
RIGIDITY PROPERTIES OF Zd-ACTIONS ON TORI AND

SOLENOIDS

MANFRED EINSIEDLER AND ELON LINDENSTRAUSS

Abstract. We show that Haar measure is the unique measures on a torus
or more generally a solenoid X invariant under a not virtually cyclic totally
irreducible Zd-action by automorphisms of X such that at least one element of
the action acts with positive entropy. We also give a corresponding theorem in
the non-irreducible case. These results have applications regarding measurable
factors and joinings of these algebraic Zd-actions.

1. Introduction and main results

The map Tp : x !→ px on T = R/Z has many closed invariant sets and many
invariant measures. Furstenberg initiated the study of jointly invariant sets in his
seminal paper [8]. A set A ⊂ T is called jointly invariant under Tp and Tq if
Tp(A) ⊂ A and Tq(A) ⊂ A. Furstenberg proved that if p and q are multiplicatively
independent integers then any closed jointly invariant set is either finite or all of T.

Furstenberg also raised the question of what the jointly invariant measures are:
which probability measures µ on T satisfy (Tp)∗µ = (Tq)∗µ = µ. The obvious ones
are the Lebesgue measure, atomic measures supported on finite invariant sets, and
(non-ergodic) convex combinations of these.

Here we give a partial answer to this question in the following more general
setting of Zd-actions on solenoids.

In the following a solenoid X is a compact, connected, abelian group whose
Pontryagin dual X̂ can be embedded into a finite-dimensional vector space over
Q. The simplest example being a finite-dimensional torus. A Zd-action α by
automorphisms of a solenoid X is called irreducible if there is no proper infinite
closed subgroup which is invariant under α, and totally irreducible if there is no
finite index subgroup Λ ⊂ Zd and no proper infinite closed subgroup Y ⊂ X which
is invariant under the induced action αΛ. A Zd-action is virtually-cyclic if there
exists n ∈ Zd such that for every element m ∈ Λ of a finite index subgroup Λ ⊂ Zd

there exists some k ∈ Z with αm = αkn.

Theorem 1.1. Let α be a totally irreducible, not virtually-cyclic Zd-action by au-
tomorphisms of a solenoid X. Let µ be an α-ergodic measure. Then either µ = λ
is the Haar measure of X, or the entropy hµ(αn) = 0 vanishes for all n ∈ Zd.
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We summarize the history of this problem. The topological generalization of
Furstenberg’s result to higher dimensions was given by Berend [1, 2]: An action on
a torus or solenoid has no proper, infinite, closed, and invariant subsets if and only
if it is totally irreducible, not virtually-cyclic, and contains a hyperbolic element.
One direction of this theorem is easy to see, if either of these properties fails one can
construct a proper, infinite, closed, invariant subset. For example, if a Zd-action
on a torus does not contain a hyperbolic element, then it can be shown that there
exists a common eigenspace W ∼= C of the matrices defining the action so that the
corresponding eigenvalues ξ satisfy |ξ| = 1. Therefore, the unit ball B in W gives
an infinite closed invariant subset. Notice that we do not assume any hyperbolicity
in Theorem 1.1.

The first partial result for the measure problem on T was given by Lyons [23]
under a strong additional assumption. Rudolph [25] weakened this assumption
considerably, and proved the following theorem.

Theorem 1.2. [25, Thm. 4.9] Let p, q ≥ 2 be relatively prime positive integers, and
let µ be a Tp, Tq-ergodic measure on T. Then either µ = λ is the Lebesgue measure,
or the entropy of Tp and Tq is zero.

Johnson [11] lifted the relative primality assumption, showing it is enough to
assume that p and q are multiplicatively independent. By the ergodic decomposition
every invariant measure ν can be written as a convex combination of a family of
ergodic measures µτ , τ ∈ T. If ν has positive entropy, the same has to apply
for some µτ . So Theorem 1.2 also shows that every positive entropy measure is a
convex combination of the Lebesgue measure and a zero entropy measure. Thus the
only restricting assumption here is positive entropy. Feldman [7], Parry [24], and
Host [9] have found different proofs of this theorem, but positive entropy remains
a crucial assumption.

