needed. Call an algebraic
Zd-action prime if it is of the form XM for a module M = Rd/p with p
a prime ideal in Rd.

Lemma 6.1. Let Y be a prime Zd-action with entropy rank k ≥ 1. Let
Y ′ ⊂ Y be a closed αY -invariant subgroup such that the restriction αY ′

of the action to Y ′ still has entropy rank k. Then Y ′ = Y .

That is, there are no non-trivial closed invariant subgroups on which
the entropy rank is k.

Proof. This is shown in the proof of Theorem 1.2 in Section 6 of [7]. ¤
Theorem 6.2. Let Y and Z be prime Zd-actions with entropy co-rank
one. If N(αY ) 6= N(αZ), then Y and Z are disjoint.

In this setting the non-expansive sets are the set of directions v with
the property that the corresponding half-space Hv is non-expansive
(see [9], Sect. 2). In contrast to the case of entropy rank one, these
sets may be infinite. The next example is the analogue of Section 3
for d = 3.

Example 6.3. Let

X1 =
{
x ∈ FZ3

2 | xn + xn+e1 + xn+e2 + xn+e3 = 0 for all n ∈ Z3
}

and

X2 =
{
x ∈ FZ3

2 | xn + xn−e1 + xn+e2 + xn+e3 = 0 for all n ∈ Z3
}
,

with associated shift Z3-actions α1 and α2. These two systems are
associated to the modules R3/(2, f1) and R3/(2, f2) where f1(u) =
1 + u1 + u2 + u3 and f2(u) = 1 + u−1

1 + u2 + u3. By [9] these systems
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have entropy co-rank one, and by [5], Ex. 2.9, N(αi) is the 1-skeleton
of the spherical dual to the Newton polytope N (fi) for i = 1, 2. The
vector e1 lies in N(α2)\N(α1), so Theorem 6.2 shows that X1 and X2

are disjoint.

The assumption that the entropy co-rank is one in Theorem 6.2 does
not seem to be the whole story, since in Sections 4 and 5 we dealt with
general Zd-actions with entropy rank one. Certainly some condition on
the entropy rank is required: If it is allowed to be d, then the actions
have factors that are measurably isomorphic to Bernoulli shifts by [18],
and so have a large space of joinings. The geometric picture for entropy
rank k > 1 is more complex. To find a restriction of the action to a Zk+1-
subactions without losing the assumptions, one needs a more detailed
description of N(α) – relating its structure to the entropy rank of the
action – which is not yet available.

Before we start the proof of Theorem 6.2 we describe the structure
of prime actions with entropy co-rank one, and give some definitions
from [7]. If Y is a zero-dimensional prime action with entropy co-rank
one, then Y is the dual group of Rd/(p, f) for some prime number p
and polynomial f which is irreducible when considered in Rd/(p) (that
the prime ideal defining the module must have this form when the
entropy co-rank is one follows from [9], Prop. 7.3, which states that
the entropy rank of αRd/p is equal to the Krull dimension of Rd/p if
the characteristic is positive). Clearly f is defined modulo p, so it is
natural to assume that p does not divide any nonzero coefficient of f .
In the proof of Theorem 6.2 we may assume that Z is defined in the
same way by a prime number p′ and a polynomial f ′.

Applying a GL(d,Z) coordinate change (this may be thought of as
a ‘time change’ in the acting group) for the Zd-actions if necessary,
we can make the following simplifying assumptions. Without loss of
generality, −e1 lies in N(αY )\N(αZ), and f ∈ Z[u1, u

±1
2 , . . . , u±1

d ] is
non-zero modulo u1. The condition that −e1 ∈ N(αY ) translates to
the property that f = f0 + f1u1 for some f1 ∈ Z[u1, u