Katok and Spatzier [16, 17] obtained the first analogous results for actions on
higher-dimensional tori and homogeneous spaces. However, their method required
either an additional ergodicity assumption on the measure (satisfied for example
if every one parameter subgroup of the suspension acts ergodically), or that the
action is totally non-symplectic (TNS). A careful and readable account of these
results has been written by Kalinin and Katok [13], which also fixed some minor
inaccuracies. Theorem 1.1 gives a full generalization of the result of Rudolph and
Johnson to actions on higher-dimensional solenoids.

Without total irreducibility the Haar measure of the group is no longer the only
measure with positive entropy. Thus the general theorem below is (necessarily)
longer in its formulation than Theorem 1.1. It strengthens e.g. [13, Thm. 3.1]
which has a similar conclusion but stronger assumptions.

Theorem 1.3. Let α be a Zd-action (d ≥ 2) by automorphisms of a solenoid
X. Suppose α has no virtually-cyclic factors, and let µ be an α-ergodic measure
on X. Then there exists a subgroup Λ ⊂ Zd of finite index and a decomposition
µ = 1

M (µ1 + . . . + µM ) of µ into mutually singular measures with the following
properties for every i = 1, . . . , M .

(1) Every measure µi is αΛ-ergodic, where αΛ is the restriction of α to Λ.
(2) There exists an αΛ-invariant closed subgroup Gi such that µi is invariant

under translation with elements in Gi, i.e. µi(A) = µi(A+g) for all g ∈ Gi

and every measurable set A.



RIGIDITY PROPERTIES OF Z
d-ACTIONS ON TORI AND SOLENOIDS 3

(3) For n ∈ Zd, (αn)∗µi = µj for some j and αn(Gi) = Gj .
(4) The measure µi induces a measure on the factor X/Gi with hµi

(αn

X/Gi
) = 0

for any n ∈ Λ. (Here αX/Gi
denotes the action induced on X/Gi).

We note that even in the topological category, where Berend gave definitive
results regarding the totally irreducible case, the situation for the reducible case is
far from understood.

The proofs of Theorem 1.1 and Theorem 1.3 follow the outline of Rudolph’s
proof of Theorem 1.2. One of the main ingredients there was the observation
that hµ(Tp)/ log p = hµ(Tq)/ log q (and a relativized version of this equality). This
follows from the particularly simple geometry of this system where both Tp and
Tq expand the one-dimensional space T with fixed factors. There is no simple
geometrical reason why such an equality should be true for more complicated Zd-
actions on solenoids, and indeed is easily seen to fail in the reducible case. However,
somewhat surprisingly, such an equality is true for irreducible Zd actions, even
though this is true from subtle number theoretical reasons (see Theorem 5.1 below).
It is interesting to note that along the way we get new and nontrivial information
about measures invariant under a single, even hyperbolic, solenoidal automorphism.

We apply Theorem 1.3 to obtain new information about the measurable struc-
ture, with respect to the Haar measure, of irreducible algebraic Zd-actions on tori
and solenoids. Our first application characterizes the measurable factors of α, and
generalizes the isomorphism rigidity results by A. Katok, S. Katok, and Schmidt
[15].

Theorem 1.4. Let α be an irreducible, not virtually-cyclic Zd-action on a solenoid
X, let A be an α-invariant σ-algebra. Then either A = N (modulo λ) is trivial or
there is a finite group G which acts on X by affine transformations and

A = {A ∈ BX : gA = A for all g ∈ G} (modulo λ).

In other words, every infinite measurable factor of α is a quotient of X by the
action of a finite affine group. The simplest examples of such groups are finite
translation groups. However, more complicated examples are also possible; for
example, let w ∈ X be any α-fixed point. Then the action of G = {Id,− Id+w} on
X commutes with α.

The proof of Theorem 1.4 uses the relatively independent joining of the Haar
measure with itself over the factor A, which gives an invariant measure on X × X
analyzable by Theorem 1.3. This is similar to the proof of isomorphism rigidity in
[15], which followed a suggestion by Thouvenot.

Finally, we characterize disjointness in the case of irreducible actions, which
generalizes the corresponding results for TNS actions by Kalinin and Katok [14],
and by Kalinin and Spatzier [12].

Theorem 1.5. Suppose α1 and α2 are irreducible, not virtually-cyclic Zd-action
on solenoids X1 and X2. Then either they are disjoint, or there exists a finite index
subgroup Λ ⊂ Zd such that the subactions α1,Λ and α2,Λ have a common algebraic
factor.

In this announcement we give an essentially complete proof of Theorem 5.1
regarding the relationship between entropies of individual elements of an irreducible
action. First we explain in §3 how the various Lyapunov exponents contribute to
the entropy. A bound on each of these contributions is given in Theorem 4.1 which
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is a theorem about measures invariant under a single automorphisms. Then in §5
we conclude the proof of the entropy identity using a key lemma from [3] regarding
product structure of certain conditional measures. A sketch of how Theorem 1.1 is
proved using Theorem 5.1 is given in §6. Full details of the proofs of all theorems
announced in this note will be given in [5].

2. Arithmetic automorphisms and irreducible actions

We recall that a local field is a locally compact field of characteristics zero; these
include R and C as well as finite extensions K of the field of p-adic numbers Qp. Let
K be any local field, and let λK be the Haar measure on K. Let δ(K) = 1 for K )= C

and δ(C) = 2. For a ∈ K the norm |a|K is defined as the real number satisfying

(2.1) λK(aC) = |a|δ(K)
K

λK(C)

for any measurable set C ⊂ K. Then | · |K satisfies the triangle inequality for all K.
The following follows easily from [26, Thm. 29.2 and Sect. 7] (see also [4], [6]).

Proposition 2.1. Let α be an irreducible algebraic Zd-action on a connected group.
Then there exists a finite product A = K1 × · · ·×Km of local fields Kj, a Zd-action
αA by automorphisms of A whose restrictions to Kj are linear (αn

A
(x))j = ζj,nxj,

and a alphaA-invariant cocompact discrete subgroup Γ of A, such that α is conjugate
to the induced action of αA on A/Γ.

Furthermore, we have

(2.2)
m∏

j=1

|ζj,n|
δ(Kj)
j = 1 for all n ∈ Zd,

and one can choose Γ such that

(2.3)
m∏

j=1

|aj |
δ(Kj)
Kj

≥ 1 for every a ∈ Γ.

We note that the local fields Kj above are all the Archimedean and some non-
Archimedean completions Kj of a number field k which depends on the action;
(2.2) and (2.3) follow from the elementary properties of number fields and their
completions.

A Zd-action α by automorphisms of a solenoid X is arithmetic if the conclusions
of Proposition 2.1 holds. An automorphism of X is arithmetic if it is part of an
arithmetic Zd-action for d ≥ 1.

We shall identify Kj with the canonical subspace in A, and refer to these as the
eigenspaces. We use the norms | · |j = | · |Kj

to induce a norm ‖x‖ = maxi |xi|i on
A, and furthermore a metric dX(·, ·) on X . We also write δj = δ(Kj). A ball of
radius r around x ∈ X (a ∈ A) will be denoted by Br(x) (Br(a)), if we wish to
emphasize the space BX

r (x) (BA
r (a)), and if the center is zero BX

r (BA
r ).

3. Entropy, invariant foliations, and conditional measures

In this and the following section we consider a single arithmetic automorphism.
In other words let T be an automorphism of X = A/Γ, where Γ satisfies (2.3),
and T is induced by a TA with (TA(x))j = ζjxj for j = 1, . . . , m. It turns out
to be useful to study the following more general situation: let S be an arbitrary
homeomorphism of a compact space Y with metric dY (·, ·) and let T̃ = S × T be
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the product map on X̃ = Y ×X . Define d eX((y, x), (y′, x′)) = dY (y, y′) + dX(x, x′).
We let BY denote the Borel σ-algebras of Y identified with a sub σ-algebra of B eX

in the obvious way, and we wish to study the relative entropy heµ(T̃ |BY ).
The eigenspace Kj is expanded by T if |ζj |j > 1. Let V ⊂ A be a sum of expanded

eigenspaces, and let W+ = W+(T ) be the sum of all expanded eigenspaces. Then
V induces a foliation of Y × X by letting the leaf through X be FV (x̃) = x̃ + V
(for x̃ = (y, a + Γ) we set x̃ + v = (y, a + v + Γ)).