±1
2 , . . . , u±1

d ]
and f0 ∈ Z[u±1

2 , . . . , u±1
d ] which is not a monomial by [9], Th. 4.9

and Ex. 5.7. Moreover, we can assume that f ∈ Z[u1, . . . , ud−1, u
±1
d ],

and f(0, . . . , 0, ud) = f0(0, . . . , 0, ud) ∈ Z[ud] is not a monomial (cf. [7],
Lemma 9.9). For Z we can assume that f ′ ∈ Z[u1, . . . , ud], and

f ′(0, . . . , 0, ud) 6= 0

is a multiple of a single monomial.
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We recall a special case of the notion of lexicographical half-space
entropy for an action of entropy co-rank one from [7]. Let

(15) Λ = Zd−1 × {0}
be the subgroup generated by the first (d− 1) standard basis vectors.
Define lexicographical orders

m ≺ed
n if (m1, . . . ,md−1) ≺lex (n1, . . . , nd−1),

m ≺ n if m ≺ed
n and md = nd,

where ≺lex is the usual lexicographical order defined by

m ≺lex n if m1 = n1, . . . , mi−1 = ni−1,mi < ni for some i ≤ d.

Then the lexicographical half-space entropy is defined by

hµ(e1, . . . , ed−1; ed) = Hµ(ξRed|ξS+Red),

where ξ is the state partition and

S = {n ∈ Zd | n Â 0} ⊂ Λ.

By the remarks above,

hλY
(e1, . . . , ed−1; ed) > 0

and

hλZ
(e1, . . . , ed−1; ed) = 0

since S +Red does not code Red for αY , but does for αZ , and S +Red

contains e1 + H−e1 .
Having established these simplifying adjustments and notations, we

turn to the proof of Theorem 6.2.

Proof. Let µ be a joining measure, and let f, f ′, p, p′ be chosen as above.
One can change the coefficients of f by multiples of p to ensure that
the non-zero coefficients are all coprime to pp′, and similarly for f ′.
The product ff ′ annihilates the Rd-module Rd/(p, f) ⊕ Rd/(p

′, f ′)
dual to X = Y × Z, and every extremal coefficient of ff ′ is coprime
to pp′. Thus X together with ff ′ and pp′ satisfy the hypotheses of [7],
Lemma 8.2, and hence the entropy formula in [7], Prop. 8.3 holds for
the system: There are only finitely many directions w /∈ Rd−1×{0} with
positive half-space entropies hµ(e1, . . . , ed−1;w), moreover the sum of
these half-space entropies equals the dynamical entropy hµ(αΛ) of the
action of the subgroup Λ defined in (15). Moreover, this entropy for-
mula remains valid when conditioned by an invariant σ-algebra. Just
as in Theorem 2.5, factoring onto Y gives

(16) hµ(e1, . . . , ed−1; ed) =
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hλY
(e1, . . . , ed−1; ed) + hµ(e1, . . . , ed−1; ed|BY ×NZ)

and factoring onto Z gives

(17) hµ(e1, . . . , ed−1; ed) =

hλZ
(e1, . . . , ed−1; ed) + hµ(e1, . . . , ed−1; ed|NY × BZ).

Coding arguments show that

hλZ
(e1, . . . , ed−1; ed) = 0 and

hµ(e1, . . . , ed−1; ed|BY ×NZ) = 0.

The first equation was noted above; the second follows similarly. Equa-
tions (16) and (17) imply that

(18) hλY
(e1, . . . , ed−1; ed) = hµ(e1, . . . , ed−1; ed|NY × BZ).

We use this ‘maximality property’ of the half-space entropy to deduce
a restricted version of translation invariance. Fix ` ≥ 1; let

U` = [0, `− 1]d−1 × {0} and

S` = `{m ∈ Λ | m Â 0}+ U`.

Define measurable partitions η = η` = ξS`+Red and ζ = ζ` = ξU`+Red∨η.
By [7], Prop. 9.3,

Hµ(ζ|η ∨NY × BZ) = `d−1hµ(e1, . . . , ed−1; ed|NY × BZ)

with a similar expression for the lexicographic half-space entropy with
respect to Haar measure λY .