In the following we need the connection between entropy and conditional mea-
sures [18], [19], and conditional measures on foliations [16, Sect. 4], [21, Sect. 3].
The former we have to adapt slightly to our problem, and for the latter we will use
the notation of [21, Sect. 3].

Definition 3.1. Let V be as above. A σ-algebra A of Borel subsets of X̃ is
subordinate to V if A is countably generated, for every x̃ ∈ X̃ the atom [x̃]A of x̃
with respect to A is contained in the leaf x̃ + V , and for a.e. x̃

x̃ + BV
ε ⊆ [x̃]A ⊆ x̃ + BV

ρ for some ε > 0 and ρ > 0.

A σ-algebra A is increasing (with respect to T̃ ) if T̃A ⊂ A.

The conditional measures for the foliation FV can be characterized in terms of
σ-algebras subordinate to V , see [21, Thm. 3.6]. Let M∞(V ) denote the space of
locally finite Borel measures on V equipped with the weakest topology for which
µ !→

∫
fdµ is continuous for every f ∈ Cc(V ). For any v ∈ V let +v denote the

map w !→ w + v.

Proposition 3.2. There exists a Borel measurable map x̃ !→ µ̃ex,V from X̃ →
M∞(V ) with the following properties:

(1) There is a set N0 of zero measure so that for every x̃ ∈ X̃ and v ∈ V for
which x̃, x̃ + v )∈ N0, µ̃ex,V ∝ (+v)∗µ̃ex+v,V .

(2) for a.e. x̃ and r > 0, µ̃ex,V (BV
r ) > 0.

(3) If C is a σ-algebra subordinate to V with conditional measures µ̃C
ex, then

there is a Borel measurable function cV (x̃, C) > 0 so that for a.e. x̃, for all
Borel B ⊂ V with x̃ + B ⊂ [x̃]C, µ̃ex,V (B) = cV (x̃, C)µ̃C

ex(x + B).

These properties characterize µ̃ex,V up to a multiplicative constant a.e. In order
to get rid of the the remaining ambiguity we require that µ̃ex,V (BV

1 ) = 1.

Let P be a finite partition of X̃, which we identify with the corresponding finite

algebra of sets. For any ε > 0 let ∂V
ε P =

{
x̃ ∈ X̃ : x̃ + BV

ε )⊂ [x̃]P
}

.

Lemma 3.3. For any probability measure µ̃ on X̃, there exists a finite partition P
of X̃ into arbitrarily small sets such that for some fixed C, for every ε > 0

(3.1) µ
(
∂V

ε P
)

< Cε

For any σ-algebra A and k0 < k1 ≤ ∞ set

Ak0 = T̃ k0A and A[k0,k1) =
k1−1∨

i=k0

T̃ iA.

It can be shown that if P is a finite partition as above then there is a count-
ably generated CV ⊃ P [0,∞) which is both increasing and V -subordinate satisfying
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[x]CV
= [x]P[0,∞) ∩ (x + V ). It follows that CV = T̃CV ∨ P . For example, if T is

expansive and V = W+(T ), one can take CV = P [0,∞).
For CV as above, we define heµ(T̃ , V ), the entropy contribution of V , to be

Heµ(CV |T̃CV ). The following propositions shows it is independent of the choice
of P and CV :

Proposition 3.4. Let V be a sum of expanded eigenspaces, and let CV be as above.
Then

vol(T̃ , V, x̃) = − lim
N→∞

1

N
log µ̃ex,V

(
T−N(BV

1 (0))
)

exists a.e. and heµ(T̃ , V ) =
∫

vol(T̃ , V, x̃) dµ̃(x̃). Furthermore, if V = W+ this

contribution equals the relative entropy of T̃ given BY , i.e. heµ(T̃ |BY ) = heµ(T̃ , W+).

4. A bound on the entropy contribution

In this section we prove the following theorem.

Theorem 4.1. Let T be an arithmetic automorphism of X = A/Γ, and suppose
T is induced by TA : A = K1 × · · ·Km → A with (TA(x))j = ζjxj for 1 ≤ j ≤ m.

Let S be a homeomorphism of a compact metric space Y , write T̃ = S × T for the
product map on X̃ = Y × X, and let µ̃ be an T̃ -invariant measure on X. Then
the entropy contribution of a sum V =

∑
j∈IV

Kj of expanding eigenspaces of T is
bounded by

(4.1) heµ(T̃ , V ) ≤

∑
j∈IV

δj log |ζj |j∑
j∈I

W +
δj log |ζj |j

heµ(T̃ |BY ),

where W+ =
∑

j∈I
W +

Kj is the sum over all expanding eigenspaces.

Notice that this estimate is sharp for a product measure µ̃ = ν ×λ with λ being
the Haar measure on X . A special case of this theorem appeared in [20, Theorem
2.4] (see also [22] for related discussion). Without loss of generality we assume that
IV = {1, . . . , e} and IW+ = {1, . . . , f} with e ≤ f .

Lemma 4.2. Let κ =
(∑e

j=1 δj log |ζj |j
)
/
(∑f

j=1 δj log |ζj |j
)

be the fraction ap-
pearing in Theorem 4.1, and s > 0 sufficiently small. Let P be a finite partition
satisfying (3.1) so that the diameter of every atom of P is at most s, and CV be
as in §3. For any N ≥ 1, let EN be the set of x̃ ∈ X̃ for which the atom of x̃
with respect to CV = P [0,N) ∨ CN

V is not equal to the atom of x̃ with respect to
A = P [0,M) ∨ CN

V for M = 2κN3. Then µ̃(EN ) < C exp(−ρN) for some C, ρ > 0.

In the proof of Lemma 4.2 we will study the atoms [x̃]A more closely. By defini-
tion A is subordinate to V so [x̃]A is a ‘bounded subset’ of x̃ + V , but a priori this
bound is not known.

Proof. Let r = infa∈Γ\{0} ‖a‖, and take s < 1/4 to be small enough so that

(4.2) ‖T−1
A

v‖ + s < r for every ‖v‖ ≤ s.

Suppose x̃, x̃′ ∈ X̃ are in the same atom with respect to A. Then by definition of
A, d eX(T̃−ix̃, T̃−ix̃′) ≤ s for i = 0, . . . , M − 1. Since BY ⊂ A we can take w ∈ A

with x̃′ = x̃ + w. Then ‖T−i
A

w − ai‖ ≤ s for some ai ∈ Γ and i = 0, . . .M − 1. By
appropriate choice of w we can assume that a0 = 0. Applying (4.2) to W we see
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that ‖a1‖ ≤ ‖T−1
A

w‖+‖a1−T−1
A

w‖ < r and so a1 = 0. Continuing like this, we see
that ai = 0 and ‖T−i

A
w‖ ≤ s for for i = 0, . . . , M − 1. We conclude that x̃′ = x̃ + w

for some w ∈ BA
s (0) with

(4.3) |ζ−M
j wj |j ≤ s for j = f + 1, . . . , m.

Since T̃−N x̃, T̃−N x̃′ are in the same atom of CV , they differ by some element
v ∈ V with ‖v‖ ≤ s, hence x̃′ = x̃+T N

A
v. Since also x̃′ = x̃+w we have w−T N

A
v ∈ Γ.

Using the bounds we have on the components of a = w − T N
A

v we will use (2.3) to
show that in fact a = 0. Indeed,

m∏

j=1

|a|δj

j =
e∏

j=1

|wj − ζN
j vj |

δj

j

f∏

j=e+1

|wj |
δj

j

m∏

j=f+1

|wj |
δj

j .