By the adjustments made before the proof, hµ(e1, . . . , ed−1; ed) > 0.
Let

Y` = {y ∈ Y | yn = 0 for all n ∈ S` + Red},
and let π : Y` → (Z/pZ)(U`+Red)∩Zd

be the projection map onto the
coordinates in U` + Red. The atom [x]η∨NY ×BZ

containing the point
x = (x1, x2) ∈ Y × Z is a subset of Y × {x2} that splits into many
atoms [x + y]ζ∨NY ×BZ

with y ∈ Y` (as before x + y = (x1 + y, x2)). Two
such atoms for y, y′ ∈ Y` coincide if and only if π(y) = π(y′), so there
are |π(Y`)| such atoms. This gives the upper bound log |π(Y`)| for the
lexicographical half-space entropy, which is achieved if and only if the
conditional measure µx,η∨NY ×BZ

restricted to the partition

{[x + y]ζ∨NY ×BZ
| y ∈ Y`}

is the uniform distribution for µ-almost every x ∈ Y × Z. Since this
holds for λY , the same is true for µ by (18). This implies a restricted
translation invariance property

(19) µ(A + y) = µ(A) for A ∈ η` and y ∈ Y`.
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Let

Q` = {n ∈ Zd | ni ≥ −` for all i < d},
and m = `e1 + · · · + `ed−1. Then Q` + m ⊂ (S` ∪ U`) + Red, and so
α−mξQ` ⊂ η`.

Let

T = {n ∈ Zd | ni ≥ 0 for some i < d} and

Y0 = {y ∈ Y | yn = 0 for all n ∈ T}.
As above α−mY0 ⊂ Y`. Therefore α-invariance of the measure allows us
to reformulate (19) as

(20) µ(A + y) = µ(A) for A ∈ ξQ` and y ∈ Y0.

However,
⋃

` Q` = Zd, and so (20) implies that µ(A + y) = µ(A) for
y ∈ Y0 and every measurable A ⊂ Y × Z.

To complete the proof of the theorem, we need to show that µ is in
fact invariant under translation by all y ∈ Y . Let Y ′ ⊂ Y be the closure
of the group generated by the orbit of Y0 under the action, and let αY ′

be the restriction of the action to the invariant subgroup Y ′ ⊂ Y . The
invariance of µ under α and under translation by Y0 implies that µ is
invariant under translation by Y ′. We claim that the subaction (αY ′)Λ

has positive entropy; this shows that αY ′ has entropy rank (d− 1), and
Lemma 6.1 shows that Y ′ = Y .

Suppose Y0 is the trivial subgroup. Then the restriction map

ϕ : Y → (Z/(p))T

to the coordinates in T is injective (that is, the dual groups Rd/(p, f)
and Z[un | n ∈ T ]/(p) are equal). Therefore for m = −e1 − · · · − ed−1

there exists a polynomial g ∈ Z[un | n ∈ T ]/(p) with

um − g ∈ (p, f).

We will show that this contradicts the special geometry of f and T . In
the following the equations are meant modulo p, so suppose um−g = hf
for some polynomial h. Split h into a sum h = h′ + h′′ with h′′ ∈
Z[un | n ∈ T ]/(p) and h′ ∈ Z[un | ni < 0 for all i < d]. Taking
the product and using f ∈ Z[u1, . . . , ud] gives hf = h′f + h′′f and
h′′f ∈ Z[un | n ∈ T ]/(p). Since g ∈ Z[un | n ∈ T ]/(p), we must have
h′f ∈ um +Z[un | n ∈ T ]/(p). Let h′min be the sum of those coefficients
of h′ whose exponent n of u is minimal with respect to ≺ed

. Let fmin

be the analogous polynomial for f . Then, by the assumption on f ,
the polynomial fmin ∈ Z[u±1

d ] cannot be a single monomial. The terms
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of h′f whose exponents are minimal are exactly the terms in h′minfmin.
Since the latter is contained in the ring

Z[un | n′i < 0 for all i < d],

it must be equal to um, which is a contradiction since fmin is not a
monomial.

By the above, Y0 ⊂ Y ′ is nontrivial, which implies that

hλY ′ (e1, . . . , ed−1; ed) > 0

and so by the entropy formula [7], Prop. 8.3, hλY ′
(
(αY ′)Λ

)
> 0 as

claimed. ¤
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