For the first type of terms we get |wj − ζN
j vj |j ≤ |wj |j + |ζj |Nj |vj |j ≤ 2s|ζj|Nj . Since

s ≤ 1, we conclude |wj − ζN
j vj |

δj

j ≤ 4s2|ζj |
δjN
j for 1 ≤ j ≤ e. For e < j ≤ f we

use just |wj |
δj

j ≤ s as our estimate, and for f < j ≤ m we use (4.3) in the form of

|wj |
δj

j ≤ s|ζj |
δjM
j . Together this gives

m∏

j=1

|a|δj

j ≤ 4esm
e∏

j=1

|ζj |
δjN
j

m∏

j=f+1

|ζj |
δjM
j .

Let P =
∏f

j=1 |ζj |
δj

j . Then
∏e

j=1 |ζj |
δj

j = P κ, and
∏m

j=f+1 |ζj |
δj

j = P−1 by (2.2).
We rewrite the last estimate and get

m∏

j=1

|a|δj

j ≤ 4esmP κN−M ≤ 4esm.

Since 4esm < 1, (2.3) implies a = 0 and so

(4.4) x̃′ ∈ x̃ + BV
s .

Assume now that x̃ ∈ EN , i.e. that the atoms of x̃ with respect to A and CV

differ. Since A ⊂ CV and A ∨ P [M,N) = CV , there exists x̃′ ∈ [x̃]A and some
i ∈ {M, . . . , N − 1} such that T̃−ix̃ and T̃−ix̃′ belong to different elements of the
partition P . Let θ = minf

j=1 |ζj |j . By (4.4), T̃−ix̃′ ∈ T̃−ix̃′ + BV
θ−is, so x̃ ∈ ∂V

θ−isP .

Thus EN ⊂
⋃N−1

i=M ∂V
θ−isP , and so applying (3.1) we see that µ(EN ) < Cθ−M for

some C > 0, as claimed. !

Proof of Theorem 4.1. We have CV = P ∨ T̃CV , and so

(4.5) heµ(T̃ , V ) =
1

N
Heµ

(
CV |T̃ NCV

)
=

1

N
Heµ

(
P [0,N)

∣∣CN
V

)
=

1

N
Heµ

(
P [0,M)

∣∣CN
V

)
+

1

N
Heµ

(
P [M,N)

∣∣P [0,M) ∨ CN
V

)
.

Clearly

(4.6)
1

N
Heµ

(
P [0,M)

∣∣CN
V

)
≤

M

N

1

M
Heµ

(
P [0,M)

∣∣BY

)
,

and the last expression tends to κheµ(T̃ |BY ) for N → ∞. For the proof of the
theorem we need to show that the second expression on the right hand side of (4.5)
tends to zero.
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Let A and EN be as in Lemma 4.2. We wish to estimate

Heµ

(
P [M,N)|A

)
=

∫
Ieµ

(
P [M,N)|A

)
dµ̃ = −

∫
log µ̃A

ex

(
[x̃]P[M,N)

)
dµ̃(x̃).

The entropy of a partition is less than the logarithm of the cardinality of the
partition. Applying this for µ̃A

ex gives the following estimate

(4.7) h(x̃) = −

∫

[ex]A

log µ̃A
ex

(
[x̃]P[M,N)

)
dµ̃A

ex ≤

{
(N − M) log |P| if x̃ ∈ EN

0 otherwise.

Integrating (4.7) and applying Lemma 4.2, we get

(4.8) 1
N Heµ

(
P [M,N)|A

)
= 1

N

∫
h(x̃) dµ̃ ≤ N−M

N log |P|µ̃(EN ) → 0 as N → ∞.

Combining (4.6) and the text following with (4.8) we get (4.1). !

5. The entropy function, and coarse Lyapunov foliations

We now return to Zd-actions, and establish the following identity regarding the
relation between the entropies of individual elements of the action. This identity is
central to our approach.

Theorem 5.1. Let α be an irreducible action on a solenoid X. Let µ be an α-
invariant measure and let A ⊂ BX be an α-invariant σ-algebra. Then there exists
a constant sµ,A with hµ(αn|A) = sµ,Ahλ(αn) for every n ∈ Zd.

To see how this relates to the last sections, let β be a continuous Zd-action on a
compact space Y which is measurably isomorphic via φ to the factor of α induced
by A (so that φ : X → Y is A-measurable and φ ◦ αn = βn ◦ φ a.e. for every
n ∈ Zd). Let α̃ be the product action on X̃ = Y × X , equipped with the measure
µ̃ = (φ × Id)∗µ, so that hµ(αn|A) = heµ(α̃n|BY ).

For every eigenspace Kj the corresponding Lyapunov vector is the linear func-
tional defined by vj(n) = log |ζj(n)|j . For any non-zero linear function w the
subspace Vw =

∑
vj∈R+

w
Kj is a coarse Lyapunov subspace. The coarse Lyapunov

subspaces are the biggest sums of eigenspaces which are as a whole contracted,
expanded or isometric for every element αn of the action. This is reflected by the
entropy contribution of a coarse Lyapunov subspace.

Lemma 5.2. Let V = Vw be a nontrivial coarse Lyapunov subspace. Then there
exists some seµ(V ) ≥ 0 with heµ(α̃n, V ) = seµ(V )hλ(αn, V ) for all n ∈ Zd.

Indeed, if w(n) ≤ 0, i.e. αn does not expand V , Lemma 5.2 is satisfied trivially.
It is also clear that for every n and N ,

(5.1) heµ(α̃Nn, V ) = Nheµ(α̃Nn, V ).

The interpretation of heµ(α̃n, V ) in terms of the volume growth of suitably scaled
boxes given by Proposition 3.4 implies that if w(n) ≥ w(m) > 0 then heµ(α̃n, V ) ≥
heµ(α̃m, V ); in conjunction with (5.1) we get that heµ(α̃n, V ) = c max(0,w(n)) for
some constant c depending on µ̃, V , and α; since hλ(α̃n, V ) is given by a similar
formula we get the desired identity.

Proposition 5.3. Let W+ be the sum of all expanding eigenspaces for αn and let
W+ = V1 + . . . + Ve be its decomposition into coarse Lyapunov subspaces. Then
heµ(α̃n|BY ) = heµ(α̃n, W+) = heµ(α̃n, V1) + · · · + heµ(α̃n, Ve).
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We give no details here, but mention the main reason: µ̃ex,W+ is the product
measure of the conditionals µ̃ex,Vj

for j = 1, . . . , e. This appeared first in a different
context in [3]; see also [21, Sect. 6]. Proposition 5.3 is related to a more general
result regarding commuting diffeomorphisms by Hu [10, Thm. B].

Lemma 5.2 and Proposition 5.3 show that Theorem 5.1 is equivalent to the next
lemma.

Lemma 5.4. If α is irreducible, there exists some sµ,A such that seµ(V ) = sµ,A for
all coarse Lyapunov subspaces V .

Proof. Let T = αn be chosen so that no coarse Lyapunov subspace is isometric.
Suppose V1, . . . , Ve are the expanded Lyapunov subspaces and Ve+1, . . . , Vf the
contracted ones. We apply Theorem 4.1 for T and some Vj with j ≤ e. Note
that the denominator and the numerator of the fraction in this theorem are exactly
hλ(T ) and hλ(T, Vj). Therefore heµ(T̃ , Vj) ≤ shλ(T, Vj) with s = hµ(T |A)/hλ(T ).
However, by Proposition 5.3 the sum over these inequalities for j ≤ e gives the
inequality hµ(T |A) ≤ shλ(T ) = hµ(T |A). This shows, that all the inequalities

have to be equalities, i.e. heµ(T̃ , Vj) = shλ(T, Vj). Since hλ(T, Vj) > 0 we conclude
seµ(Vj) = s for j = 1, . . . , e.

Using T−1 in the above argument does not change s, and proves seµ(Vj) = s for
j = e + 1, . . . , f , thus concluding the proof of Theorem 5.1. !

6. Outline of the proof of Theorem 1.1

Once Theorem 5.1 is proved, Theorem 1.1 can be proved in a way similar to
Rudolph’s proof of Theorem 1.2. We give a variant of this method below, which
avoids the need to explicitly employ the suspension construction of Katok and
Spatzier.

Let α be a totally irreducible (hence arithmetic) and not virtually cyclic Zd-
action, and let αA be the corresponding Zd-action on the covering space A. Let V
and W be two coarse Lyapunov subspaces, and suppose V + W is contracted by
some αn, n ∈ Zd. The existence of two nontrivial such subspaces follows from the
assumption that α is not virtually-cyclic. The fact that the conditional measure
µx,V +W = µx,V × µx,W is a product implies the following:

Lemma 6.1. There exists a null set N ⊂ X such that µx,V = µx′,V if x, x′ /∈ N
and x′ ∈ x + W .

Let A′ be the smallest σ-algebra with respect to which x !→ µx,V is measurable.
Then invariance of µ under α implies that µαnx,V ∝ (αn

A
)∗µx,V a.s., indeed µαnx,V =

(αn

A
)∗µx,V

(αn

A
)∗µx,V (BV

1 )
, and so A′ is α-invariant. Using Lemma 6.1 one can find a countably

generated α-invariant σ-algebra A which is equal modulo µ to A′ so that every
A ∈ A is a union of full FW -leaves.

As in the last section let β be a continuous realization of this factor, and recall
that the action α on (X, µ) is isomorphic to α̃ on (X̃, µ̃) via the map Φ = φ× Id.

Proposition 6.2. µx,W = µ̃Φ(x),W for a.e. x ∈ X.

Proof. Suppose C ⊂ BX is a σ-algebra subordinate to W . Since for every x, [x]C ⊂
x + W , [x]C ⊂ [x]A and so A ⊂ C. Since φ(x) is constant on atoms of C, it follows
that there is a σ-algebra C̃ subordinate to W in X̃ such that C = Φ−1C̃. Since Φ
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is a measurable isomorphism the conditionals satisfy Φ∗µC
x = µ

eC
Φ(x). It now follows

from Proposition 3.2 that indeed µx,W = µ̃Φ(x),W a.s. !

Proposition 6.3. Assume that the entropy hµ(αn) is positive for some n ∈ Zd.
Then for µ a.e. x, there is a nonzero v ∈ V so that µx,V ∝ (+v)∗µx,V .

Proof. Let N0 be the set from Proposition 3.2.(1) applied to X . By definition of
A′ and since A = A′(modµ) there is a set N ′ of measure zero (which we may as
well assume contains N0) such that if x, x′ )∈ N ′ and [x]A = [x′]A (equivalently,
φ(x) = φ(x′)) then µx,V = µx′,V . Let Ñ = Φ(N ′).

Let sµ(V ) and sµ(W ) be as in Lemma 5.4. Then sµ(V ) = sµ(W ) > 0 and simi-
larly seµ(V ) = seµ(W ). Since sµ(W ) and seµ(W ) are determined by the conditional
measures µx,W and µ̃ex,W respectively, by Proposition 6.2 sµ(W ) = seµ(W ). We
conclude that sµ(V ) = seµ(V ) > 0, and in particular µ̃ex,V ({0}) = 0 a.s.

Let C̃ be any V -subordinate σ-algebra. For a.e. x (in particular x /∈ N ′),
µ̃C
Φ(x)(Ñ) = 0 so a.s. there is a nonzero v ∈ V so that x, x + v )∈ N ′ but Φ(x + v) ∈

[Φ(x)]C . In particular, φ(x) = φ(x′) which implies that µx,V = µx+v,V . Since
x, x + v )∈ N0, Proposition 3.2 gives that µx,V ∝ (+v)∗µx+v,V and so µx,V ∝
(+v)∗µx,V . !

From Proposition 6.3 one can conclude with standard techniques (see for instance
[14, Lemma 3.4] or [16, Lemma 5.6]) that µx,V1 is actually translation invariant in
the strict sense under some nonzero element of V a.s. Note that so far we have
only used that α is irreducible. Using the total irreducibility of α it is not hard to
conclude at this stage that µ is Haar measure on X .
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